def test_window_functions_cumulative_sum(self): df = self.spark.createDataFrame([("one", 1), ("two", 2)], ["key", "value"]) from pyspark.sql import functions as F # Test cumulative sum sel = df.select( df.key, F.sum(df.value).over(Window.rowsBetween(Window.unboundedPreceding, 0))) rs = sorted(sel.collect()) expected = [("one", 1), ("two", 3)] for r, ex in zip(rs, expected): self.assertEqual(tuple(r), ex[:len(r)]) # Test boundary values less than JVM's Long.MinValue and make sure we don't overflow sel = df.select( df.key, F.sum(df.value).over(Window.rowsBetween(Window.unboundedPreceding - 1, 0))) rs = sorted(sel.collect()) expected = [("one", 1), ("two", 3)] for r, ex in zip(rs, expected): self.assertEqual(tuple(r), ex[:len(r)]) # Test boundary values greater than JVM's Long.MaxValue and make sure we don't overflow frame_end = Window.unboundedFollowing + 1 sel = df.select( df.key, F.sum(df.value).over(Window.rowsBetween(Window.currentRow, frame_end))) rs = sorted(sel.collect()) expected = [("one", 3), ("two", 2)] for r, ex in zip(rs, expected): self.assertEqual(tuple(r), ex[:len(r)])
def test_groupedData(self): from pyspark.sql import DataFrame from pyspark.sql.functions import sum, pandas_udf, PandasUDFType from ts.flint import TimeSeriesGroupedData price = self.price() assert(type(price.groupBy('time')) is TimeSeriesGroupedData) assert(type(price.groupby('time')) is TimeSeriesGroupedData) result1 = price.groupBy('time').agg(sum(price['price'])).sort('time').toPandas() expected1 = DataFrame.groupBy(price, 'time').agg(sum(price['price'])).sort('time').toPandas() assert_same(result1, expected1) result2 = price.groupBy('time').pivot('id').sum('price').toPandas() expected2 = DataFrame.groupBy(price, 'time').pivot('id').sum('price').toPandas() assert_same(result2, expected2) @pandas_udf(price.schema, PandasUDFType.GROUPED_MAP) def foo(df): return df result3 = price.groupby('time').apply(foo).toPandas() expected3 = DataFrame.groupBy(price, 'time').apply(foo).toPandas() assert_same(result3, expected3) result4 = price.groupby('time').count().toPandas() expected4 = DataFrame.groupBy(price, 'time').count().toPandas() assert_same(result4, expected4) result5 = price.groupby('time').mean('price').toPandas() expected5 = DataFrame.groupBy(price, 'time').mean('price').toPandas() assert_same(result5, expected5)
def test_mixed_sql(self): """ Test mixing group aggregate pandas UDF with sql expression. """ df = self.data sum_udf = self.pandas_agg_sum_udf # Mix group aggregate pandas UDF with sql expression result1 = (df.groupby('id') .agg(sum_udf(df.v) + 1) .sort('id')) expected1 = (df.groupby('id') .agg(sum(df.v) + 1) .sort('id')) # Mix group aggregate pandas UDF with sql expression (order swapped) result2 = (df.groupby('id') .agg(sum_udf(df.v + 1)) .sort('id')) expected2 = (df.groupby('id') .agg(sum(df.v + 1)) .sort('id')) # Wrap group aggregate pandas UDF with two sql expressions result3 = (df.groupby('id') .agg(sum_udf(df.v + 1) + 2) .sort('id')) expected3 = (df.groupby('id') .agg(sum(df.v + 1) + 2) .sort('id')) self.assertPandasEqual(expected1.toPandas(), result1.toPandas()) self.assertPandasEqual(expected2.toPandas(), result2.toPandas()) self.assertPandasEqual(expected3.toPandas(), result3.toPandas())
