def _get_solver_class(self, solver_list, solver_type, preference_list, default_logic, name=None, logic=None): if len(solver_list) == 0: raise NoSolverAvailableError("No %s is available" % solver_type) logic = convert_logic_from_string(logic) if name is not None: if name not in solver_list: raise NoSolverAvailableError("%s '%s' is not available" % \ (solver_type, name)) if logic is not None and \ name not in self._filter_solvers(solver_list, logic=logic): raise NoSolverAvailableError( "%s '%s' does not support logic %s" % (solver_type, name, logic)) SolverClass = solver_list[name] if logic is None: try: logic = most_generic_logic(SolverClass.LOGICS) except NoLogicAvailableError: if default_logic in SolverClass.LOGICS: logic = default_logic else: raise NoLogicAvailableError( "Cannot automatically select a logic") closer_logic = get_closer_logic(SolverClass.LOGICS, logic) return SolverClass, closer_logic if logic is None: logic = default_logic solvers = self._filter_solvers(solver_list, logic=logic) if solvers is not None and len(solvers) > 0: # Pick the first solver based on preference list SolverClass = self._pick_favorite(preference_list, solver_list, solvers) closer_logic = get_closer_logic(SolverClass.LOGICS, logic) return SolverClass, closer_logic else: raise NoSolverAvailableError("No %s is available for logic %s" % (solver_type, logic))
def get_quantifier_eliminator(self, name=None): if len(self._all_qelims) == 0: raise NoSolverAvailableError( "No quantifier eliminator is available") if name is None: QElimClass = self.pick_favorite_qelim(self._all_qelims) elif name in self._all_qelims: QElimClass = self._all_qelims[name] else: raise NoSolverAvailableError("No quantifier eliminator %s" % name) return QElimClass(self.environment)
def Solver(name: str, logic: tp.Optional[logics.Logic] = None) -> SolverT: ''' Convience function for building a pysmt solver object with a switch backend. Similar to `pysmt.shortcuts.Solver`. ''' try: cls = SWITCH_SOLVERS[name] except KeyError: raise NoSolverAvailableError( f"Solver '{name}' is not available") from None if isinstance(logic, str): logic = logics.convert_logic_from_string(logic) elif logic is None: # Try to use the most general logic supported try: logic = logics.most_generic_logic(cls.LOGICS) except NoLogicAvailableError: # supported logics do not have a single "upper bound" # Check for some reasonable ones if logics.QF_UFLIRA in cls.LOGICS: logic = logics.QF_UFLIRA elif logics.QF_AUFBV in cls.LOGICS: logic = logics.QF_AUFBV else: # use the first one logic = cls.LOGICS[0] return cls(environment=get_env(), logic=logic)
def _pick_favorite(self, preference_list, solver_list, solvers): for candidate in preference_list: if candidate in solvers: return solver_list[candidate] raise NoSolverAvailableError( "Cannot find a matching solver in the preference list: %s " % solvers)
def pick_favorite_solver(self, solvers): for candidate in self.solver_preference_list: if candidate in solvers: return self._all_solvers[candidate] raise NoSolverAvailableError( "Cannot find a matching solver in the preference list: %s " % solvers)
def get_solver(self, quantified=False, name=None, logic=None): assert quantified is False or logic is None, \ "Cannot specify both quantified and logic." if quantified is True: logic = self.default_logic.get_quantified_version if name is not None: if name in self._all_solvers: if logic is None: SolverClass = self._all_solvers[name] logic = most_generic_logic(SolverClass.LOGICS) else: if name in self.all_solvers(logic=logic): SolverClass = self._all_solvers[name] else: raise NoSolverAvailableError("Solver '%s' does not" \ " support logic %s" % (name, logic)) closer_logic = get_closer_logic(SolverClass.LOGICS, logic) return SolverClass(environment=self.environment, logic=closer_logic, options=None) else: raise NoSolverAvailableError("Solver %s is not available" % name) if logic is None: logic = self.default_logic solvers = self.all_solvers(logic=logic) if solvers is not None and len(solvers) > 0: # Pick the first solver based on preference list SolverClass = self.pick_favorite_solver(solvers) closer_logic = get_closer_logic(SolverClass.LOGICS, logic) return SolverClass(environment=self.environment, logic=closer_logic, options=None) else: raise NoSolverAvailableError("No solver is available for logic %s" %\ logic)
def pick_favorite_qelim(self, qelims): for candidate in self.qelim_preference_list: if candidate in qelims: return self._all_qelims[candidate] raise NoSolverAvailableError("Cannot find a matching quantifier " \ "eliminator in the preference list")