示例#1
0
文件: pwdf_jk.py 项目: eronca/pyscf
    def make_kpt(kpt):  # kpt = kptj - kpti
        # search for all possible ki and kj that has ki-kj+kpt=0
        kk_match = numpy.einsum('ijx->ij', abs(kk_table + kpt)) < 1e-9
        kpti_idx, kptj_idx = numpy.where(kk_todo & kk_match)
        nkptj = len(kptj_idx)
        log.debug1('kpt = %s', kpt)
        log.debug2('kpti_idx = %s', kpti_idx)
        log.debug2('kptj_idx = %s', kptj_idx)
        kk_todo[kpti_idx,kptj_idx] = False
        if swap_2e and not is_zero(kpt):
            kk_todo[kptj_idx,kpti_idx] = False

        max_memory1 = max_memory * (nkptj+1)/(nkptj+5)
        blksize = max(int(max_memory1*4e6/(nkptj+5)/16/nao**2), 16)
        bufR = numpy.empty((blksize*nao**2))
        bufI = numpy.empty((blksize*nao**2))
        # Use DF object to mimic KRHF/KUHF object in function get_coulG
        mydf.exxdiv = exxdiv
        vkcoulG = mydf.weighted_coulG(kpt, True, mydf.gs)
        kptjs = kpts[kptj_idx]
        # <r|-G+k_rs|s> = conj(<s|G-k_rs|r>) = conj(<s|G+k_sr|r>)
        for k, pqkR, pqkI, p0, p1 \
                in mydf.ft_loop(mydf.gs, kpt, kptjs, max_memory=max_memory1):
            ki = kpti_idx[k]
            kj = kptj_idx[k]
            coulG = numpy.sqrt(vkcoulG[p0:p1])

# case 1: k_pq = (pi|iq)
#:v4 = numpy.einsum('ijL,lkL->ijkl', pqk, pqk.conj())
#:vk += numpy.einsum('ijkl,jk->il', v4, dm)
            pqkR *= coulG
            pqkI *= coulG
            pLqR = lib.transpose(pqkR.reshape(nao,nao,-1), axes=(0,2,1), out=bufR)
            pLqI = lib.transpose(pqkI.reshape(nao,nao,-1), axes=(0,2,1), out=bufI)
            iLkR = numpy.empty((nao*(p1-p0),nao))
            iLkI = numpy.empty((nao*(p1-p0),nao))
            for i in range(nset):
                iLkR, iLkI = zdotNN(pLqR.reshape(-1,nao), pLqI.reshape(-1,nao),
                                    dmsR[i,kj], dmsI[i,kj], 1, iLkR, iLkI)
                zdotNC(iLkR.reshape(nao,-1), iLkI.reshape(nao,-1),
                       pLqR.reshape(nao,-1).T, pLqI.reshape(nao,-1).T,
                       1, vkR[i,ki], vkI[i,ki], 1)

# case 2: k_pq = (iq|pi)
#:v4 = numpy.einsum('iLj,lLk->ijkl', pqk, pqk.conj())
#:vk += numpy.einsum('ijkl,li->kj', v4, dm)
            if swap_2e and not is_zero(kpt):
                iLkR = iLkR.reshape(nao,-1)
                iLkI = iLkI.reshape(nao,-1)
                for i in range(nset):
                    iLkR, iLkI = zdotNN(dmsR[i,ki], dmsI[i,ki], pLqR.reshape(nao,-1),
                                        pLqI.reshape(nao,-1), 1, iLkR, iLkI)
                    zdotCN(pLqR.reshape(-1,nao).T, pLqI.reshape(-1,nao).T,
                           iLkR.reshape(-1,nao), iLkI.reshape(-1,nao),
                           1, vkR[i,kj], vkI[i,kj], 1)
            pqkR = pqkI = coulG = pLqR = pLqI = iLkR = iLkI = None
示例#2
0
文件: aft_jk.py 项目: chrinide/pyscf
def get_jk(mydf, dm, hermi=1, kpt=numpy.zeros(3),
           kpts_band=None, with_j=True, with_k=True, exxdiv=None):
    '''JK for given k-point'''
    vj = vk = None
    if kpts_band is not None and abs(kpt-kpts_band).sum() > 1e-9:
        kpt = numpy.reshape(kpt, (1,3))
        if with_k:
            vk = get_k_kpts(mydf, dm, hermi, kpt, kpts_band, exxdiv)
        if with_j:
            vj = get_j_kpts(mydf, dm, hermi, kpt, kpts_band)
        return vj, vk

    cell = mydf.cell
    log = logger.Logger(mydf.stdout, mydf.verbose)
    t1 = (time.clock(), time.time())

    dm = numpy.asarray(dm, order='C')
    dms = _format_dms(dm, [kpt])
    nset, _, nao = dms.shape[:3]
    dms = dms.reshape(nset,nao,nao)
    j_real = gamma_point(kpt)
    k_real = gamma_point(kpt) and not numpy.iscomplexobj(dms)

    mesh = mydf.mesh
    kptii = numpy.asarray((kpt,kpt))
    kpt_allow = numpy.zeros(3)

    if with_j:
        vjcoulG = mydf.weighted_coulG(kpt_allow, False, mesh)
        vjR = numpy.zeros((nset,nao,nao))
        vjI = numpy.zeros((nset,nao,nao))
    if with_k:
        mydf.exxdiv = exxdiv
        vkcoulG = mydf.weighted_coulG(kpt_allow, True, mesh)
        vkR = numpy.zeros((nset,nao,nao))
        vkI = numpy.zeros((nset,nao,nao))
    dmsR = numpy.asarray(dms.real.reshape(nset,nao,nao), order='C')
    dmsI = numpy.asarray(dms.imag.reshape(nset,nao,nao), order='C')
    mem_now = lib.current_memory()[0]
    max_memory = max(2000, (mydf.max_memory - mem_now)) * .8
    log.debug1('max_memory = %d MB (%d in use)', max_memory, mem_now)
    t2 = t1