def test_nondeterministic_vectorized_udf_in_aggregate(self): df = self.spark.range(10) random_udf = self.nondeterministic_vectorized_udf with QuietTest(self.sc): with self.assertRaisesRegexp(AnalysisException, 'nondeterministic'): df.groupby(df.id).agg(sum(random_udf(df.id))).collect() with self.assertRaisesRegexp(AnalysisException, 'nondeterministic'): df.agg(sum(random_udf(df.id))).collect()
def test_nondeterministic_udf_in_aggregate(self): from pyspark.sql.functions import udf, sum import random udf_random_col = udf(lambda: int(100 * random.random()), 'int').asNondeterministic() df = self.spark.range(10) with QuietTest(self.sc): with self.assertRaisesRegexp(AnalysisException, "nondeterministic"): df.groupby('id').agg(sum(udf_random_col())).collect() with self.assertRaisesRegexp(AnalysisException, "nondeterministic"): df.agg(sum(udf_random_col())).collect()
def gen_report_table(hc,curUnixDay): rows_indoor=sc.textFile("/data/indoor/*/*").map(lambda r: r.split(",")).map(lambda p: Row(clientmac=p[0], entityid=int(p[1]),etime=int(p[2]),ltime=int(p[3]),seconds=int(p[4]),utoday=int(p[5]),ufirstday=int(p[6]))) HiveContext.createDataFrame(hc,rows_indoor).registerTempTable("df_indoor") #ClientMac|etime|ltime|seconds|utoday|ENTITYID|UFIRSTDAY sql="select entityid,clientmac,utoday,UFIRSTDAY,seconds," sql=sql+"count(1) over(partition by entityid,clientmac) as total_cnt," sql=sql+"count(1) over (partition by entityid,clientmac order by utoday range 2505600 preceding) as day_30," # 2505600 is 29 days sql=sql+"count(1) over (partition by entityid,clientmac order by utoday range 518400 preceding) as day_7," #518400 is 6 days sql=sql+"count(1) over (partition by entityid,clientmac,UFIRSTDAY order by UFIRSTDAY range 1 preceding) as pre_mon " sql=sql+"from df_indoor order by entityid,clientmac,utoday" df_id_stat=hc.sql(sql) df_id_mm=df_id_stat.withColumn("min", func.min("utoday").over(Window.partitionBy("entityid","clientmac"))).withColumn("max", func.max("utoday").over(Window.partitionBy("entityid","clientmac"))) #df_id_mm df_min_max ,to caculate firtarrival and last arrival df_id_stat_distinct=df_id_stat.drop("seconds").drop("day_30").drop("day_7").drop("utoday").drop("total_cnt").distinct() #distinct df is for lag function to work df_id_prepremon=df_id_stat_distinct.withColumn("prepre_mon",func.lag("pre_mon").over(Window.partitionBy("entityid","clientmac").orderBy("entityid","clientmac","UFIRSTDAY"))).drop("pre_mon").na.fill(0) cond_id = [df_id_mm.clientmac == df_id_prepremon.clientmac, df_id_mm.entityid == df_id_prepremon.entityid, df_id_mm.UFIRSTDAY==df_id_prepremon.UFIRSTDAY] df_indoor_fin_tmp=df_id_mm.join(df_id_prepremon, cond_id, 'outer').select(df_id_mm.entityid,df_id_mm.clientmac,df_id_mm.utoday,df_id_mm.UFIRSTDAY,df_id_mm.seconds,df_id_mm.day_30,df_id_mm.day_7,df_id_mm.min,df_id_mm.max,df_id_mm.total_cnt,df_id_prepremon.prepre_mon) df_indoor_fin_tmp=df_indoor_fin_tmp.selectExpr("entityid as entityid","clientmac as clientmac","utoday as utoday","UFIRSTDAY as ufirstday","seconds as secondsbyday","day_30 as indoors30","day_7 as indoors7","min as FirstIndoor","max as LastIndoor","total_cnt as indoors","prepre_mon as indoorsPrevMonth") #newly added part for indoors7 and indoors30 based on current date df_indoor_fin_tmp1= df_indoor_fin_tmp.withColumn("r_day_7", func.when((curUnixDay- df_indoor_fin_tmp.utoday)/86400<7 , 