示例#1
0
def export_comparison_to_file(nda_original,
                              nda_projected,
                              path_to_file,
                              resize,
                              extension="png"):
    dir_tmp = os.path.join(DIR_TMP, "ImageMagick")
    ph.clear_directory(dir_tmp, verbose=False)
    for k in range(nda_original.shape[0]):
        ctr = k + 1

        # Export as individual image side-by-side
        _export_image_side_by_side(
            nda_left=nda_original[k, :, :],
            nda_right=nda_projected[k, :, :],
            label_left="original",
            label_right="projected",
            path_to_file=os.path.join(dir_tmp, "%03d.%s" % (ctr, extension)),
            ctr=ctr,
            resize=resize,
            extension=extension,
        )

    # Combine all side-by-side images to single pdf
    _export_pdf_from_side_by_side_images(dir_tmp,
                                         path_to_file,
                                         extension=extension)
    ph.print_info("Side-by-side comparison exported to '%s'" % path_to_file)

    # Delete tmp directory
    ph.delete_directory(dir_tmp, verbose=False)
示例#2
0
def _export_image_side_by_side(
    nda_left,
    nda_right,
    label_left,
    label_right,
    path_to_file,
    ctr,
    resize,
    extension,
    border=10,
    background="black",
    fill_ctr="orange",
    fill_label="white",
    font="Arial",
    pointsize=12,
):

    dir_output = os.path.join(DIR_TMP, "ImageMagick", "side-by-side")
    ph.clear_directory(dir_output, verbose=False)

    path_to_left = os.path.join(dir_output, "left.%s" % extension)
    path_to_right = os.path.join(dir_output, "right.%s" % extension)

    ph.write_image(nda_left, path_to_left, verbose=False)
    ph.write_image(nda_right, path_to_right, verbose=False)

    _resize_image(path_to_left, resize=resize)
    _resize_image(path_to_right, resize=resize)

    cmd_args = []
    cmd_args.append("-geometry +%d+%d" % (border, border))
    cmd_args.append("-background %s" % background)
    cmd_args.append("-font %s" % font)
    cmd_args.append("-pointsize %s" % pointsize)
    cmd_args.append("-fill %s" % fill_ctr)
    cmd_args.append("-gravity SouthWest -draw \"text 0,0 '%d'\"" % ctr)
    cmd_args.append("-fill %s" % fill_label)
    cmd_args.append("-label '%s' %s" % (label_left, path_to_left))
    cmd_args.append("-label '%s' %s" % (label_right, path_to_right))
    cmd_args.append("%s" % path_to_file)
    cmd = "montage %s" % (" ").join(cmd_args)
    ph.execute_command(cmd, verbose=False)
示例#3
0
    def _run(self, id=""):

        # Clean output directory first
        ph.clear_directory(self._dir_tmp, verbose=0)

        self._run_registration_[self._registration_type](id)
示例#4
0
def main():

    time_start = ph.start_timing()

    # Set print options for numpy
    np.set_printoptions(precision=3)

    input_parser = InputArgparser(
        description="Volumetric MRI reconstruction framework to reconstruct "
        "an isotropic, high-resolution 3D volume from multiple stacks of 2D "
        "slices with motion correction. The resolution of the computed "
        "Super-Resolution Reconstruction (SRR) is given by the in-plane "
        "spacing of the selected target stack. A region of interest can be "
        "specified by providing a mask for the selected target stack. Only "
        "this region will then be reconstructed by the SRR algorithm which "
        "can substantially reduce the computational time.",
    )
    input_parser.add_filenames(required=True)
    input_parser.add_filenames_masks()
    input_parser.add_output(required=True)
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_target_stack(default=None)
    input_parser.add_search_angle(default=45)
    input_parser.add_multiresolution(default=0)
    input_parser.add_shrink_factors(default=[3, 2, 1])
    input_parser.add_smoothing_sigmas(default=[1.5, 1, 0])
    input_parser.add_sigma(default=1)
    input_parser.add_reconstruction_type(default="TK1L2")
    input_parser.add_iterations(default=15)
    input_parser.add_alpha(default=0.015)
    input_parser.add_alpha_first(default=0.2)
    input_parser.add_iter_max(default=10)
    input_parser.add_iter_max_first(default=5)
    input_parser.add_dilation_radius(default=3)
    input_parser.add_extra_frame_target(default=10)
    input_parser.add_bias_field_correction(default=0)
    input_parser.add_intensity_correction(default=1)
    input_parser.add_isotropic_resolution(default=1)
    input_parser.add_log_config(default=1)
    input_parser.add_subfolder_motion_correction()
    input_parser.add_write_motion_correction(default=1)
    input_parser.add_verbose(default=0)
    input_parser.add_two_step_cycles(default=3)
    input_parser.add_use_masks_srr(default=0)
    input_parser.add_boundary_stacks(default=[10, 10, 0])
    input_parser.add_metric(default="Correlation")
    input_parser.add_metric_radius(default=10)
    input_parser.add_reference()
    input_parser.add_reference_mask()
    input_parser.add_outlier_rejection(default=1)
    input_parser.add_threshold_first(default=0.5)
    input_parser.add_threshold(default=0.8)
    input_parser.add_interleave(default=3)
    input_parser.add_slice_thicknesses(default=None)
    input_parser.add_viewer(default="itksnap")
    input_parser.add_v2v_method(default="RegAladin")
    input_parser.add_argument(
        "--v2v-robust", "-v2v-robust",
        action='store_true',
        help="If given, a more robust volume-to-volume registration step is "
        "performed, i.e. four rigid registrations are performed using four "
        "rigid transform initializations based on "
        "principal component alignment of associated masks."
    )
    input_parser.add_argument(
        "--s2v-hierarchical", "-s2v-hierarchical",
        action='store_true',
        help="If given, a hierarchical approach for the first slice-to-volume "
        "registration cycle is used, i.e. sub-packages defined by the "
        "specified interleave (--interleave) are registered until each "
        "slice is registered independently."
    )
    input_parser.add_argument(
        "--sda", "-sda",
        action='store_true',
        help="If given, the volumetric reconstructions are performed using "
        "Scattered Data Approximation (Vercauteren et al., 2006). "
        "'alpha' is considered the final 'sigma' for the "
        "iterative adjustment. "
        "Recommended value is, e.g., --alpha 0.8"
    )
    input_parser.add_option(
        option_string="--transforms-history",
        type=int,
        help="Write entire history of applied slice motion correction "
        "transformations to motion correction output directory",
        default=0,
    )

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    rejection_measure = "NCC"
    threshold_v2v = -2  # 0.3
    debug = False

    if args.v2v_method not in V2V_METHOD_OPTIONS:
        raise ValueError("v2v-method must be in {%s}" % (
            ", ".join(V2V_METHOD_OPTIONS)))

    if np.alltrue([not args.output.endswith(t) for t in ALLOWED_EXTENSIONS]):
        raise ValueError(
            "output filename invalid; allowed extensions are: %s" %
            ", ".join(ALLOWED_EXTENSIONS))

    if args.alpha_first < args.alpha and not args.sda:
        raise ValueError("It must hold alpha-first >= alpha")

    if args.threshold_first > args.threshold:
        raise ValueError("It must hold threshold-first <= threshold")

    dir_output = os.path.dirname(args.output)
    ph.create_directory(dir_output)