    # rho_rs(-G+k_rs) is computed as conj(rho_{rs^*}(G-k_rs))
    #                 == conj(transpose(rho_sr(G+k_sr), (0,2,1)))
    blksize = max(int(max_memory*.25e6/16/nao**2), 16)
    pLqR = pLqI = None
    for pqkR, pqkI, p0, p1 in mydf.pw_loop(mesh, kptii, max_memory=max_memory):
        t2 = log.timer_debug1('%d:%d ft_aopair'%(p0,p1), *t2)
        pqkR = pqkR.reshape(nao,nao,-1)
        pqkI = pqkI.reshape(nao,nao,-1)
        if with_j:
            #:v4 = numpy.einsum('ijL,lkL->ijkl', pqk, pqk.conj())
            #:vj += numpy.einsum('ijkl,lk->ij', v4, dm)
            for i in range(nset):
                rhoR = numpy.einsum('pq,pqk->k', dmsR[i], pqkR)
                rhoR+= numpy.einsum('pq,pqk->k', dmsI[i], pqkI)
                rhoI = numpy.einsum('pq,pqk->k', dmsI[i], pqkR)
                rhoI-= numpy.einsum('pq,pqk->k', dmsR[i], pqkI)
                rhoR *= vjcoulG[p0:p1]
                rhoI *= vjcoulG[p0:p1]
                vjR[i] += numpy.einsum('pqk,k->pq', pqkR, rhoR)
                vjR[i] -= numpy.einsum('pqk,k->pq', pqkI, rhoI)
                if not j_real:
                    vjI[i] += numpy.einsum('pqk,k->pq', pqkR, rhoI)
                    vjI[i] += numpy.einsum('pqk,k->pq', pqkI, rhoR)
        #t2 = log.timer_debug1('        with_j', *t2)

        if with_k:
            #:v4 = numpy.einsum('ijL,lkL->ijkl', pqk, pqk.conj())
            #:vk += numpy.einsum('ijkl,jk->il', v4, dm)
            pLqR = lib.transpose(pqkR, axes=(0,2,1), out=pLqR).reshape(-1,nao)
            pLqI = lib.transpose(pqkI, axes=(0,2,1), out=pLqI).reshape(-1,nao)
            nG = p1 - p0
            iLkR = numpy.ndarray((nao,nG,nao), buffer=pqkR)
            iLkI = numpy.ndarray((nao,nG,nao), buffer=pqkI)
            for i in range(nset):
                if k_real:
                    lib.dot(pLqR, dmsR[i], 1, iLkR.reshape(nao*nG,nao))
                    lib.dot(pLqI, dmsR[i], 1, iLkI.reshape(nao*nG,nao))
                    iLkR *= vkcoulG[p0:p1].reshape(1,nG,1)
                    iLkI *= vkcoulG[p0:p1].reshape(1,nG,1)
                    lib.dot(iLkR.reshape(nao,-1), pLqR.reshape(nao,-1).T, 1, vkR[i], 1)
                    lib.dot(iLkI.reshape(nao,-1), pLqI.reshape(nao,-1).T, 1, vkR[i], 1)
                else:
                    zdotNN(pLqR, pLqI, dmsR[i], dmsI[i], 1,
                           iLkR.reshape(-1,nao), iLkI.reshape(-1,nao))
                    iLkR *= vkcoulG[p0:p1].reshape(1,nG,1)
                    iLkI *= vkcoulG[p0:p1].reshape(1,nG,1)
                    zdotNC(iLkR.reshape(nao,-1), iLkI.reshape(nao,-1),
                           pLqR.reshape(nao,-1).T, pLqI.reshape(nao,-1).T,
                           1, vkR[i], vkI[i])
            #t2 = log.timer_debug1('        with_k', *t2)
        pqkR = pqkI = coulG = pLqR = pLqI = iLkR = iLkI = None
        #t2 = log.timer_debug1('%d:%d'%(p0,p1), *t2)
    bufR = bufI = None
    t1 = log.timer_debug1('aft_jk.get_jk', *t1)

    if with_j:
        if j_real:
            vj = vjR
        else:
            vj = vjR + vjI * 1j
        vj = vj.reshape(dm.shape)
    if with_k:
        if k_real:
            vk = vkR
        else:
            vk = vkR + vkI * 1j
        # Add ewald_exxdiv contribution because G=0 was not included in the
        # non-uniform grids
        if (exxdiv == 'ewald' and
            (cell.dimension < 2 or  # 0D and 1D are computed with inf_vacuum
             (cell.dimension == 2 and cell.low_dim_ft_type == 'inf_vacuum'))):
            _ewald_exxdiv_for_G0(cell, kpt, dms, vk)
        vk = vk.reshape(dm.shape)
    return vj, vk
示例#3
0
文件: aft_jk.py 项目: chrinide/pyscf
    def make_kpt(kpt):  # kpt = kptj - kpti
        # search for all possible ki and kj that has ki-kj+kpt=0
        kk_match = numpy.einsum('ijx->ij', abs(kk_table + kpt)) < 1e-9
        kpti_idx, kptj_idx = numpy.where(kk_todo & kk_match)
        nkptj = len(kptj_idx)
        log.debug1('kpt = %s', kpt)
        log.debug2('kpti_idx = %s', kpti_idx)
        log.debug2('kptj_idx = %s', kptj_idx)
        kk_todo[kpti_idx,kptj_idx] = False
        if swap_2e and not is_zero(kpt):
            kk_todo[kptj_idx,kpti_idx] = False

        max_memory1 = max_memory * (nkptj+1)/(nkptj+5)
        #blksize = max(int(max_memory1*4e6/(nkptj+5)/16/nao**2), 16)

