示例#1
0
文件: test_vhf.py 项目: pyscf/pyscf
 def test_incore_s4(self):
     eri4 = ao2mo.restore(4, mf._eri, nmo)
     dm = mf.make_rdm1()
     vj0, vk0 = _vhf.incore(eri4, dm, hermi=1)
     vj1, vk1 = scf.hf.get_jk(mol, dm, hermi=1)
     self.assertTrue(numpy.allclose(vj0, vj1))
     self.assertTrue(numpy.allclose(vk0, vk1))
示例#2
0
 def test_incore_s4(self):
     eri4 = ao2mo.restore(4, mf._eri, nmo)
     dm = mf.make_rdm1()
     vj0, vk0 = _vhf.incore(eri4, dm, hermi=1)
     vj1, vk1 = scf.hf.get_jk(mol, dm, hermi=1)
     self.assertTrue(numpy.allclose(vj0,vj1))
     self.assertTrue(numpy.allclose(vk0,vk1))
示例#3
0
文件: hf.py 项目: pulkin/pyscf
def dot_eri_dm(eri, dm, hermi=0):
    '''Compute J, K matrices in terms of the given 2-electron integrals and
    density matrix:

    J ~ numpy.einsum('pqrs,qp->rs', eri, dm)
    K ~ numpy.einsum('pqrs,qr->ps', eri, dm)

    Args:
        eri : ndarray
            8-fold or 4-fold ERIs
        dm : ndarray or list of ndarrays
            A density matrix or a list of density matrices

    Kwargs:
        hermi : int
            Whether J, K matrix is hermitian

            | 0 : no hermitian or symmetric
            | 1 : hermitian
            | 2 : anti-hermitian

    Returns:
        Depending on the given dm, the function returns one J and one K matrix,
        or a list of J matrices and a list of K matrices, corresponding to the
        input density matrices.

    Examples:

    >>> from pyscf import gto, scf
    >>> from pyscf.scf import _vhf
    >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1')
    >>> eri = _vhf.int2e_sph(mol._atm, mol._bas, mol._env)
    >>> dms = numpy.random.random((3,mol.nao_nr(),mol.nao_nr()))
    >>> j, k = scf.hf.dot_eri_dm(eri, dms, hermi=0)
    >>> print(j.shape)
    (3, 2, 2)
    '''
    if isinstance(dm, numpy.ndarray) and dm.ndim == 2:
        vj, vk = _vhf.incore(eri, dm, hermi=hermi)
    else:
        dm = numpy.asarray(dm, order='C')
        nao = dm.shape[-1]
        dms = dm.reshape(-1, nao, nao)
        vjk = [_vhf.incore(eri, dmi, hermi=hermi) for dmi in dms]
        vj = numpy.array([v[0] for v in vjk]).reshape(dm.shape)
        vk = numpy.array([v[1] for v in vjk]).reshape(dm.shape)
    return vj, vk
示例#4
0
def get_jk(agf2, eri, rdm1, with_j=True, with_k=True):
    ''' Get the J/K matrices.

    Args:
        eri : ndarray or H5 dataset
            Electronic repulsion integrals (NOT as _ChemistsERIs)
        rdm1 : 2D array
            Reduced density matrix

    Kwargs:
        with_j : bool
            Whether to compute J. Default value is True
        with_k : bool
            Whether to compute K. Default value is True

    Returns:
        tuple of ndarrays corresponding to J and K, if either are
        not requested then they are set to None.
    '''

    if isinstance(eri, np.ndarray):
        vj, vk = _vhf.incore(eri, rdm1, with_j=with_j, with_k=with_k)

    else:
        nmo = rdm1.shape[0]
        npair = nmo * (nmo + 1) // 2
        vj = vk = None

        if with_j:
            rdm1_tril = lib.pack_tril(rdm1 + np.tril(rdm1, k=-1))
            vj = np.zeros_like(rdm1_tril)

        if with_k:
            vk = np.zeros_like(rdm1)

        blksize = _agf2.get_blksize(agf2.max_memory, (nmo * npair, nmo**3))
        blksize = min(1, max(BLKMIN, blksize))
        logger.debug1(agf2, 'blksize (ragf2.get_jk) = %d' % blksize)

        tril2sq = lib.square_mat_in_trilu_indices(nmo)
        for p0, p1 in lib.prange(0, nmo, blksize):
            idx = list(np.concatenate(tril2sq[p0:p1]))
            eri0 = eri[idx]

            # vj built in tril layout with scaled rdm1_tril
            if with_j:
                vj[idx] = np.dot(eri0, rdm1_tril)

            if with_k:
                eri0 = lib.unpack_tril(eri0, axis=-1)
                eri0 = eri0.reshape(p1 - p0, nmo, nmo, nmo)

                vk[p0:p1] = lib.einsum('ijkl,jk->il', eri0, rdm1)

        if with_j:
            vj = lib.unpack_tril(vj)

    return vj, vk
示例#5
0
文件: hf.py 项目: berquist/pyscf
def dot_eri_dm(eri, dm, hermi=0):
    '''Compute J, K matrices in terms of the given 2-electron integrals and
    density matrix:

    J ~ numpy.einsum('pqrs,qp->rs', eri, dm)
    K ~ numpy.einsum('pqrs,qr->ps', eri, dm)

    Args:
        eri : ndarray
            8-fold or 4-fold ERIs
        dm : ndarray or list of ndarrays
            A density matrix or a list of density matrices

    Kwargs:
        hermi : int
            Whether J, K matrix is hermitian

            | 0 : no hermitian or symmetric
            | 1 : hermitian
            | 2 : anti-hermitian

    Returns:
        Depending on the given dm, the function returns one J and one K matrix,
        or a list of J matrices and a list of K matrices, corresponding to the
        input density matrices.

    Examples:

    >>> from pyscf import gto, scf
    >>> from pyscf.scf import _vhf
    >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1')
    >>> eri = _vhf.int2e_sph(mol._atm, mol._bas, mol._env)
    >>> dms = numpy.random.random((3,mol.nao_nr(),mol.nao_nr()))
    >>> j, k = scf.hf.dot_eri_dm(eri, dms, hermi=0)
    >>> print(j.shape)
    (3, 2, 2)
    '''
    if isinstance(dm, numpy.ndarray) and dm.ndim == 2:
        vj, vk = _vhf.incore(eri, dm, hermi=hermi)
    else:
        vjk = [_vhf.incore(eri, dmi, hermi=hermi) for dmi in dm]
        vj = numpy.array([v[0] for v in vjk])
        vk = numpy.array([v[1] for v in vjk])
    return vj, vk