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")
    data_reader = dr.MultipleImagesReader(
        file_paths=args.filenames,
        file_paths_masks=args.filenames_masks,
        suffix_mask=args.suffix_mask,
        stacks_slice_thicknesses=args.slice_thicknesses,
    )

    if len(args.boundary_stacks) is not 3:
        raise IOError(
            "Provide exactly three values for '--boundary-stacks' to define "
            "cropping in i-, j-, and k-dimension of the input stacks")

    data_reader.read_data()
    stacks = data_reader.get_data()
    ph.print_info("%d input stacks read for further processing" % len(stacks))

    if all(s.is_unity_mask() is True for s in stacks):
        ph.print_warning("No mask is provided! "
                         "Generated reconstruction space may be very big!")
        ph.print_warning("Consider using a mask to speed up computations")

        # args.extra_frame_target = 0
        # ph.wrint_warning("Overwritten: extra-frame-target set to 0")

    # Specify target stack for intensity correction and reconstruction space
    if args.target_stack is None:
        target_stack_index = 0
    else:
        try:
            target_stack_index = args.filenames.index(args.target_stack)
        except ValueError as e:
            raise ValueError(
                "--target-stack must correspond to an image as provided by "
                "--filenames")

    # ---------------------------Data Preprocessing---------------------------
    ph.print_title("Data Preprocessing")

    segmentation_propagator = segprop.SegmentationPropagation(
        # registration_method=regflirt.FLIRT(use_verbose=args.verbose),
        # registration_method=niftyreg.RegAladin(use_verbose=False),
        dilation_radius=args.dilation_radius,
        dilation_kernel="Ball",
    )

    data_preprocessing = dp.DataPreprocessing(
        stacks=stacks,
        segmentation_propagator=segmentation_propagator,
        use_cropping_to_mask=True,
        use_N4BiasFieldCorrector=args.bias_field_correction,
        target_stack_index=target_stack_index,
        boundary_i=args.boundary_stacks[0],
        boundary_j=args.boundary_stacks[1],
        boundary_k=args.boundary_stacks[2],
        unit="mm",
    )
    data_preprocessing.run()
    time_data_preprocessing = data_preprocessing.get_computational_time()

    # Get preprocessed stacks
    stacks = data_preprocessing.get_preprocessed_stacks()

    # Define reference/target stack for registration and reconstruction
    if args.reference is not None:
        reference = st.Stack.from_filename(
            file_path=args.reference,
            file_path_mask=args.reference_mask,
            extract_slices=False)

    else:
        reference = st.Stack.from_stack(stacks[target_stack_index])

    # ------------------------Volume-to-Volume Registration--------------------
    if len(stacks) > 1:

        if args.v2v_method == "FLIRT":
            # Define search angle ranges for FLIRT in all three dimensions
            search_angles = ["-searchr%s -%d %d" %
                             (x, args.search_angle, args.search_angle)
                             for x in ["x", "y", "z"]]
            options = (" ").join(search_angles)
            # options += " -noresample"

            vol_registration = regflirt.FLIRT(
                registration_type="Rigid",
                use_fixed_mask=True,
                use_moving_mask=True,
                options=options,
                use_verbose=False,
            )
        else:
            vol_registration = niftyreg.RegAladin(
                registration_type="Rigid",
                use_fixed_mask=True,
                use_moving_mask=True,
                # options="-ln 2 -voff",
                use_verbose=False,
            )
        v2vreg = pipeline.VolumeToVolumeRegistration(
            stacks=stacks,
            reference=reference,
            registration_method=vol_registration,
            verbose=debug,
            robust=args.v2v_robust,
        )
        v2vreg.run()
        stacks = v2vreg.get_stacks()
        time_registration = v2vreg.get_computational_time()

    else:
        time_registration = ph.get_zero_time()

    # ---------------------------Intensity Correction--------------------------
    if args.intensity_correction:
        ph.print_title("Intensity Correction")
        intensity_corrector = ic.IntensityCorrection()
        intensity_corrector.use_individual_slice_correction(False)
        intensity_corrector.use_reference_mask(True)
        intensity_corrector.use_stack_mask(True)
        intensity_corrector.use_verbose(False)

        for i, stack in enumerate(stacks):
            if i == target_stack_index:
                ph.print_info("Stack %d (%s): Reference image. Skipped." % (
                    i + 1, stack.get_filename()))
                continue
            else:
                ph.print_info("Stack %d (%s): Intensity Correction ... " % (
                    i + 1, stack.get_filename()), newline=False)
            intensity_corrector.set_stack(stack)
            intensity_corrector.set_reference(
                stacks[target_stack_index].get_resampled_stack(
                    resampling_grid=stack.sitk,
                    interpolator="NearestNeighbor",
                ))
            intensity_corrector.run_linear_intensity_correction()
            stacks[i] = intensity_corrector.get_intensity_corrected_stack()
            print("done (c1 = %g) " %
                  intensity_corrector.get_intensity_correction_coefficients())

    # ---------------------------Create first volume---------------------------
    time_tmp = ph.start_timing()

    # Isotropic resampling to define HR target space
    ph.print_title("Reconstruction Space Generation")
    HR_volume = reference.get_isotropically_resampled_stack(
        resolution=args.isotropic_resolution)
    ph.print_info(
        "Isotropic reconstruction space with %g mm resolution is created" %
        HR_volume.sitk.GetSpacing()[0])

    if args.reference is None:
        # Create joint image mask in target space
        joint_image_mask_builder = imb.JointImageMaskBuilder(
            stacks=stacks,
            target=HR_volume,
            dilation_radius=1,
        )
        joint_image_mask_builder.run()
        HR_volume = joint_image_mask_builder.get_stack()
        ph.print_info(
            "Isotropic reconstruction space is centered around "
            "joint stack masks. ")

        # Crop to space defined by mask (plus extra margin)
        HR_volume = HR_volume.get_cropped_stack_based_on_mask(
            boundary_i=args.extra_frame_target,
            boundary_j=args.extra_frame_target,
            boundary_k=args.extra_frame_target,
            unit="mm",
        )

        # Create first volume
        # If outlier rejection is activated, eliminate obvious outliers early
        # from stack and re-run SDA to get initial volume without them
        ph.print_title("First Estimate of HR Volume")
        if args.outlier_rejection and threshold_v2v > -1:
            ph.print_subtitle("SDA Approximation")
            SDA = sda.ScatteredDataApproximation(
                stacks, HR_volume, sigma=args.sigma)
            SDA.run()
            HR_volume = SDA.get_reconstruction()

            # Identify and reject outliers
            ph.print_subtitle("Eliminate slice outliers (%s < %g)" % (
                rejection_measure, threshold_v2v))
            outlier_rejector = outre.OutlierRejector(
                stacks=stacks,
                reference=HR_volume,
                threshold=threshold_v2v,
                measure=rejection_measure,
                verbose=True,
            )
            outlier_rejector.run()
            stacks = outlier_rejector.get_stacks()

        ph.print_subtitle("SDA Approximation Image")
        SDA = sda.ScatteredDataApproximation(
            stacks, HR_volume, sigma=args.sigma)
        SDA.run()
        HR_volume = SDA.get_reconstruction()

        ph.print_subtitle("SDA Approximation Image Mask")
        SDA = sda.ScatteredDataApproximation(
            stacks, HR_volume, sigma=args.sigma, sda_mask=True)
        SDA.run()
        # HR volume contains updated mask based on SDA
        HR_volume = SDA.get_reconstruction()