        #bufR = numpy.empty((blksize*nao**2))
        #bufI = numpy.empty((blksize*nao**2))
        # Use DF object to mimic KRHF/KUHF object in function get_coulG
        mydf.exxdiv = exxdiv
        vkcoulG = mydf.weighted_coulG(kpt, True, mesh)
        kptjs = kpts[kptj_idx]
        # <r|-G+k_rs|s> = conj(<s|G-k_rs|r>) = conj(<s|G+k_sr|r>)
        #buf1R = numpy.empty((blksize*nao**2))
        #buf1I = numpy.empty((blksize*nao**2))
        for aoaoks, p0, p1 in mydf.ft_loop(mesh, kpt, kptjs, max_memory=max_memory1):
            nG = p1 - p0
            bufR = numpy.empty((nG*nao**2))
            bufI = numpy.empty((nG*nao**2))
            buf1R = numpy.empty((nG*nao**2))
            buf1I = numpy.empty((nG*nao**2))

            for k, aoao in enumerate(aoaoks):
                ki = kpti_idx[k]
                kj = kptj_idx[k]

# case 1: k_pq = (pi|iq)
#:v4 = numpy.einsum('ijL,lkL->ijkl', pqk, pqk.conj())
#:vk += numpy.einsum('ijkl,jk->il', v4, dm)
                pLqR = numpy.ndarray((nao,nG,nao), buffer=bufR)
                pLqI = numpy.ndarray((nao,nG,nao), buffer=bufI)
                pLqR[:] = aoao.real.reshape(nG,nao,nao).transpose(1,0,2)
                pLqI[:] = aoao.imag.reshape(nG,nao,nao).transpose(1,0,2)
                iLkR = numpy.ndarray((nao,nG,nao), buffer=buf1R)
                iLkI = numpy.ndarray((nao,nG,nao), buffer=buf1I)
                for i in range(nset):
                    zdotNN(pLqR.reshape(-1,nao), pLqI.reshape(-1,nao),
                           dmsR[i,kj], dmsI[i,kj], 1,
                           iLkR.reshape(-1,nao), iLkI.reshape(-1,nao))
                    iLkR *= vkcoulG[p0:p1].reshape(1,nG,1)
                    iLkI *= vkcoulG[p0:p1].reshape(1,nG,1)
                    zdotNC(iLkR.reshape(nao,-1), iLkI.reshape(nao,-1),
                           pLqR.reshape(nao,-1).T, pLqI.reshape(nao,-1).T,
                           1, vkR[i,ki], vkI[i,ki], 1)

# case 2: k_pq = (iq|pi)
#:v4 = numpy.einsum('iLj,lLk->ijkl', pqk, pqk.conj())
#:vk += numpy.einsum('ijkl,li->kj', v4, dm)
                if swap_2e and not is_zero(kpt):
                    for i in range(nset):
                        zdotNN(dmsR[i,ki], dmsI[i,ki], pLqR.reshape(nao,-1),
                               pLqI.reshape(nao,-1), 1,
                               iLkR.reshape(nao,-1), iLkI.reshape(nao,-1))
                        iLkR *= vkcoulG[p0:p1].reshape(1,nG,1)
                        iLkI *= vkcoulG[p0:p1].reshape(1,nG,1)
                        zdotCN(pLqR.reshape(-1,nao).T, pLqI.reshape(-1,nao).T,
                               iLkR.reshape(-1,nao), iLkI.reshape(-1,nao),
                               1, vkR[i,kj], vkI[i,kj], 1)
示例#4
0
def get_eri(mydf, kpts=None, compact=True):
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    nao = cell.nao_nr()
    nao_pair = nao * (nao + 1) // 2
    max_memory = max(2000, mydf.max_memory - lib.current_memory()[0] - nao ** 4 * 8 / 1e6)

    ####################
    # gamma point, the integral is real and with s4 symmetry
    if abs(kptijkl).sum() < KPT_DIFF_TOL:
        eriR = numpy.zeros((nao_pair, nao_pair))
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, True):
            lib.ddot(LpqR.T, LpqR, 1, eriR, 1)
            LpqR = LpqI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao ** 2, -1)
        return eriR

    elif (abs(kpti - kptk).sum() < KPT_DIFF_TOL) and (abs(kptj - kptl).sum() < KPT_DIFF_TOL):
        eriR = numpy.zeros((nao * nao, nao * nao))
        eriI = numpy.zeros((nao * nao, nao * nao))
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNN(LpqR.T, LpqI.T, LpqR, LpqI, 1, eriR, eriI, 1)
            LpqR = LpqI = None
        return eriR + eriI * 1j

    ####################
    # (kpt) i == j == k == l != 0
    #
    # (kpt) i == l && j == k && i != j && j != k  =>
    # both vbar and ovlp are zero. It corresponds to the exchange integral.
    #
    # complex integrals, N^4 elements
    elif (abs(kpti - kptl).sum() < KPT_DIFF_TOL) and (abs(kptj - kptk).sum() < KPT_DIFF_TOL):
        eriR = numpy.zeros((nao * nao, nao * nao))
        eriI = numpy.zeros((nao * nao, nao * nao))
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNC(LpqR.T, LpqI.T, LpqR, LpqI, 1, eriR, eriI, 1)
            LpqR = LpqI = None
        # transpose(0,1,3,2) because
        # j == k && i == l  =>
        # (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
        eri = lib.transpose((eriR + eriI * 1j).reshape(-1, nao, nao), axes=(0, 2, 1))
        return eri.reshape(nao ** 2, -1)