1).otherwise(0)) df_indoor_fin_tmp2=df_indoor_fin_tmp1.withColumn("r_day_30", func.when((curUnixDay- df_indoor_fin_tmp1.utoday)/86400<30 , 1).otherwise(0)) df_indoor_fin_tmp3=df_indoor_fin_tmp2.withColumn("r_indoors7",func.sum("r_day_7").over(Window.partitionBy("entityid","clientmac"))) df_indoor_fin_tmp4=df_indoor_fin_tmp3.withColumn("r_indoors30",func.sum("r_day_30").over(Window.partitionBy("entityid","clientmac"))) df_indoor_fin=df_indoor_fin_tmp4.drop("r_day_7").drop("r_day_30") hc.sql("drop table if exists df_indoor_fin") df_indoor_fin.write.saveAsTable("df_indoor_fin") rows_flow=sc.textFile("/data/flow/*/*").map(lambda r: r.split(",")).map(lambda p: Row(clientmac=p[0], entityid=int(p[1]),etime=int(p[2]),ltime=int(p[3]),utoday=int(p[4]),ufirstday=int(p[5]))) HiveContext.createDataFrame(hc,rows_flow).registerTempTable("df_flow") # ClientMac|ENTITYID|UFIRSTDAY|etime|ltime|utoday sql="select entityid,clientmac,utoday,UFIRSTDAY," sql=sql+"count(1) over(partition by entityid,clientmac) as total_cnt," sql=sql+"count(1) over (partition by entityid,clientmac order by utoday range 2505600 preceding) as day_30," # 2505600 is 29 days sql=sql+"count(1) over (partition by entityid,clientmac order by utoday range 518400 preceding) as day_7," #518400 is 6 days sql=sql+"count(1) over (partition by entityid,clientmac,UFIRSTDAY order by UFIRSTDAY range 1 preceding) as pre_mon " sql=sql+"from df_flow order by entityid,clientmac,utoday" df_fl_stat=hc.sql(sql) df_fl_mm=df_fl_stat.withColumn("min", func.min("utoday").over(Window.partitionBy("entityid","clientmac"))).withColumn("max", func.max("utoday").over(Window.partitionBy("entityid","clientmac"))) #df_fl_mm df_min_max ,to caculate firtarrival and last arrival df_fl_stat_distinct=df_fl_stat.drop("day_30").drop("day_7").drop("utoday").drop("total_cnt").distinct() #distinct df is for lag function to work df_fl_prepremon=df_fl_stat_distinct.withColumn("prepre_mon",func.lag("pre_mon").over(Window.partitionBy("entityid","clientmac").orderBy("entityid","clientmac","UFIRSTDAY"))).drop("pre_mon").na.fill(0) cond_fl = [df_fl_mm.clientmac == df_fl_prepremon.clientmac, df_fl_mm.entityid == df_fl_prepremon.entityid, df_fl_mm.UFIRSTDAY==df_fl_prepremon.UFIRSTDAY] df_flow_fin=df_fl_mm.join(df_fl_prepremon, cond_fl, 'outer').select(df_fl_mm.entityid,df_fl_mm.clientmac,df_fl_mm.utoday,df_fl_mm.UFIRSTDAY,df_fl_mm.day_30,df_fl_mm.day_7,df_fl_mm.min,df_fl_mm.max,df_fl_mm.total_cnt,df_fl_prepremon.prepre_mon) df_flow_fin=df_flow_fin.selectExpr("entityid as entityid","clientmac as clientmac","utoday as utoday","UFIRSTDAY as ufirstday","day_30 as visits30","day_7 as visits7","min as FirstVisit","max as LastVisit","total_cnt as visits","prepre_mon as visitsPrevMonth") hc.sql("drop table if exists df_flow_fin") df_flow_fin.write.saveAsTable("df_flow_fin")
def run_benchmarks(base_path): print("=========================================================================================") print("Loading data for: ") print(base_path) print("=========================================================================================") start=time.time() df=hive_context.read.format("com.databricks.spark.csv").option("header", "true").option("inferSchema", "true").load(base_path) #print(df) #print(df.printSchema()) print(df.count()) df.cache() print("Time taken for groupBy on DataFrame column C followed by sum aggregate: ") start_task=time.time() df_groupby_C=df.groupBy('C').agg(F.sum(df.id)) print(df_groupby_C.count()) end_task=time.time() end=time.time() x=[base_path, end-start, end_task-start_task] print("=========================================================================================") print("OUTPUT") print(x) print("=========================================================================================") return x