        HR_volume.set_filename(SDA.get_setting_specific_filename())

    time_reconstruction = ph.stop_timing(time_tmp)

    if args.verbose:
        tmp = list(stacks)
        tmp.insert(0, HR_volume)
        sitkh.show_stacks(tmp, segmentation=HR_volume, viewer=args.viewer)

    # -----------Two-step Slice-to-Volume Registration-Reconstruction----------
    if args.two_step_cycles > 0:

        # Slice-to-volume registration set-up
        if args.metric == "ANTSNeighborhoodCorrelation":
            metric_params = {"radius": args.metric_radius}
        else:
            metric_params = None
        registration = regsitk.SimpleItkRegistration(
            moving=HR_volume,
            use_fixed_mask=True,
            use_moving_mask=True,
            interpolator="Linear",
            metric=args.metric,
            metric_params=metric_params,
            use_multiresolution_framework=args.multiresolution,
            shrink_factors=args.shrink_factors,
            smoothing_sigmas=args.smoothing_sigmas,
            initializer_type="SelfGEOMETRY",
            optimizer="ConjugateGradientLineSearch",
            optimizer_params={
                "learningRate": 1,
                "numberOfIterations": 100,
                "lineSearchUpperLimit": 2,
            },
            scales_estimator="Jacobian",
            use_verbose=debug,
        )

        # Volumetric reconstruction set-up
        if args.sda:
            recon_method = sda.ScatteredDataApproximation(
                stacks,
                HR_volume,
                sigma=args.sigma,
                use_masks=args.use_masks_srr,
            )
            alpha_range = [args.sigma, args.alpha]
        else:
            recon_method = tk.TikhonovSolver(
                stacks=stacks,
                reconstruction=HR_volume,
                reg_type="TK1",
                minimizer="lsmr",
                alpha=args.alpha_first,
                iter_max=np.min([args.iter_max_first, args.iter_max]),
                verbose=True,
                use_masks=args.use_masks_srr,
            )
            alpha_range = [args.alpha_first, args.alpha]

        # Define the regularization parameters for the individual
        # reconstruction steps in the two-step cycles
        alphas = np.linspace(
            alpha_range[0], alpha_range[1], args.two_step_cycles)

        # Define outlier rejection threshold after each S2V-reg step
        thresholds = np.linspace(
            args.threshold_first, args.threshold, args.two_step_cycles)

        two_step_s2v_reg_recon = \
            pipeline.TwoStepSliceToVolumeRegistrationReconstruction(
                stacks=stacks,
                reference=HR_volume,
                registration_method=registration,
                reconstruction_method=recon_method,
                cycles=args.two_step_cycles,
                alphas=alphas[0:args.two_step_cycles - 1],
                outlier_rejection=args.outlier_rejection,
                threshold_measure=rejection_measure,
                thresholds=thresholds,
                interleave=args.interleave,
                viewer=args.viewer,
                verbose=args.verbose,
                use_hierarchical_registration=args.s2v_hierarchical,
            )
        two_step_s2v_reg_recon.run()
        HR_volume_iterations = \
            two_step_s2v_reg_recon.get_iterative_reconstructions()
        time_registration += \
            two_step_s2v_reg_recon.get_computational_time_registration()
        time_reconstruction += \
            two_step_s2v_reg_recon.get_computational_time_reconstruction()
        stacks = two_step_s2v_reg_recon.get_stacks()

    # no two-step s2v-registration/reconstruction iterations
    else:
        HR_volume_iterations = []

    # Write motion-correction results
    ph.print_title("Write Motion Correction Results")
    if args.write_motion_correction:
        dir_output_mc = os.path.join(
            dir_output, args.subfolder_motion_correction)
        ph.clear_directory(dir_output_mc)

        for stack in stacks:
            stack.write(
                dir_output_mc,
                write_stack=False,
                write_mask=False,
                write_slices=False,
                write_transforms=True,
                write_transforms_history=args.transforms_history,
            )

        if args.outlier_rejection:
            deleted_slices_dic = {}
            for i, stack in enumerate(stacks):
                deleted_slices = stack.get_deleted_slice_numbers()
                deleted_slices_dic[stack.get_filename()] = deleted_slices

            # check whether any stack was removed entirely
            stacks0 = data_preprocessing.get_preprocessed_stacks()
            if len(stacks) != len(stacks0):
                stacks_remain = [s.get_filename() for s in stacks]
                for stack in stacks0:
                    if stack.get_filename() in stacks_remain:
                        continue

                    # add info that all slices of this stack were rejected
                    deleted_slices = [
                        slice.get_slice_number()
                        for slice in stack.get_slices()
                    ]
                    deleted_slices_dic[stack.get_filename()] = deleted_slices
                    ph.print_info(
                        "All slices of stack '%s' were rejected entirely. "
                        "Information added." % stack.get_filename())

            ph.write_dictionary_to_json(
                deleted_slices_dic,
                os.path.join(
                    dir_output,
                    args.subfolder_motion_correction,
                    "rejected_slices.json"
                )
            )

    # ---------------------Final Volumetric Reconstruction---------------------
    ph.print_title("Final Volumetric Reconstruction")
    if args.sda:
        recon_method = sda.ScatteredDataApproximation(
            stacks,
            HR_volume,
            sigma=args.alpha,
            use_masks=args.use_masks_srr,
        )
    else:
        if args.reconstruction_type in ["TVL2", "HuberL2"]:
            recon_method = pd.PrimalDualSolver(
                stacks=stacks,
                reconstruction=HR_volume,
                reg_type="TV" if args.reconstruction_type == "TVL2" else "huber",
                iterations=args.iterations,
                use_masks=args.use_masks_srr,
            )
        else:
            recon_method = tk.TikhonovSolver(
                stacks=stacks,
                reconstruction=HR_volume,
                reg_type="TK1" if args.reconstruction_type == "TK1L2" else "TK0",
                use_masks=args.use_masks_srr,
            )
        recon_method.set_alpha(args.alpha)
        recon_method.set_iter_max(args.iter_max)
        recon_method.set_verbose(True)
    recon_method.run()
    time_reconstruction += recon_method.get_computational_time()
    HR_volume_final = recon_method.get_reconstruction()

    ph.print_subtitle("Final SDA Approximation Image Mask")
    SDA = sda.ScatteredDataApproximation(
        stacks, HR_volume_final, sigma=args.sigma, sda_mask=True)
    SDA.run()
    # HR volume contains updated mask based on SDA
    HR_volume_final = SDA.get_reconstruction()
    time_reconstruction += SDA.get_computational_time()

    elapsed_time_total = ph.stop_timing(time_start)

    # Write SRR result
    filename = recon_method.get_setting_specific_filename()
    HR_volume_final.set_filename(filename)
    dw.DataWriter.write_image(
        HR_volume_final.sitk,
        args.output,
        description=filename)
    dw.DataWriter.write_mask(
        HR_volume_final.sitk_mask,
        ph.append_to_filename(args.output, "_mask"),
        description=SDA.get_setting_specific_filename())