    ####################
    # aosym = s1, complex integrals
    #
    # kpti == kptj  =>  kptl == kptk
    # If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
    # vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
    # So  kptl/b - kptk/b  must be -1 < k/b < 1.
    #
    else:
        eriR = numpy.zeros((nao * nao, nao * nao))
        eriI = numpy.zeros((nao * nao, nao * nao))
        for (LpqR, LpqI), (LrsR, LrsI) in lib.izip(
            mydf.sr_loop(kptijkl[:2], max_memory, False), mydf.sr_loop(kptijkl[2:], max_memory, False)
        ):
            zdotNN(LpqR.T, LpqI.T, LrsR, LrsI, 1, eriR, eriI, 1)
            LpqR = LpqI = LrsR = LrsI = None
        return eriR + eriI * 1j
示例#5
0
文件: pwdf_jk.py 项目: eronca/pyscf
def get_jk(mydf, dm, hermi=1, kpt=numpy.zeros(3),
           kpt_band=None, with_j=True, with_k=True, exxdiv=None):
    '''JK for given k-point'''
    from pyscf.pbc.df.df_jk import _ewald_exxdiv_for_G0
    vj = vk = None
    if kpt_band is not None and abs(kpt-kpt_band).sum() > 1e-9:
        kpt = numpy.reshape(kpt, (1,3))
        if with_k:
            vk = get_k_kpts(mydf, [dm], hermi, kpt, kpt_band, exxdiv)
        if with_j:
            vj = get_j_kpts(mydf, [dm], hermi, kpt, kpt_band)
        return vj, vk

    cell = mydf.cell
    log = logger.Logger(mydf.stdout, mydf.verbose)
    t1 = (time.clock(), time.time())

    dm = numpy.asarray(dm, order='C')
    dms = _format_dms(dm, [kpt])
    nset, _, nao = dms.shape[:3]
    dms = dms.reshape(nset,nao,nao)
    j_real = gamma_point(kpt)
    k_real = gamma_point(kpt) and not numpy.iscomplexobj(dms)

    kptii = numpy.asarray((kpt,kpt))
    kpt_allow = numpy.zeros(3)

    if with_j:
        vjcoulG = mydf.weighted_coulG(kpt_allow, False, mydf.gs)
        vjR = numpy.zeros((nset,nao,nao))
        vjI = numpy.zeros((nset,nao,nao))
    if with_k:
        mydf.exxdiv = exxdiv
        vkcoulG = mydf.weighted_coulG(kpt_allow, True, mydf.gs)
        vkR = numpy.zeros((nset,nao,nao))
        vkI = numpy.zeros((nset,nao,nao))
    dmsR = numpy.asarray(dms.real.reshape(nset,nao,nao), order='C')
    dmsI = numpy.asarray(dms.imag.reshape(nset,nao,nao), order='C')
    mem_now = lib.current_memory()[0]
    max_memory = max(2000, (mydf.max_memory - mem_now)) * .8
    log.debug1('max_memory = %d MB (%d in use)', max_memory, mem_now)
    t2 = t1

    # rho_rs(-G+k_rs) is computed as conj(rho_{rs^*}(G-k_rs))
    #               == conj(transpose(rho_sr(G+k_sr), (0,2,1)))
    blksize = max(int(max_memory*.25e6/16/nao**2), 16)
    bufR = numpy.empty(blksize*nao**2)
    bufI = numpy.empty(blksize*nao**2)
    for pqkR, pqkI, p0, p1 in mydf.pw_loop(mydf.gs, kptii, max_memory=max_memory):
        t2 = log.timer_debug1('%d:%d ft_aopair'%(p0,p1), *t2)
        pqkR = pqkR.reshape(nao,nao,-1)
        pqkI = pqkI.reshape(nao,nao,-1)
        if with_j:
            for i in range(nset):
                rhoR = numpy.einsum('pq,pqk->k', dmsR[i], pqkR)
                rhoR+= numpy.einsum('pq,pqk->k', dmsI[i], pqkI)
                rhoI = numpy.einsum('pq,pqk->k', dmsI[i], pqkR)
                rhoI-= numpy.einsum('pq,pqk->k', dmsR[i], pqkI)
                rhoR *= vjcoulG[p0:p1]
                rhoI *= vjcoulG[p0:p1]
                vjR[i] += numpy.einsum('pqk,k->pq', pqkR, rhoR)
                vjR[i] -= numpy.einsum('pqk,k->pq', pqkI, rhoI)
                if not j_real:
                    vjI[i] += numpy.einsum('pqk,k->pq', pqkR, rhoI)
                    vjI[i] += numpy.einsum('pqk,k->pq', pqkI, rhoR)
        #t2 = log.timer_debug1('        with_j', *t2)

