def post(cfg, model): scores = {} train_loader = torch.utils.data.DataLoader(cfg["train_data"], **cfg["loader"]) scores["train_loss"] = loss(model, train_loader) #scores["train_accuracy"] = accuracy(model, train_loader) # if scores["train_loss"] == one_hot_mse: if cfg["loss_function"] == one_hot_mse: scores["train_diversity"] = mse_diversity(model, train_loader) else: scores["train_diversity"] = diversity(model, train_loader) scores["train_loss"] = loss(model, train_loader) scores["train_avg_loss"] = avg_loss(model, train_loader) #scores["train_avg_accurcay"] = avg_accurcay(model, train_loader) test_loader = torch.utils.data.DataLoader(cfg["test_data"], **cfg["loader"]) if cfg["loss_function"] == one_hot_mse: #if scores["test_loss"] == one_hot_mse: scores["test_diversity"] = mse_diversity(model, test_loader) else: scores["test_diversity"] = diversity(model, test_loader) scores["test_loss"] = loss(model, test_loader) #scores["test_accuracy"] = accuracy(model, test_loader) scores["test_loss"] = loss(model, test_loader) scores["test_avg_loss"] = avg_loss(model, test_loader) #scores["test_avg_accurcay"] = avg_accurcay(model, test_loader) scores["params"] = pytorch_total_params(model) return scores
def post(cfg, model): scores = {} train_loader = torch.utils.data.DataLoader(cfg["train_data"], **cfg["loader"]) scores["train_loss"] = loss(model, train_loader) scores["train_accuracy"] = accuracy(model, train_loader) scores["train_diversity"] = diversity(model, train_loader) scores["train_loss"] = loss(model, train_loader) scores["train_avg_loss"] = avg_loss(model, train_loader) scores["train_avg_accurcay"] = avg_accurcay(model, train_loader) test_loader = torch.utils.data.DataLoader(cfg["test_data"], **cfg["loader"]) scores["test_loss"] = loss(model, test_loader) scores["test_accuracy"] = accuracy(model, test_loader) scores["test_diversity"] = diversity(model, test_loader) scores["test_loss"] = loss(model, test_loader) scores["test_avg_loss"] = avg_loss(model, test_loader) scores["test_avg_accurcay"] = avg_accurcay(model, test_loader) scores["params"] = pytorch_total_params(model) return scores