    HR_volume_iterations.insert(0, HR_volume_final)
    for stack in stacks:
        HR_volume_iterations.append(stack)

    if args.verbose:
        sitkh.show_stacks(
            HR_volume_iterations,
            segmentation=HR_volume_final,
            viewer=args.viewer,
        )

    # Summary
    ph.print_title("Summary")
    exe_file_info = os.path.basename(os.path.abspath(__file__)).split(".")[0]
    print("%s | Computational Time for Data Preprocessing: %s" %
          (exe_file_info, time_data_preprocessing))
    print("%s | Computational Time for Registrations: %s" %
          (exe_file_info, time_registration))
    print("%s | Computational Time for Reconstructions: %s" %
          (exe_file_info, time_reconstruction))
    print("%s | Computational Time for Entire Reconstruction Pipeline: %s" %
          (exe_file_info, elapsed_time_total))

    ph.print_line_separator()

    return 0
def main():
    parser = argparse.ArgumentParser(description="Create video from volume")

    parser.add_argument(
        '--image',
        required=True,
        type=str,
        help="Path to 3D image (*.nii.gz or *.nii)",
    )
    parser.add_argument(
        '--fps',
        required=False,
        type=float,
        help="Frames per second",
        default=1,
    )
    parser.add_argument(
        '--axis',
        required=False,
        type=int,
        help="Axis to sweep through the volume",
        default=2,
    )
    parser.add_argument(
        '--begin',
        required=False,
        type=int,
        help="Starting slice for video",
        default=None,
    )
    parser.add_argument(
        '--end',
        required=False,
        type=int,
        help="End slice for video",
        default=None,
    )
    parser.add_argument(
        '--output',
        required=True,
        type=str,
        help="Path to output video (*.mp4)",
    )

    args = parser.parse_args()

    image_sitk = sitk.ReadImage(args.image)

    image_nda = sitk.GetArrayFromImage(image_sitk)

    scale = np.max(image_nda)
    filename = os.path.basename(args.output).split(".")[0]
    dir_output = os.path.dirname(args.output)
    dir_output_slices = os.path.join(dir_output, "slices")
    ph.create_directory(dir_output_slices)
    ph.clear_directory(dir_output_slices)

    splitter = vol_split.VolumeSplitter(image_nda, axis=args.axis)
    splitter.rescale_array(scale=scale)
    splitter.export_slices(
        dir_output=dir_output_slices,
        filename=filename,
        begin=args.begin,
        end=args.end,
    )
    splitter.create_video(
        dir_input_slices=dir_output_slices,
        path_to_video=args.output,
        fps=args.fps,
    )

    return 0
示例#6
0
def main():

    time_start = ph.start_timing()

    flag_individual_cases_only = 1

    flag_batch_script = 0
    batch_ctr = [32]

    flag_correct_bias_field = 0
    # flag_correct_intensities = 0

    flag_collect_segmentations = 0
    flag_select_images_segmentations = 0

    flag_reconstruct_volume_subject_space = 0
    flag_reconstruct_volume_subject_space_irtk = 0
    flag_reconstruct_volume_subject_space_show_comparison = 0
    flag_register_to_template = 0
    flag_register_to_template_irtk = 0
    flag_show_srr_template_space = 0
    flag_reconstruct_volume_template_space = 0
    flag_collect_volumetric_reconstruction_results = 0
    flag_show_volumetric_reconstruction_results = 0

    flag_rsync_stuff = 0

    # Analysis
    flag_remove_failed_cases_for_analysis = 1
    flag_postop = 2  # 0... preop, 1...postop, 2... pre+postop

    flag_evaluate_image_similarities = 0
    flag_analyse_image_similarities = 1

    flag_evaluate_slice_residual_similarities = 0
    flag_analyse_slice_residual_similarities = 0

    flag_analyse_stacks = 0
    flag_analyse_qualitative_assessment = 0

    flag_collect_data_blinded_analysis = 0
    flag_anonymize_data_blinded_analysis = 0

    provide_comparison = 0
    intensity_correction = 1
    isotropic_resolution = 0.75
    alpha = 0.02
    outlier_rejection = 1
    threshold = 0.7
    threshold_first = 0.6

    # metric = "ANTSNeighborhoodCorrelation"
    # metric_radius = 5
    # multiresolution = 0

    prefix_srr = "srr_"
    prefix_srr_qa = "masked_"

    # ----------------------------------Set Up---------------------------------
    if flag_correct_bias_field:
        dir_batch = os.path.join(utils.DIR_BATCH_ROOT, "BiasFieldCorrection")
    elif flag_reconstruct_volume_subject_space:
        dir_batch = os.path.join(utils.DIR_BATCH_ROOT,
                                 "VolumetricReconstructionSubjectSpace")
    elif flag_register_to_template:
        dir_batch = os.path.join(utils.DIR_BATCH_ROOT,
                                 "VolumetricReconstructionRegisterToTemplate")
    elif flag_reconstruct_volume_template_space:
        dir_batch = os.path.join(utils.DIR_BATCH_ROOT,
                                 "VolumetricReconstructionTemplateSpace")
    else:
        dir_batch = os.path.join(utils.DIR_BATCH_ROOT, "foo")
    file_prefix_batch = os.path.join(dir_batch, "command")

    if flag_batch_script:
        verbose = 0
    else:
        verbose = 1

    data_reader = dr.ExcelSheetDataReader(utils.EXCEL_FILE)
    data_reader.read_data()
    cases = data_reader.get_data()

    if flag_analyse_qualitative_assessment:
        data_reader = dr.ExcelSheetQualitativeAssessmentReader(utils.QA_FILE)
        data_reader.read_data()
        qualitative_assessment = data_reader.get_data()

        statistical_evaluation = se.StatisticalEvaluation(
            qualitative_assessment)
        statistical_evaluation.run_tests(ref="seg_manual")
        ph.exit()

    cases_similarities = []
    cases_stacks = []

    if flag_individual_cases_only:
        N_cases = len(INDIVIDUAL_CASE_IDS)
    else:
        N_cases = len(cases.keys())

    i_case = 0
    for case_id in sorted(cases.keys()):
        if flag_individual_cases_only and case_id not in INDIVIDUAL_CASE_IDS:
            continue
        if not flag_analyse_image_similarities and \
                not flag_analyse_slice_residual_similarities:
            i_case += 1
            ph.print_title("%d/%d: %s" % (i_case, N_cases, case_id))

        if flag_rsync_stuff:
            dir_output = utils.get_directory_case_recon_seg_mode(
                case_id=case_id, recon_space="template_space", seg_mode="")

            dir_input = re.sub("Volumes/spina/",
                               "Volumes/medic-volumetric_res/SpinaBifida/",
                               dir_output)
            cmd = "rsync -avuhn --exclude 'motion_correction' %sseg_manual %s" % (
                dir_input, dir_output)
            ph.print_execution(cmd)
            # ph.execute_command(cmd)

        # -------------------------Correct Bias Field--------------------------
        if flag_correct_bias_field:
            filenames = utils.get_filenames_preprocessing_bias_field(case_id)
            paths_to_filenames = [
                os.path.join(utils.get_directory_case_original(case_id), f)
                for f in filenames
            ]
            dir_output = utils.get_directory_case_preprocessing(
                case_id, stage="01_N4ITK")