        if with_k:
            coulG = numpy.sqrt(vkcoulG[p0:p1])
            pqkR *= coulG
            pqkI *= coulG
            #:v4 = numpy.einsum('ijL,lkL->ijkl', pqk, pqk.conj())
            #:vk += numpy.einsum('ijkl,jk->il', v4, dm)
            pLqR = lib.transpose(pqkR, axes=(0,2,1), out=bufR).reshape(-1,nao)
            pLqI = lib.transpose(pqkI, axes=(0,2,1), out=bufI).reshape(-1,nao)
            iLkR = numpy.ndarray((nao*(p1-p0),nao), buffer=pqkR)
            iLkI = numpy.ndarray((nao*(p1-p0),nao), buffer=pqkI)
            for i in range(nset):
                if k_real:
                    lib.dot(pLqR, dmsR[i], 1, iLkR)
                    lib.dot(pLqI, dmsR[i], 1, iLkI)
                    lib.dot(iLkR.reshape(nao,-1), pLqR.reshape(nao,-1).T, 1, vkR[i], 1)
                    lib.dot(iLkI.reshape(nao,-1), pLqI.reshape(nao,-1).T, 1, vkR[i], 1)
                else:
                    zdotNN(pLqR, pLqI, dmsR[i], dmsI[i], 1, iLkR, iLkI)
                    zdotNC(iLkR.reshape(nao,-1), iLkI.reshape(nao,-1),
                           pLqR.reshape(nao,-1).T, pLqI.reshape(nao,-1).T,
                           1, vkR[i], vkI[i])
            #t2 = log.timer_debug1('        with_k', *t2)
        pqkR = pqkI = coulG = pLqR = pLqI = iLkR = iLkI = None
        #t2 = log.timer_debug1('%d:%d'%(p0,p1), *t2)
    bufR = bufI = None
    t1 = log.timer_debug1('pwdf_jk.get_jk', *t1)

    if with_j:
        if j_real:
            vj = vjR
        else:
            vj = vjR + vjI * 1j
        vj = vj.reshape(dm.shape)
    if with_k:
        if k_real:
            vk = vkR
        else:
            vk = vkR + vkI * 1j
        if cell.dimension != 3 and exxdiv is not None:
            assert(exxdiv.lower() == 'ewald')
            _ewald_exxdiv_for_G0(cell, kpt, dms, vk)
        vk = vk.reshape(dm.shape)
    return vj, vk
示例#6
0
文件: mdf_jk.py 项目: eronca/pyscf
    def make_kpt(kpt):  # kpt = kptj - kpti
        # search for all possible ki and kj that has ki-kj+kpt=0
        kk_match = numpy.einsum('ijx->ij', abs(kk_table + kpt)) < 1e-9
        kpti_idx, kptj_idx = numpy.where(kk_todo & kk_match)
        nkptj = len(kptj_idx)
        kk_todo[kpti_idx,kptj_idx] = False
        if swap_2e and not is_zero(kpt):
            kk_todo[kptj_idx,kpti_idx] = False

        # Note: kj-ki for electorn 1 and ki-kj for electron 2
        # j2c ~ ({kj-ki}|{ks-kr}) ~ ({kj-ki}|-{kj-ki}) ~ ({kj-ki}|{ki-kj})
        # j3c ~ (Q|kj,ki) = j3c{ji} = (Q|ki,kj)* = conj(transpose(j3c{ij}, (0,2,1)))

        bufR = numpy.empty((mydf.blockdim*nao**2))
        bufI = numpy.empty((mydf.blockdim*nao**2))
        for ki,kj in zip(kpti_idx,kptj_idx):
            kpti = kpts_band[ki]
            kptj = kpts[kj]
            kptij = numpy.asarray((kpti,kptj))
            for LpqR, LpqI, j3cR, j3cI in mydf.sr_loop(kptij, max_memory, False):
                nrow = LpqR.shape[0]
                pLqR = numpy.ndarray((nao,nrow,nao), buffer=bufR)
                pLqI = numpy.ndarray((nao,nrow,nao), buffer=bufI)
                pjqR = numpy.ndarray((nao,nrow,nao), buffer=LpqR)
                pjqI = numpy.ndarray((nao,nrow,nao), buffer=LpqI)
                tmpR = numpy.ndarray((nao,nrow*nao), buffer=j3cR)
                tmpI = numpy.ndarray((nao,nrow*nao), buffer=j3cI)
                pLqR[:] = LpqR.reshape(-1,nao,nao).transpose(1,0,2)
                pLqI[:] = LpqI.reshape(-1,nao,nao).transpose(1,0,2)
                pjqR[:] = j3cR.reshape(-1,nao,nao).transpose(1,0,2)
                pjqI[:] = j3cI.reshape(-1,nao,nao).transpose(1,0,2)

                #:Lpq = LpqR + LpqI*1j
                #:j3c = j3cR + j3cI*1j
                #:for i in range(nset):
                #:    dm = dms[i,ki]
                #:    tmp = numpy.dot(dm, j3c.reshape(nao,-1))
                #:    vk1 = numpy.dot(Lpq.reshape(-1,nao).conj().T, tmp.reshape(-1,nao))
                #:    tmp = numpy.dot(dm, Lpq.reshape(nao,-1))
                #:    vk1+= numpy.dot(j3c.reshape(-1,nao).conj().T, tmp.reshape(-1,nao))
                #:    vkR[i,kj] += vk1.real
                #:    vkI[i,kj] += vk1.imag

                #:if swap_2e and not is_zero(kpt):
                #:    # K ~ 'Lij,Llk*,jk->il' + 'Llk*,Lij,jk->il'
                #:    for i in range(nset):
                #:        dm = dms[i,kj]
                #:        tmp = numpy.dot(j3c.reshape(-1,nao), dm)
                #:        vk1 = numpy.dot(tmp.reshape(nao,-1), Lpq.reshape(nao,-1).conj().T)
                #:        tmp = numpy.dot(Lpq.reshape(-1,nao), dm)
                #:        vk1+= numpy.dot(tmp.reshape(nao,-1), j3c.reshape(nao,-1).conj().T)
                #:        vkR[i,ki] += vk1.real
                #:        vkI[i,ki] += vk1.imag