def getValueFieldValueLists(self, handlerId, keyFields, valueFields): df = self.entity.groupBy(keyFields) agg = self.options.get("aggregation",self.getDefaultAggregation(handlerId)) maxRows = int(self.options.get("rowCount","100")) numRows = min(maxRows,df.count()) valueLists = [] for valueField in valueFields: valueDf = None if agg == "SUM": valueDf = df.agg(F.sum(valueField).alias("agg")) elif agg == "AVG": valueDf = df.agg(F.avg(valueField).alias("agg")) elif agg == "MIN": valueDf = df.agg(F.min(valueField).alias("agg")) elif agg == "MAX": valueDf = df.agg(F.max(valueField).alias("agg")) else: valueDf = df.agg(F.count(valueField).alias("agg")) for keyField in keyFields: valueDf = valueDf.sort(F.col(keyField).asc()) valueDf = valueDf.dropna() rows = valueDf.select("agg").take(numRows) valueList = [] for row in rows: valueList.append(row["agg"]) valueLists.append(valueList) return valueLists
def test_multiple_udfs(self): """ Test multiple group aggregate pandas UDFs in one agg function. """ from pyspark.sql.functions import sum, mean df = self.data mean_udf = self.pandas_agg_mean_udf sum_udf = self.pandas_agg_sum_udf weighted_mean_udf = self.pandas_agg_weighted_mean_udf result1 = (df.groupBy('id') .agg(mean_udf(df.v), sum_udf(df.v), weighted_mean_udf(df.v, df.w)) .sort('id') .toPandas()) expected1 = (df.groupBy('id') .agg(mean(df.v), sum(df.v), mean(df.v).alias('weighted_mean(v, w)')) .sort('id') .toPandas()) self.assertPandasEqual(expected1, result1)
def sum_aggregations(category, hours=None): actual_suffix = '' new_suffix = '_%s' % category if hours: actual_suffix = '_%s' % category new_suffix += '_%sh' % hours return [func.sum(column + actual_suffix).alias(column + new_suffix) for column in ['Pickup_Count', 'Dropoff_Count']]
def test_retain_group_columns(self): with self.sql_conf({"spark.sql.retainGroupColumns": False}): df = self.data sum_udf = self.pandas_agg_sum_udf result1 = df.groupby(df.id).agg(sum_udf(df.v)) expected1 = df.groupby(df.id).agg(sum(df.v)) self.assertPandasEqual(expected1.toPandas(), result1.toPandas())
def formatItens(firstTime): #format itenary data global itens itens = itens.withColumn("ORIGIN_AIRPORT_ID",toInt("ORIGIN_AIRPORT_ID")) itens = itens.withColumn("DEST_AIRPORT_ID",toInt("DEST_AIRPORT_ID")) itens = itens.withColumn("MARKET_MILES_FLOWN",toKm("MARKET_MILES_FLOWN")) itens = itens.withColumn("PASSENGERS",toInt("PASSENGERS")) if firstTime: aggArg = sum("PASSENGERS").alias("PASSENGERS"),mean("MARKET_MILES_FLOWN").alias("MARKET_KMS_FLOWN") itens = itens.groupBy("ORIGIN_AIRPORT_ID","DEST_AIRPORT_ID").agg(*aggArg).cache()