            # no image found matching the pattern
            if len(paths_to_filenames) == 0:
                continue

            cmd_args = []
            cmd_args.append("--filenames %s" % " ".join(paths_to_filenames))
            cmd_args.append("--dir-output %s" % dir_output)
            cmd_args.append("--prefix-output ''")
            cmd = "niftymic_correct_bias_field %s" % (" ").join(cmd_args)

            ph.execute_command(cmd,
                               flag_print_to_file=flag_batch_script,
                               path_to_file="%s%d.txt" %
                               (file_prefix_batch, ph.add_one(batch_ctr)))

        # # Skip case in case segmentations have not been provided yet
        # if not ph.directory_exists(utils.get_directory_case_segmentation(
        #         case_id, utils.SEGMENTATION_INIT, SEG_MODES[0])):
        #     continue

        # ------------------------Collect Segmentations------------------------
        if flag_collect_segmentations:
            # Skip case in case segmentations have been collected already
            if ph.directory_exists(
                    utils.get_directory_case_segmentation(
                        case_id, utils.SEGMENTATION_SELECTED, SEG_MODES[0])):
                ph.print_info("skipped")
                continue

            filenames = utils.get_segmented_image_filenames(
                case_id, subfolder=utils.SEGMENTATION_INIT)

            for i_seg_mode, seg_mode in enumerate(SEG_MODES):
                directory_selected = utils.get_directory_case_segmentation(
                    case_id, utils.SEGMENTATION_SELECTED, seg_mode)
                ph.create_directory(directory_selected)
                paths_to_filenames_init = [
                    os.path.join(
                        utils.get_directory_case_segmentation(
                            case_id, utils.SEGMENTATION_INIT, seg_mode), f)
                    for f in filenames
                ]
                paths_to_filenames_selected = [
                    os.path.join(directory_selected, f) for f in filenames
                ]
                for i in range(len(filenames)):
                    cmd = "cp -p %s %s" % (paths_to_filenames_init[i],
                                           paths_to_filenames_selected[i])
                    # ph.print_execution(cmd)
                    ph.execute_command(cmd)

        if flag_select_images_segmentations:
            filenames = utils.get_segmented_image_filenames(
                case_id, subfolder=utils.SEGMENTATION_SELECTED)
            paths_to_filenames = [
                os.path.join(
                    utils.get_directory_case_preprocessing(case_id,
                                                           stage="01_N4ITK"),
                    f) for f in filenames
            ]
            paths_to_filenames_masks = [
                os.path.join(
                    utils.get_directory_case_segmentation(
                        case_id, utils.SEGMENTATION_SELECTED, "seg_manual"), f)
                for f in filenames
            ]
            for i in range(len(filenames)):
                ph.show_niftis(
                    [paths_to_filenames[i]],
                    segmentation=paths_to_filenames_masks[i],
                    # viewer="fsleyes",
                )
                ph.pause()
                ph.killall_itksnap()

        # # -------------------------Correct Intensities-----------------------
        # if flag_correct_intensities:
        #     filenames = utils.get_segmented_image_filenames(case_id)
        #     paths_to_filenames_bias = [os.path.join(
        #         utils.get_directory_case_preprocessing(
        #             case_id, stage="01_N4ITK"), f) for f in filenames]
        #     print paths_to_filenames_bias

        # -----------------Reconstruct Volume in Subject Space-----------------
        if flag_reconstruct_volume_subject_space:

            filenames = utils.get_segmented_image_filenames(
                case_id, subfolder=utils.SEGMENTATION_SELECTED)
            # filenames = filenames[0:2]

            paths_to_filenames = [
                os.path.join(
                    utils.get_directory_case_preprocessing(case_id,
                                                           stage="01_N4ITK"),
                    f) for f in filenames
            ]

            # Estimate target stack
            target_stack_index = utils.get_target_stack_index(
                case_id, utils.SEGMENTATION_SELECTED, "seg_auto", filenames)

            for i, seg_mode in enumerate(SEG_MODES):
                # Get mask filenames
                paths_to_filenames_masks = [
                    os.path.join(
                        utils.get_directory_case_segmentation(
                            case_id, utils.SEGMENTATION_SELECTED, seg_mode), f)
                    for f in filenames
                ]

                if flag_reconstruct_volume_subject_space_irtk:
                    if seg_mode != "seg_manual":
                        continue
                    utils.export_irtk_call_to_workstation(
                        case_id=case_id,
                        filenames=filenames,
                        seg_mode=seg_mode,
                        isotropic_resolution=isotropic_resolution,
                        target_stack_index=target_stack_index,
                        kernel_mask_dilation=(15, 15, 4))

                else:
                    dir_output = utils.get_directory_case_recon_seg_mode(
                        case_id=case_id,
                        recon_space="subject_space",
                        seg_mode=seg_mode)
                    # dir_output = "/tmp/foo"

                    cmd_args = []
                    cmd_args.append("--filenames %s" %
                                    " ".join(paths_to_filenames))
                    cmd_args.append("--filenames-masks %s" %
                                    " ".join(paths_to_filenames_masks))
                    cmd_args.append("--dir-output %s" % dir_output)
                    cmd_args.append("--use-masks-srr 0")
                    cmd_args.append("--isotropic-resolution %f" %
                                    isotropic_resolution)
                    cmd_args.append("--target-stack-index %d" %
                                    target_stack_index)
                    cmd_args.append("--intensity-correction %d" %
                                    intensity_correction)
                    cmd_args.append("--outlier-rejection %d" %
                                    outlier_rejection)
                    cmd_args.append("--threshold-first %f" % threshold_first)
                    cmd_args.append("--threshold %f" % threshold)
                    # cmd_args.append("--metric %s" % metric)
                    # cmd_args.append("--multiresolution %d" % multiresolution)
                    # cmd_args.append("--metric-radius %s" % metric_radius)
                    # if i > 0:
                    #     cmd_args.append("--reconstruction-space %s" % (
                    #         utils.get_path_to_recon(
                    #             utils.get_directory_case_recon_seg_mode(
                    #                 case_id, "seg_manual"))))
                    # cmd_args.append("--two-step-cycles 0")
                    cmd_args.append("--verbose %d" % verbose)
                    cmd_args.append("--provide-comparison %d" %
                                    provide_comparison)
                    # cmd_args.append("--iter-max 1")

                    cmd = "niftymic_reconstruct_volume %s" % (
                        " ").join(cmd_args)

                    ph.execute_command(
                        cmd,
                        flag_print_to_file=flag_batch_script,
                        path_to_file="%s%d.txt" %
                        (file_prefix_batch, ph.add_one(batch_ctr)))

        if flag_reconstruct_volume_subject_space_show_comparison:
            recon_paths = []
            for seg_mode in SEG_MODES:
                path_to_recon = utils.get_path_to_recon(
                    utils.get_directory_case_recon_seg_mode(
                        case_id=case_id,
                        recon_space="subject_space",
                        seg_mode=seg_mode))
                recon_paths.append(path_to_recon)
            recon_path_irtk = os.path.join(
                utils.get_directory_case_recon_seg_mode(
                    case_id=case_id,
                    recon_space="subject_space",
                    seg_mode="IRTK"), "IRTK_SRR.nii.gz")
            show_modes = list(SEG_MODES)
            if ph.file_exists(recon_path_irtk):
                recon_paths.append(recon_path_irtk)
                show_modes.append("irtk")
            ph.show_niftis(recon_paths)
            ph.print_info("Sequence: %s" % (" -- ").join(show_modes))
            ph.pause()
            ph.killall_itksnap()