                # K ~ 'iLj,lLk*,li->kj' + 'lLk*,iLj,li->kj'
                for i in range(nset):
                    tmpR, tmpI = zdotNN(dmsR[i,ki], dmsI[i,ki], pjqR.reshape(nao,-1),
                                        pjqI.reshape(nao,-1), 1, tmpR, tmpI)
                    vk1R, vk1I = zdotCN(pLqR.reshape(-1,nao).T, pLqI.reshape(-1,nao).T,
                                        tmpR.reshape(-1,nao), tmpI.reshape(-1,nao))
                    vkR[i,kj] += vk1R
                    vkI[i,kj] += vk1I
                    if hermi:
                        vkR[i,kj] += vk1R.T
                        vkI[i,kj] -= vk1I.T
                    else:
                        tmpR, tmpI = zdotNN(dmsR[i,ki], dmsI[i,ki], pLqR.reshape(nao,-1),
                                            pLqI.reshape(nao,-1), 1, tmpR, tmpI)
                        zdotCN(pjqR.reshape(-1,nao).T, pjqI.reshape(-1,nao).T,
                               tmpR.reshape(-1,nao), tmpI.reshape(-1,nao),
                               1, vkR[i,kj], vkI[i,kj], 1)

                if swap_2e and not is_zero(kpt):
                    tmpR = tmpR.reshape(nao*nrow,nao)
                    tmpI = tmpI.reshape(nao*nrow,nao)
                    # K ~ 'iLj,lLk*,jk->il' + 'lLk*,iLj,jk->il'
                    for i in range(nset):
                        tmpR, tmpI = zdotNN(pjqR.reshape(-1,nao), pjqI.reshape(-1,nao),
                                            dmsR[i,kj], dmsI[i,kj], 1, tmpR, tmpI)
                        vk1R, vk1I = zdotNC(tmpR.reshape(nao,-1), tmpI.reshape(nao,-1),
                                            pLqR.reshape(nao,-1).T, pLqI.reshape(nao,-1).T)
                        vkR[i,ki] += vk1R
                        vkI[i,ki] += vk1I
                        if hermi:
                            vkR[i,ki] += vk1R.T
                            vkI[i,ki] -= vk1I.T
                        else:
                            tmpR, tmpI = zdotNN(pLqR.reshape(-1,nao), pLqI.reshape(-1,nao),
                                                dmsR[i,kj], dmsI[i,kj], 1, tmpR, tmpI)
                            zdotNC(tmpR.reshape(nao,-1), tmpI.reshape(nao,-1),
                                   pjqR.reshape(nao,-1).T, pjqI.reshape(nao,-1).T,
                                   1, vkR[i,ki], vkI[i,ki], 1)
                LpqR = LpqI = j3cR = j3cI = tmpR = tmpI = None
        return None
示例#7
0
def get_eri(mydf, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_get_eri_compact', True)):
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    nao = cell.nao_nr()
    kptijkl = _format_kpts(kpts)
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'df_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros((nao,nao,nao,nao))

    kpti, kptj, kptk, kptl = kptijkl
    nao_pair = nao * (nao+1) // 2
    max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]-nao**4*16/1e6)

####################
# gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl):
        eriR = numpy.zeros((nao_pair,nao_pair))
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, True):
            lib.ddot(LpqR.T, LpqR, sign, eriR, 1)
            LpqR = LpqI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2,-1)
        return eriR

    elif is_zero(kpti-kptk) and is_zero(kptj-kptl):
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNN(LpqR.T, LpqI.T, LpqR, LpqI, sign, eriR, eriI, 1)
            LpqR = LpqI = None
        return eriR + eriI*1j

####################
# (kpt) i == j == k == l != 0
#
# (kpt) i == l && j == k && i != j && j != k  =>
# both vbar and ovlp are zero. It corresponds to the exchange integral.
#
# complex integrals, N^4 elements
    elif is_zero(kpti-kptl) and is_zero(kptj-kptk):
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNC(LpqR.T, LpqI.T, LpqR, LpqI, sign, eriR, eriI, 1)
            LpqR = LpqI = None
# transpose(0,1,3,2) because
# j == k && i == l  =>
# (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
        eri = lib.transpose((eriR+eriI*1j).reshape(-1,nao,nao), axes=(0,2,1))
        return eri.reshape(nao**2,-1)

####################
# aosym = s1, complex integrals
#
# kpti == kptj  =>  kptl == kptk
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.
#
    else:
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        blksize = int(max_memory*.4e6/16/nao**2)
        for (LpqR, LpqI, sign), (LrsR, LrsI, sign1) in \
                lib.izip(mydf.sr_loop(kptijkl[:2], max_memory, False, blksize),
                         mydf.sr_loop(kptijkl[2:], max_memory, False, blksize)):
            zdotNN(LpqR.T, LpqI.T, LrsR, LrsI, sign, eriR, eriI, 1)
            LpqR = LpqI = LrsR = LrsI = None
        return eriR + eriI*1j
示例#8
0
def get_eri(mydf, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_get_eri_compact', True)):
    cell = mydf.cell
    nao = cell.nao_nr()
    kptijkl = _format_kpts(kpts)
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'aft_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros((nao,nao,nao,nao))

    kpti, kptj, kptk, kptl = kptijkl
    q = kptj - kpti
    mesh = mydf.mesh
    coulG = mydf.weighted_coulG(q, False, mesh)
    nao_pair = nao * (nao+1) // 2
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .8)

####################
# gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl):
        eriR = numpy.zeros((nao_pair,nao_pair))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory,
                                aosym='s2'):
            lib.ddot(pqkR*coulG[p0:p1], pqkR.T, 1, eriR, 1)
            lib.ddot(pqkI*coulG[p0:p1], pqkI.T, 1, eriR, 1)
            pqkR = pqkI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2,-1)
        return eriR