def runBPwithGraphFrames(cls, g, numIter): """Run Belief Propagation using GraphFrame. This implementation of BP shows how to use GraphFrame's aggregateMessages method. """ # choose colors for vertices for BP scheduling colorG = cls._colorGraph(g) numColors = colorG.vertices.select('color').distinct().count() # TODO: handle vertices without any edges # initialize vertex beliefs at 0.0 gx = GraphFrame(colorG.vertices.withColumn('belief', sqlfunctions.lit(0.0)), colorG.edges) # run BP for numIter iterations for iter_ in range(numIter): # for each color, have that color receive messages from neighbors for color in range(numColors): # Send messages to vertices of the current color. # We may send to source or destination since edges are treated as undirected. msgForSrc = sqlfunctions.when( AM.src['color'] == color, AM.edge['b'] * AM.dst['belief']) msgForDst = sqlfunctions.when( AM.dst['color'] == color, AM.edge['b'] * AM.src['belief']) # numerically stable sigmoid logistic = sqlfunctions.udf(cls._sigmoid, returnType=types.DoubleType()) aggregates = gx.aggregateMessages( sqlfunctions.sum(AM.msg).alias("aggMess"), sendToSrc=msgForSrc, sendToDst=msgForDst) v = gx.vertices # receive messages and update beliefs for vertices of the current color newBeliefCol = sqlfunctions.when( (v['color'] == color) & (aggregates['aggMess'].isNotNull()), logistic(aggregates['aggMess'] + v['a']) ).otherwise(v['belief']) # keep old beliefs for other colors newVertices = (v .join(aggregates, on=(v['id'] == aggregates['id']), how='left_outer') .drop(aggregates['id']) # drop duplicate ID column (from outer join) .withColumn('newBelief', newBeliefCol) # compute new beliefs .drop('aggMess') # drop messages .drop('belief') # drop old beliefs .withColumnRenamed('newBelief', 'belief') ) # cache new vertices using workaround for SPARK-1334 cachedNewVertices = AM.getCachedDataFrame(newVertices) gx = GraphFrame(cachedNewVertices, gx.edges) # Drop the "color" column from vertices return GraphFrame(gx.vertices.drop('color'), gx.edges)
def compute(day): # On veut les jours day-30 à day-1 sums = wikipediadata.where( (wikipediadata.day >= day-30) & (wikipediadata.day <= day-1)) # Sous-ensemble de test #sums = sums.where((sums.page == 'Cadillac_Brougham') | ((sums.page == 'Roald_Dahl') & (sums.projectcode == 'fr'))) # On somme les heures de la journées sums = sums.groupby('projectcode', 'page', 'day').sum('views') # On cache pour plus tard sums.cache() # on définit une windows := jour precedent window_spec = Window.partitionBy(sums.projectcode, sums.page) \ .orderBy(sums.day.asc()).rowsBetween(-1, -1) # on calcule la différence entre views(d) - views(d-1) diffs = sums.withColumn('diff', sums.views - F.sum(sums.views) \ .over(window_spec)) # on calcule les coefs à appliquer à chaque jour coefs = pd.DataFrame({'day': range(day-30, day)}) coefs['coef'] = 1. / (day - coefs.day) coefs = hc.createDataFrame(coefs) diffs = diffs.join(coefs, 'day') # on calcul le score de chaque jour diffs = diffs.withColumn('sub_score', diffs.diff * diffs.coef) totals = diffs.groupby('projectcode', 'page').sum('views', 'sub_score') # on normalise par la racine de la somme des views totals = totals.withColumn('score', totals['SUM(sub_score)'] / F.sqrt(totals['SUM(views)'])) \ .orderBy(F.desc('score')) \ .withColumnRenamed('SUM(views)', 'total_views') \ .limit(10) views = sums.select('projectcode', 'page', 'day', 'views') \ .join(totals.select('projectcode', 'page', 'total_views', 'score'), (totals.projectcode == sums.projectcode) & (totals.page == sums.page), 'right_outer') df = totals.select('projectcode', 'page', 'total_views', 'score').toPandas() df2 = views.toPandas() df2 = df2.iloc[:, 2:] df2 = df2.pivot_table(values='views', columns=['day'], index=['projectcode', 'page'], fill_value=0) df = df.merge(df2, left_on=['projectcode', 'page'], right_index=True) df.to_csv(filename(day), index=False) # on vide le cache hc.clearCache()