        # -------------------------Register to template------------------------
        if flag_register_to_template:
            for seg_mode in SEG_MODES:

                cmd_args = []
                # register seg_auto-recon to template space
                if seg_mode == "seg_auto":

                    path_to_recon = utils.get_path_to_recon(
                        utils.get_directory_case_recon_seg_mode(
                            case_id=case_id,
                            recon_space="subject_space",
                            seg_mode=seg_mode))

                    template_stack_estimator = \
                        tse.TemplateStackEstimator.from_mask(
                            ph.append_to_filename(path_to_recon, "_mask"))
                    path_to_reference = \
                        template_stack_estimator.get_path_to_template()

                    dir_input_motion_correction = os.path.join(
                        utils.get_directory_case_recon_seg_mode(
                            case_id=case_id,
                            recon_space="subject_space",
                            seg_mode=seg_mode), "motion_correction")

                    dir_output = utils.get_directory_case_recon_seg_mode(
                        case_id=case_id,
                        recon_space="template_space",
                        seg_mode=seg_mode)
                    # dir_output = "/home/mebner/tmp"
                    # # ------- DELETE -----
                    # dir_output = re.sub("data", "foo+1", dir_output)
                    # dir_output = re.sub(
                    #     "volumetric_reconstruction/20180126/template_space/seg_auto",
                    #     "", dir_output)
                    # # -------
                    # cmd_args.append("--use-fixed-mask 1")
                    cmd_args.append("--use-moving-mask 1")

                    # HACK
                    path_to_initial_transform = os.path.join(
                        utils.DIR_INPUT_ROOT_DATA, case_id,
                        "volumetric_reconstruction", "20180126",
                        "template_space", "seg_manual",
                        "registration_transform_sitk.txt")
                    cmd_args.append("--initial-transform %s" %
                                    path_to_initial_transform)
                    cmd_args.append("--use-flirt 0")
                    cmd_args.append("--use-regaladin 1")
                    cmd_args.append("--test-ap-flip 0")

                # register remaining recons to registered seg_auto-recon
                else:
                    path_to_reference = utils.get_path_to_recon(
                        utils.get_directory_case_recon_seg_mode(
                            case_id=case_id,
                            recon_space="template_space",
                            seg_mode="seg_auto"),
                        suffix="ResamplingToTemplateSpace",
                    )
                    path_to_initial_transform = os.path.join(
                        utils.get_directory_case_recon_seg_mode(
                            case_id=case_id,
                            recon_space="template_space",
                            seg_mode="seg_auto"),
                        "registration_transform_sitk.txt")

                    path_to_recon = utils.get_path_to_recon(
                        utils.get_directory_case_recon_seg_mode(
                            case_id=case_id,
                            recon_space="subject_space",
                            seg_mode=seg_mode))
                    dir_input_motion_correction = os.path.join(
                        utils.get_directory_case_recon_seg_mode(
                            case_id=case_id,
                            recon_space="subject_space",
                            seg_mode=seg_mode), "motion_correction")
                    dir_output = utils.get_directory_case_recon_seg_mode(
                        case_id=case_id,
                        recon_space="template_space",
                        seg_mode=seg_mode)

                    cmd_args.append("--use-fixed-mask 0")
                    cmd_args.append("--use-moving-mask 0")
                    cmd_args.append("--initial-transform %s" %
                                    path_to_initial_transform)
                    cmd_args.append("--use-flirt 0")
                    cmd_args.append("--use-regaladin 1")
                    cmd_args.append("--test-ap-flip 0")

                cmd_args.append("--moving %s" % path_to_recon)
                cmd_args.append("--fixed %s" % path_to_reference)
                cmd_args.append("--dir-input %s" % dir_input_motion_correction)
                cmd_args.append("--dir-output %s" % dir_output)
                cmd_args.append("--write-transform 1")
                cmd_args.append("--verbose %d" % verbose)
                cmd = "niftymic_register_image %s" % (" ").join(cmd_args)

                ph.execute_command(cmd,
                                   flag_print_to_file=flag_batch_script,
                                   path_to_file="%s%d.txt" %
                                   (file_prefix_batch, ph.add_one(batch_ctr)))

        if flag_register_to_template_irtk:
            dir_input = utils.get_directory_case_recon_seg_mode(
                case_id=case_id, recon_space="subject_space", seg_mode="IRTK")
            dir_output = utils.get_directory_case_recon_seg_mode(
                case_id=case_id, recon_space="template_space", seg_mode="IRTK")
            path_to_recon = os.path.join(dir_input, "IRTK_SRR.nii.gz")
            path_to_reference = utils.get_path_to_recon(
                utils.get_directory_case_recon_seg_mode(
                    case_id=case_id,
                    recon_space="template_space",
                    seg_mode="seg_manual"),
                suffix="ResamplingToTemplateSpace",
            )
            path_to_initial_transform = os.path.join(
                utils.get_directory_case_recon_seg_mode(
                    case_id=case_id,
                    recon_space="template_space",
                    seg_mode="seg_manual"), "registration_transform_sitk.txt")

            cmd_args = []
            cmd_args.append("--fixed %s" % path_to_reference)
            cmd_args.append("--moving %s" % path_to_recon)
            cmd_args.append("--initial-transform %s" %
                            path_to_initial_transform)
            cmd_args.append("--use-fixed-mask 0")
            cmd_args.append("--use-moving-mask 0")
            cmd_args.append("--use-flirt 0")
            cmd_args.append("--use-regaladin 1")
            cmd_args.append("--test-ap-flip 0")
            cmd_args.append("--dir-output %s" % dir_output)
            cmd_args.append("--verbose %d" % verbose)
            cmd = "niftymic_register_image %s" % (" ").join(cmd_args)
            ph.execute_command(cmd)

        if flag_show_srr_template_space:
            recon_paths = []
            show_modes = list(SEG_MODES)
            # show_modes.append("IRTK")
            for seg_mode in show_modes:
                dir_input = utils.get_directory_case_recon_seg_mode(
                    case_id=case_id,
                    recon_space="template_space",
                    seg_mode=seg_mode)
                # # ------- DELETE -----
                # dir_input = re.sub("data", "foo+1", dir_input)
                # dir_input = re.sub(
                #     "volumetric_reconstruction/20180126/template_space/seg_auto",
                #     "", dir_input)
                # # -------
                path_to_recon_space = utils.get_path_to_recon(
                    dir_input,
                    suffix="ResamplingToTemplateSpace",
                )
                recon_paths.append(path_to_recon_space)
            ph.show_niftis(recon_paths)
            ph.print_info("Sequence: %s" % (" -- ").join(show_modes))
            ph.pause()
            ph.killall_itksnap()