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
# complex integrals, N^4 elements
    elif is_zero(kpti-kptl) and is_zero(kptj-kptk):
        eriR = numpy.zeros((nao**2,nao**2))
        eriI = numpy.zeros((nao**2,nao**2))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory):
# rho_pq(G+k_pq) * conj(rho_rs(G-k_rs))
            zdotNC(pqkR*coulG[p0:p1], pqkI*coulG[p0:p1], pqkR.T, pqkI.T,
                   1, eriR, eriI, 1)
            pqkR = pqkI = None
        pqkR = pqkI = coulG = None
# transpose(0,1,3,2) because
# j == k && i == l  =>
# (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
# rho_rs(-G+k_rs) = conj(transpose(rho_sr(G+k_sr), (0,2,1)))
        eri = lib.transpose((eriR+eriI*1j).reshape(-1,nao,nao), axes=(0,2,1))
        return eri.reshape(nao**2,-1)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        eriR = numpy.zeros((nao**2,nao**2))
        eriI = numpy.zeros((nao**2,nao**2))
#
#       (pq|rs) = \sum_G 4\pi rho_pq rho_rs / |G+k_{pq}|^2
#       rho_pq = 1/N \sum_{Tp,Tq} \int exp(-i(G+k_{pq})*r) p(r-Tp) q(r-Tq) dr
#              = \sum_{Tq} exp(i k_q*Tq) \int exp(-i(G+k_{pq})*r) p(r) q(r-Tq) dr
# Note the k-point wrap-around for rho_rs, which leads to G+k_{pq} in FT
#       rho_rs = 1/N \sum_{Tr,Ts} \int exp( i(G+k_{pq})*r) r(r-Tr) s(r-Ts) dr
#              = \sum_{Ts} exp(i k_s*Ts) \int exp( i(G+k_{pq})*r) r(r) s(r-Ts) dr
# rho_pq can be directly evaluated by AFT (function pw_loop)
#       rho_pq = pw_loop(k_q, G+k_{pq})
# Assuming r(r) and s(r) are real functions, rho_rs is evaluated
#       rho_rs = 1/N \sum_{Tr,Ts} \int exp( i(G+k_{pq})*r) r(r-Tr) s(r-Ts) dr
#              = conj(\sum_{Ts} exp(-i k_s*Ts) \int exp(-i(G+k_{pq})*r) r(r) s(r-Ts) dr)
#              = conj( pw_loop(-k_s, G+k_{pq}) )
#
# TODO: For complex AO function r(r) and s(r), pw_loop function needs to be
# extended to include Gv vector in the arguments
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory*.5),
                         mydf.pw_loop(mesh,-kptijkl[2:], q, max_memory=max_memory*.5)):
            pqkR *= coulG[p0:p1]
            pqkI *= coulG[p0:p1]
            zdotNC(pqkR, pqkI, rskR.T, rskI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = rskR = rskI = None
        return (eriR+eriI*1j)
示例#9
0
def get_eri(mydf, kpts=None, compact=True):
    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    nao = cell.nao_nr()
    nao_pair = nao * (nao+1) // 2
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .8)

####################
# gamma point, the integral is real and with s4 symmetry
    if abs(kptijkl).sum() < KPT_DIFF_TOL:
        coulG = mydf.weighted_coulG(kptj-kpti, False, mydf.gs)
        eriR = numpy.zeros((nao_pair,nao_pair))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mydf.gs, kptijkl[:2], max_memory=max_memory,
                                aosym='s2'):
            vG = numpy.sqrt(coulG[p0:p1])
            pqkR *= vG
            pqkI *= vG
            lib.ddot(pqkR, pqkR.T, 1, eriR, 1)
            lib.ddot(pqkI, pqkI.T, 1, eriR, 1)
            pqkR = pqkI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2,-1)
        return eriR

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
# complex integrals, N^4 elements
    elif (abs(kpti-kptl).sum() < KPT_DIFF_TOL) and (abs(kptj-kptk).sum() < KPT_DIFF_TOL):
        coulG = mydf.weighted_coulG(kptj-kpti, False, mydf.gs)
        eriR = numpy.zeros((nao**2,nao**2))
        eriI = numpy.zeros((nao**2,nao**2))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mydf.gs, kptijkl[:2], max_memory=max_memory):
            vG = numpy.sqrt(coulG[p0:p1])
            pqkR *= vG
            pqkI *= vG
# rho_pq(G+k_pq) * conj(rho_rs(G-k_rs))
            zdotNC(pqkR, pqkI, pqkR.T, pqkI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = None
        pqkR = pqkI = coulG = None
# transpose(0,1,3,2) because
# j == k && i == l  =>
# (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
# rho_rs(-G+k_rs) = conj(transpose(rho_sr(G+k_sr), (0,2,1)))
        eri = lib.transpose((eriR+eriI*1j).reshape(-1,nao,nao), axes=(0,2,1))
        return eri.reshape(nao**2,-1)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        coulG = mydf.weighted_coulG(kptj-kpti, False, mydf.gs)
        eriR = numpy.zeros((nao**2,nao**2))
        eriI = numpy.zeros((nao**2,nao**2))
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mydf.gs, kptijkl[:2], max_memory=max_memory*.5),
                         mydf.pw_loop(mydf.gs,-kptijkl[2:], max_memory=max_memory*.5)):
            pqkR *= coulG[p0:p1]
            pqkI *= coulG[p0:p1]
# rho'_rs(G-k_rs) = conj(rho_rs(-G+k_rs))
#                 = conj(rho_rs(-G+k_rs) - d_{k_rs:Q,rs} * Q(-G+k_rs))
#                 = rho_rs(G-k_rs) - conj(d_{k_rs:Q,rs}) * Q(G-k_rs)
# rho_pq(G+k_pq) * conj(rho'_rs(G-k_rs))
            zdotNC(pqkR, pqkI, rskR.T, rskI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = rskR = rskI = None
        return (eriR+eriI*1j)
示例#10
0
def get_eri(mydf, kpts=None, compact=True):
    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    q = kptj - kpti
    coulG = mydf.weighted_coulG(q, False, mydf.gs)
    nao = cell.nao_nr()
    nao_pair = nao * (nao + 1) // 2
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .8)