def makeMapping(firstTime): global routes grpString = "ORIGIN_AIRPORT_ID","ORIGIN_CITY_NAME","ORIGIN","DEST_AIRPORT_ID","DEST_CITY_NAME","DEST","UNIQUE_CARRIER_NAME" if firstTime: routes = routes.groupBy(*grpString).agg(sum("PASSENGERS").alias("PASSENGERS"),sum("DEPARTURES_PERFORMED").alias("DEPARTURES_PERFORMED"),mean("RAMP_TO_RAMP").alias("RAMP_TO_RAMP")) for i in routes.collect(): if not dictAir.get("Airport{}".format(i[0])): initNode(i[0],(i[1],i[2]),i[8]) if not dictAir.get("Airport{}".format(i[3])): initNode(i[3],(i[4],i[5]),0) if (i[9]!=9876543.21): tripTime =i[9] getApt(i[0])['depts'] += i[8] sourceCNX = getApt(i[0])['cnx'] sourceCNX.append((int(i[3]),tripTime,i[6]))
def test_udf_with_aggregate_function(self): df = self.spark.createDataFrame([(1, "1"), (2, "2"), (1, "2"), (1, "2")], ["key", "value"]) from pyspark.sql.functions import udf, col, sum from pyspark.sql.types import BooleanType my_filter = udf(lambda a: a == 1, BooleanType()) sel = df.select(col("key")).distinct().filter(my_filter(col("key"))) self.assertEqual(sel.collect(), [Row(key=1)]) my_copy = udf(lambda x: x, IntegerType()) my_add = udf(lambda a, b: int(a + b), IntegerType()) my_strlen = udf(lambda x: len(x), IntegerType()) sel = df.groupBy(my_copy(col("key")).alias("k"))\ .agg(sum(my_strlen(col("value"))).alias("s"))\ .select(my_add(col("k"), col("s")).alias("t")) self.assertEqual(sel.collect(), [Row(t=4), Row(t=3)])
def handleUIOptions(self, displayColName): agg = self.options.get("aggregation") valFields = self.options.get("valueFields") if agg == 'COUNT': return self.entity.groupBy(displayColName).agg(F.count(displayColName).alias("agg")).toPandas() elif agg == 'SUM': return self.entity.groupBy(displayColName).agg(F.sum(valFields).alias("agg")).toPandas() elif agg == 'AVG': return self.entity.groupBy(displayColName).agg(F.avg(valFields).alias("agg")).toPandas() elif agg == 'MIN': return self.entity.groupBy(displayColName).agg(F.min(valFields).alias("agg")).toPandas() elif agg == 'MAX': return self.entity.groupBy(displayColName).agg(F.max(valFields).alias("agg")).toPandas() elif agg == 'MEAN': return self.entity.groupBy(displayColName).agg(F.mean(valFields).alias("agg")).toPandas() else: return self.entity.groupBy(displayColName).agg(F.count(displayColName).alias("agg")).toPandas()
def test_aggregate_messages(self): g = self._graph("friends") # For each user, sum the ages of the adjacent users, # plus 1 for the src's sum if the edge is "friend". sendToSrc = ( AM.dst['age'] + sqlfunctions.when( AM.edge['relationship'] == 'friend', sqlfunctions.lit(1) ).otherwise(0)) sendToDst = AM.src['age'] agg = g.aggregateMessages( sqlfunctions.sum(AM.msg).alias('summedAges'), sendToSrc=sendToSrc, sendToDst=sendToDst) # Run the aggregation again providing SQL expressions as String instead. agg2 = g.aggregateMessages( "sum(MSG) AS `summedAges`", sendToSrc="(dst['age'] + CASE WHEN (edge['relationship'] = 'friend') THEN 1 ELSE 0 END)", sendToDst="src['age']") # Convert