        # -----------------Reconstruct Volume in Template Space----------------
        if flag_reconstruct_volume_template_space:
            for seg_mode in SEG_MODES:
                path_to_recon_space = utils.get_path_to_recon(
                    utils.get_directory_case_recon_seg_mode(
                        case_id=case_id,
                        recon_space="template_space",
                        seg_mode=seg_mode),
                    suffix="ResamplingToTemplateSpace",
                )
                dir_input = os.path.join(
                    utils.get_directory_case_recon_seg_mode(
                        case_id=case_id,
                        recon_space="template_space",
                        seg_mode=seg_mode), "motion_correction")
                dir_output = utils.get_directory_case_recon_seg_mode(
                    case_id=case_id,
                    recon_space="template_space",
                    seg_mode=seg_mode)
                # dir_output = os.path.join("/tmp/spina/template_space/%s-%s" % (
                #     case_id, seg_mode))

                cmd_args = []
                cmd_args.append("--dir-input %s" % dir_input)
                cmd_args.append("--dir-output %s" % dir_output)
                cmd_args.append("--reconstruction-space %s" %
                                path_to_recon_space)
                cmd_args.append("--alpha %s" % alpha)
                cmd_args.append("--verbose %s" % verbose)
                cmd_args.append("--use-masks-srr 0")

                # cmd_args.append("--minimizer L-BFGS-B")
                # cmd_args.append("--alpha 0.006")
                # cmd_args.append("--reconstruction-type HuberL2")
                # cmd_args.append("--data-loss arctan")
                # cmd_args.append("--iterations 5")
                # cmd_args.append("--data-loss-scale 0.7")

                cmd = "niftymic_reconstruct_volume_from_slices %s" % \
                    (" ").join(cmd_args)
                ph.execute_command(cmd,
                                   flag_print_to_file=flag_batch_script,
                                   path_to_file="%s%d.txt" %
                                   (file_prefix_batch, ph.add_one(batch_ctr)))

        # ----------------Collect SRR results in Template Space----------------
        if flag_collect_volumetric_reconstruction_results:
            directory = utils.get_directory_case_recon_summary(case_id)
            ph.create_directory(directory)

            # clear potentially existing files
            cmd = "rm -f %s/*.nii.gz" % (directory)
            ph.execute_command(cmd)

            # Collect SRRs
            for seg_mode in SEG_MODES:
                path_to_recon_src = utils.get_path_to_recon(
                    utils.get_directory_case_recon_seg_mode(
                        case_id=case_id,
                        recon_space="template_space",
                        seg_mode=seg_mode), )
                path_to_recon = os.path.join(
                    directory, "%s%s.nii.gz" % (prefix_srr, seg_mode))

                cmd = "cp -p %s %s" % (path_to_recon_src, path_to_recon)
                ph.execute_command(cmd)

            # Collect IRTK recon
            path_to_recon_src = os.path.join(
                utils.get_directory_case_recon_seg_mode(
                    case_id=case_id,
                    recon_space="template_space",
                    seg_mode="IRTK"),
                "IRTK_SRR_LinearResamplingToTemplateSpace.nii.gz")

            path_to_recon = os.path.join(directory,
                                         "%s%s.nii.gz" % (prefix_srr, "irtk"))

            cmd = "cp -p %s %s" % (path_to_recon_src, path_to_recon)
            ph.execute_command(cmd)

            # Collect evaluation mask
            path_to_recon = utils.get_path_to_recon(
                utils.get_directory_case_recon_seg_mode(
                    case_id=case_id,
                    recon_space="subject_space",
                    seg_mode="seg_auto"))

            template_stack_estimator = \
                tse.TemplateStackEstimator.from_mask(
                    ph.append_to_filename(path_to_recon, "_mask"))
            path_to_template = \
                template_stack_estimator.get_path_to_template()
            path_to_template_mask_src = ph.append_to_filename(
                path_to_template, "_mask_dil")
            path_to_template_mask = "%s/" % directory

            cmd = "cp -p %s %s" % (path_to_template_mask_src,
                                   path_to_template_mask)
            ph.execute_command(cmd)

        if flag_show_volumetric_reconstruction_results:
            dir_output = utils.get_directory_case_recon_summary(case_id)
            paths_to_recons = []
            for seg_mode in RECON_MODES:
                path_to_recon = os.path.join(
                    dir_output, "%s%s.nii.gz" % (prefix_srr, seg_mode))
                paths_to_recons.append(path_to_recon)
            path_to_mask = "%s/STA*.nii.gz" % dir_output
            cmd = ph.show_niftis(paths_to_recons, segmentation=path_to_mask)
            sitkh.write_executable_file([cmd], dir_output=dir_output)
            ph.pause()
            ph.killall_itksnap()

        # ---------------------Evaluate Image Similarities---------------------
        if flag_evaluate_image_similarities:
            dir_input = utils.get_directory_case_recon_summary(case_id)
            dir_output = utils.get_directory_case_recon_similarities(case_id)
            paths_to_recons = []
            for seg_mode in ["seg_auto", "detect", "irtk"]:
                path_to_recon = os.path.join(
                    dir_input, "%s%s.nii.gz" % (prefix_srr, seg_mode))
                paths_to_recons.append(path_to_recon)
            path_to_reference = os.path.join(
                dir_input, "%s%s.nii.gz" % (prefix_srr, "seg_manual"))
            path_to_reference_mask = utils.get_path_to_mask(dir_input)

            cmd_args = []
            cmd_args.append("--filenames %s" % " ".join(paths_to_recons))
            cmd_args.append("--reference %s" % path_to_reference)
            cmd_args.append("--reference-mask %s" % path_to_reference_mask)
            # cmd_args.append("--verbose 1")
            cmd_args.append("--dir-output %s" % dir_output)

            exe = re.sub("pyc", "py",
                         os.path.abspath(evaluate_image_similarity.__file__))
            cmd_args.insert(0, exe)

            # clear potentially existing files
            cmd = "rm -f %s/*.txt" % (dir_output)
            ph.execute_command(cmd)

            cmd = "python %s" % " ".join(cmd_args)
            ph.execute_command(cmd)

        # -----------------Evaluate Slice Residual Similarities----------------
        if flag_evaluate_slice_residual_similarities:

            path_to_reference_mask = utils.get_path_to_mask(
                utils.get_directory_case_recon_summary(case_id))

            dir_output_root = \
                utils.get_directory_case_slice_residual_similarities(case_id)

            # clear potentially existing files
            # cmd = "rm -f %s/*.txt" % (dir_output_root)
            # ph.execute_command(cmd)

            for seg_mode in SEG_MODES:
                dir_input = os.path.join(
                    utils.get_directory_case_recon_seg_mode(
                        case_id=case_id,
                        recon_space="template_space",
                        seg_mode=seg_mode,
                    ), "motion_correction")
                path_to_reference = os.path.join(
                    utils.get_directory_case_recon_summary(case_id),
                    "%s%s.nii.gz" % (prefix_srr, seg_mode))
                dir_output = os.path.join(dir_output_root, seg_mode)

                cmd_args = []
                cmd_args.append("--dir-input %s" % dir_input)
                cmd_args.append("--reference %s" % path_to_reference)
                cmd_args.append("--reference-mask %s" % path_to_reference_mask)
                cmd_args.append("--use-reference-mask 1")
                cmd_args.append("--use-slice-masks 0")
                # cmd_args.append("--verbose 1")
                cmd_args.append("--dir-output %s" % dir_output)

                exe = re.sub("pyc", "py", os.path.abspath(esrs.__file__))
                cmd_args.insert(0, exe)

                cmd = "python %s" % " ".join(cmd_args)
                ph.execute_command(cmd)