    ####################
    # gamma point, the integral is real and with s4 symmetry
    if abs(kptijkl).sum() < KPT_DIFF_TOL:
        eriR = numpy.zeros((nao_pair, nao_pair))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mydf.gs, kptijkl[:2], q, max_memory=max_memory,
                                aosym='s2'):
            vG = numpy.sqrt(coulG[p0:p1])
            pqkR *= vG
            pqkI *= vG
            lib.ddot(pqkR, pqkR.T, 1, eriR, 1)
            lib.ddot(pqkI, pqkI.T, 1, eriR, 1)
            pqkR = pqkI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2, -1)
        return eriR

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
# complex integrals, N^4 elements
    elif (abs(kpti - kptl).sum() < KPT_DIFF_TOL) and (abs(kptj - kptk).sum() <
                                                      KPT_DIFF_TOL):
        eriR = numpy.zeros((nao**2, nao**2))
        eriI = numpy.zeros((nao**2, nao**2))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mydf.gs, kptijkl[:2], q, max_memory=max_memory):
            vG = numpy.sqrt(coulG[p0:p1])
            pqkR *= vG
            pqkI *= vG
            # rho_pq(G+k_pq) * conj(rho_rs(G-k_rs))
            zdotNC(pqkR, pqkI, pqkR.T, pqkI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = None
        pqkR = pqkI = coulG = None
        # transpose(0,1,3,2) because
        # j == k && i == l  =>
        # (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
        # rho_rs(-G+k_rs) = conj(transpose(rho_sr(G+k_sr), (0,2,1)))
        eri = lib.transpose((eriR + eriI * 1j).reshape(-1, nao, nao),
                            axes=(0, 2, 1))
        return eri.reshape(nao**2, -1)


####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        eriR = numpy.zeros((nao**2, nao**2))
        eriI = numpy.zeros((nao**2, nao**2))
        # rho_rs(-G-k) = rho_rs(conj(G+k)) = conj(rho_sr(G+k))
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mydf.gs, kptijkl[:2], q, max_memory=max_memory*.5),
                         mydf.pw_loop(mydf.gs,-kptijkl[2:], q, max_memory=max_memory*.5)):
            pqkR *= coulG[p0:p1]
            pqkI *= coulG[p0:p1]
            # rho_pq(G+k_pq) * conj(rho_sr(G+k_pq))
            zdotNC(pqkR, pqkI, rskR.T, rskI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = rskR = rskI = None
        return (eriR + eriI * 1j)
示例#11
0
def get_eri(mydf, kpts=None, compact=True):
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    eri = pwdf_ao2mo.get_eri(mydf, kptijkl, compact=True)
    nao = cell.nao_nr()
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0] - nao**4*8/1e6) * .8)

####################
# gamma point, the integral is real and with s4 symmetry
    if abs(kptijkl).sum() < KPT_DIFF_TOL:
        eri *= .5  # because we'll do +cc later
        for LpqR, LpqI, j3cR, j3cI in mydf.sr_loop(kptijkl[:2], max_memory, True):
            lib.ddot(j3cR.T, LpqR, 1, eri, 1)
            LpqR = LpqI = j3cR = j3cI = None
        eri = lib.transpose_sum(eri, inplace=True)
        if not compact:
            eri = ao2mo.restore(1, eri, nao).reshape(nao**2,-1)
        return eri

####################
# (kpt) i == j == k == l != 0
#
# (kpt) i == l && j == k && i != j && j != k  =>
# both vbar and ovlp are zero. It corresponds to the exchange integral.
#
# complex integrals, N^4 elements
    elif (abs(kpti-kptl).sum() < KPT_DIFF_TOL) and (abs(kptj-kptk).sum() < KPT_DIFF_TOL):
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        for LpqR, LpqI, j3cR, j3cI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNC(j3cR.T, j3cI.T, LpqR, LpqI, 1, eriR, eriI, 1)
# eri == eri.transpose(3,2,1,0).conj()
#            zdotNC(LpqR.T, LpqI.T, j3cR, j3cI, 1, eriR, eriI, 1)
            LpqR = LpqI = j3cR = j3cI = None
# eri == eri.transpose(3,2,1,0).conj()
        eriR = lib.transpose_sum(eriR, inplace=True)
        buf = lib.transpose(eriI)
        eriI -= buf

        eriR = lib.transpose(eriR.reshape(-1,nao,nao), axes=(0,2,1), out=buf)
        eri += eriR.reshape(eri.shape)
        eriI = lib.transpose(eriI.reshape(-1,nao,nao), axes=(0,2,1), out=buf)
        eri += eriI.reshape(eri.shape)*1j
        return eri

####################
# aosym = s1, complex integrals
#
# kpti == kptj  =>  kptl == kptk
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.
#
    else:
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        max_memory *= .5
        for (LpqR, LpqI, jpqR, jpqI), (LrsR, LrsI, jrsR, jrsI) in \
                lib.izip(mydf.sr_loop(kptijkl[:2], max_memory, False),
                         mydf.sr_loop(kptijkl[2:], max_memory, False)):
            zdotNN(jpqR.T, jpqI.T, LrsR, LrsI, 1, eriR, eriI, 1)
            zdotNN(LpqR.T, LpqI.T, jrsR, jrsI, 1, eriR, eriI, 1)
            LpqR = LpqI = jpqR = jpqI = LrsR = LrsI = jrsR = jrsI = None
        eri += eriR
        eri += eriI*1j
        return eri