agg and agg2 to a mapping from id to the aggregated message. aggMap = {id_: s for id_, s in agg.select('id', 'summedAges').collect()} agg2Map = {id_: s for id_, s in agg2.select('id', 'summedAges').collect()} # Compute the truth via brute force. user2age = {id_: age for id_, age in g.vertices.select('id', 'age').collect()} trueAgg = {} for src, dst, rel in g.edges.select("src", "dst", "relationship").collect(): trueAgg[src] = trueAgg.get(src, 0) + user2age[dst] + (1 if rel == 'friend' else 0) trueAgg[dst] = trueAgg.get(dst, 0) + user2age[src] # Compare if the agg mappings match the brute force mapping self.assertEqual(aggMap, trueAgg) self.assertEqual(agg2Map, trueAgg) # Check that TypeError is raises with messages of wrong type with self.assertRaises(TypeError): g.aggregateMessages( "sum(MSG) AS `summedAges`", sendToSrc=object(), sendToDst="src['age']") with self.assertRaises(TypeError): g.aggregateMessages( "sum(MSG) AS `summedAges`", sendToSrc=dst['age'], sendToDst=object())
def test_wrong_args(self): df = self.data with QuietTest(self.sc): with self.assertRaisesRegexp(ValueError, 'Invalid udf'): df.groupby('id').apply(lambda x: x) with self.assertRaisesRegexp(ValueError, 'Invalid udf'): df.groupby('id').apply(udf(lambda x: x, DoubleType())) with self.assertRaisesRegexp(ValueError, 'Invalid udf'): df.groupby('id').apply(sum(df.v)) with self.assertRaisesRegexp(ValueError, 'Invalid udf'): df.groupby('id').apply(df.v + 1) with self.assertRaisesRegexp(ValueError, 'Invalid function'): df.groupby('id').apply( pandas_udf(lambda: 1, StructType([StructField("d", DoubleType())]))) with self.assertRaisesRegexp(ValueError, 'Invalid udf'): df.groupby('id').apply(pandas_udf(lambda x, y: x, DoubleType())) with self.assertRaisesRegexp(ValueError, 'Invalid udf.*GROUPED_MAP'): df.groupby('id').apply( pandas_udf(lambda x, y: x, DoubleType(), PandasUDFType.SCALAR))
def test_complex_groupby(self): from pyspark.sql.functions import sum df = self.data sum_udf = self.pandas_agg_sum_udf plus_one = self.python_plus_one plus_two = self.pandas_scalar_plus_two # groupby one expression result1 = df.groupby(df.v % 2).agg(sum_udf(df.v)) expected1 = df.groupby(df.v % 2).agg(sum(df.v)) # empty groupby result2 = df.groupby().agg(sum_udf(df.v)) expected2 = df.groupby().agg(sum(df.v)) # groupby one column and one sql expression result3 = df.groupby(df.id, df.v % 2).agg(sum_udf(df.v)).orderBy(df.id, df.v % 2) expected3 = df.groupby(df.id, df.v % 2).agg(sum(df.v)).orderBy(df.id, df.v % 2) # groupby one python UDF result4 = df.groupby(plus_one(df.id)).agg(sum_udf(df.v)) expected4 = df.groupby(plus_one(df.id)).agg(sum(df.v)) # groupby one scalar pandas UDF result5 = df.groupby(plus_two(df.id)).agg(sum_udf(df.v)) expected5 = df.groupby(plus_two(df.id)).agg(sum(df.v)) # groupby one expression and one python UDF result6 = df.groupby(df.v % 2, plus_one(df.id)).agg(sum_udf(df.v)) expected6 = df.groupby(df.v % 2, plus_one(df.id)).agg(sum(df.v)) # groupby one expression and one scalar pandas UDF result7 = df.groupby(df.v % 2, plus_two(df.id)).agg(sum_udf(df.v)).sort('sum(v)') expected7 = df.groupby(df.v % 2, plus_two(df.id)).agg(sum(df.v)).sort('sum(v)') self.assertPandasEqual(expected1.toPandas(), result1.toPandas()) self.assertPandasEqual(expected2.toPandas(), result2.toPandas()) self.assertPandasEqual(expected3.toPandas(), result3.toPandas()) self.assertPandasEqual(expected4.toPandas(), result4.toPandas()) self.assertPandasEqual(expected5.toPandas(), result5.toPandas()) self.assertPandasEqual(expected6.toPandas(), result6.toPandas()) self.assertPandasEqual(expected7.toPandas(), result7.toPandas())