        # Collect data for blinded analysis
        if flag_collect_data_blinded_analysis:
            if flag_remove_failed_cases_for_analysis and case_id in RECON_FAILED_CASE_IDS:
                continue

            dir_input = utils.get_directory_case_recon_summary(case_id)
            # pattern = "STA([0-9]+)[_]mask.nii.gz"
            pattern = "STA([0-9]+)[_]mask_dil.nii.gz"
            p = re.compile(pattern)
            gw = [
                p.match(f).group(1) for f in os.listdir(dir_input)
                if p.match(f)
            ][0]

            dir_output = os.path.join(
                utils.get_directory_blinded_analysis(case_id, "open"), case_id)

            exe = re.sub("pyc", "py", os.path.abspath(mswm.__file__))

            recons = []

            for seg_mode in RECON_MODES:
                path_to_recon = os.path.join(
                    dir_input, "%s%s.nii.gz" % (prefix_srr, seg_mode))

                cmd_args = []
                cmd_args.append("--filename %s" % path_to_recon)
                cmd_args.append("--gestational-age %s" % gw)
                cmd_args.append("--dir-output %s" % dir_output)
                cmd_args.append("--prefix-output %s" % prefix_srr_qa)
                cmd_args.append("--verbose 0")
                cmd_args.insert(0, exe)

                cmd = "python %s" % " ".join(cmd_args)
                # ph.execute_command(cmd)

                recon = "%s%s" % (prefix_srr_qa,
                                  os.path.basename(path_to_recon))
                recons.append(recon)
            ph.write_show_niftis_exe(recons, dir_output)

        if flag_anonymize_data_blinded_analysis:
            dir_input = os.path.join(
                utils.get_directory_blinded_analysis(case_id, "open"), case_id)
            dir_output_dictionaries = utils.get_directory_anonymized_dictionares(
                case_id)
            dir_output_anonymized_images = os.path.join(
                utils.get_directory_blinded_analysis(case_id, "anonymized"),
                case_id)

            if not ph.directory_exists(dir_input):
                continue
            ph.create_directory(dir_output_dictionaries)
            ph.create_directory(dir_output_anonymized_images)

            data_anonymizer = da.DataAnonymizer()
            # Create random dictionary (only required once)
            # data_anonymizer.set_prefix_identifiers("%s_" % case_id)
            # data_anonymizer.read_nifti_filenames_from_directory(dir_input)
            # data_anonymizer.generate_identifiers()
            # data_anonymizer.generate_randomized_dictionary()
            # data_anonymizer.write_dictionary(
            #     dir_output_dictionaries, "dictionary_%s" % case_id)

            # Read dictionary
            data_anonymizer.read_dictionary(dir_output_dictionaries,
                                            "dictionary_%s" % case_id)

            # Anonymize files
            if 0:
                ph.clear_directory(dir_output_anonymized_images)
                data_anonymizer.anonymize_files(dir_input,
                                                dir_output_anonymized_images)

                # Write executable script
                filenames = [
                    "%s.nii.gz" % f
                    for f in sorted(data_anonymizer.get_identifiers())
                ]
                ph.write_show_niftis_exe(filenames,
                                         dir_output_anonymized_images)

            # Reveal anonymized files
            if 1:
                filenames = data_anonymizer.reveal_anonymized_files(
                    dir_output_anonymized_images)
                filenames = sorted(["%s" % f for f in filenames])
                ph.write_show_niftis_exe(filenames,
                                         dir_output_anonymized_images)

            # Reveal additional, original files
            # data_anonymizer.reveal_original_files(dir_output)

            # relative_directory = re.sub(
            #     utils.get_directory_blinded_analysis(case_id, "anonymized"),
            #     ".",
            #     dir_output_anonymized_images)
            # paths_to_filenames = [os.path.join(
            #     relative_directory, f) for f in filenames]

        # ---------------------Analyse Image Similarities---------------------
        if flag_analyse_image_similarities or \
                flag_analyse_slice_residual_similarities or \
                flag_analyse_stacks:
            if flag_remove_failed_cases_for_analysis:
                if case_id in RECON_FAILED_CASE_IDS:
                    continue
            if cases[case_id]['postrep'] == flag_postop or flag_postop == 2:
                cases_similarities.append(case_id)
                cases_stacks.append(
                    utils.get_segmented_image_filenames(
                        case_id,
                        # subfolder=utils.SEGMENTATION_INIT,
                        subfolder=utils.SEGMENTATION_SELECTED,
                    ))

        dir_output_analysis = os.path.join(
            # "/Users/mebner/UCL/UCL/Publications",
            "/home/mebner/Dropbox/UCL/Publications",
            "2018_MICCAI/brain_reconstruction_paper")

    if flag_analyse_image_similarities:
        dir_inputs = []
        filename = "image_similarities_postop%d.txt" % flag_postop
        for case_id in cases_similarities:
            dir_inputs.append(
                utils.get_directory_case_recon_similarities(case_id))
        cmd_args = []
        cmd_args.append("--dir-inputs %s" % " ".join(dir_inputs))
        cmd_args.append("--dir-output %s" % dir_output_analysis)
        cmd_args.append("--filename %s" % filename)

        exe = re.sub("pyc", "py",
                     os.path.abspath(src.analyse_image_similarities.__file__))
        cmd_args.insert(0, exe)

        cmd = "python %s" % " ".join(cmd_args)
        ph.execute_command(cmd)

    if flag_analyse_slice_residual_similarities:
        dir_inputs = []
        filename = "slice_residuals_postop%d.txt" % flag_postop
        for case_id in cases_similarities:
            dir_inputs.append(
                utils.get_directory_case_slice_residual_similarities(case_id))
        cmd_args = []
        cmd_args.append("--dir-inputs %s" % " ".join(dir_inputs))
        cmd_args.append("--subfolder %s" % " ".join(SEG_MODES))
        cmd_args.append("--dir-output %s" % dir_output_analysis)
        cmd_args.append("--filename %s" % filename)

        exe = re.sub(
            "pyc", "py",
            os.path.abspath(src.analyse_slice_residual_similarities.__file__))
        cmd_args.insert(0, exe)

        cmd = "python %s" % " ".join(cmd_args)
        # print len(cases_similarities)
        # print cases_similarities
        ph.execute_command(cmd)

    if flag_analyse_stacks:
        cases_stacks_N = [len(s) for s in cases_stacks]
        ph.print_subtitle("%d cases -- Number of stacks" % len(cases_stacks))
        ph.print_info("min: %g" % np.min(cases_stacks_N))
        ph.print_info("mean: %g" % np.mean(cases_stacks_N))
        ph.print_info("median: %g" % np.median(cases_stacks_N))
        ph.print_info("max: %g" % np.max(cases_stacks_N))

    elapsed_time = ph.stop_timing(time_start)
    ph.print_title("Summary")
    print("Computational Time for Pipeline: %s" % (elapsed_time))

    return 0