def test_smvTimePanelAgg_with_Week(self): df = self.createDF("k:Integer; ts:String; v:Double", "1,20120301,1.5;" + "1,20120304,4.5;" + "1,20120308,7.5;" + "1,20120309,2.45" ).withColumn("ts", col('ts').smvStrToTimestamp("yyyyMMdd")) import smv.panel as p res = df.smvGroupBy('k').smvTimePanelAgg( 'ts', p.Week(2012, 3, 1), p.Week(2012, 3, 10) )( sum('v').alias('v') ) expect = self.createDF("k: Integer;smvTime: String;v: Double", """1,W20120305,9.95; 1,W20120227,6.0""") self.should_be_same(res, expect)
def test_smvTimePanelAgg(self): df = self.createDF("k:Integer; ts:String; v:Double", """1,20120101,1.5; 1,20120301,4.5; 1,20120701,7.5; 1,20120501,2.45""" ).withColumn("ts", col('ts').smvStrToTimestamp("yyyyMMdd")) import smv.panel as p res = df.smvGroupBy('k').smvTimePanelAgg( 'ts', p.Quarter(2012,1), p.Quarter(2012,2) )( sum('v').alias('v') ) expect = self.createDF("k: Integer;smvTime: String;v: Double", """1,Q201201,6.0; 1,Q201202,2.45""") self.should_be_same(expect, res)
def test_complex_expressions(self): df = self.data plus_one = self.python_plus_one plus_two = self.pandas_scalar_plus_two sum_udf = self.pandas_agg_sum_udf # Test complex expressions with sql expression, python UDF and # group aggregate pandas UDF result1 = (df.withColumn('v1', plus_one(df.v)) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum_udf(col('v')), sum_udf(col('v1') + 3), sum_udf(col('v2')) + 5, plus_one(sum_udf(col('v1'))), sum_udf(plus_one(col('v2')))) .sort('id') .toPandas()) expected1 = (df.withColumn('v1', df.v + 1) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum(col('v')), sum(col('v1') + 3), sum(col('v2')) + 5, plus_one(sum(col('v1'))), sum(plus_one(col('v2')))) .sort('id') .toPandas()) # Test complex expressions with sql expression, scala pandas UDF and # group aggregate pandas UDF result2 = (df.withColumn('v1', plus_one(df.v)) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum_udf(col('v')), sum_udf(col('v1') + 3), sum_udf(col('v2')) + 5, plus_two(sum_udf(col('v1'))), sum_udf(plus_two(col('v2')))) .sort('id') .toPandas()) expected2 = (df.withColumn('v1', df.v + 1) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum(col('v')), sum(col('v1') + 3), sum(col('v2')) + 5, plus_two(sum(col('v1'))), sum(plus_two(col('v2')))) .sort('id') .toPandas()) # Test sequential groupby aggregate result3 = (df.groupby('id') .agg(sum_udf(df.v).alias('v')) .groupby('id') .agg(sum_udf(col('v'))) .sort('id') .toPandas()) expected3 = (df.groupby('id') .agg(sum(df.v).alias('v')) .groupby('id') .agg(sum(col('v'))) .sort('id') .toPandas()) self.assertPandasEqual(expected1, result1) self.assertPandasEqual(expected2, result2) self.assertPandasEqual(expected3, result3)
def run(self, i): df = i[_DEP_NAME_] return df.groupBy(F.col("ST")).agg(F.sum(F.col("EMP")).alias("EMP"))
hbase_rdd = sc.newAPIHadoopRDD(HBaseUtil.inputFormatClass, HBaseUtil.keyClass, HBaseUtil.valueClass, keyConverter=HBaseUtil.keyConv, valueConverter=HBaseUtil.valueConv, conf=HBaseUtil.conf) values = hbase_rdd.values() init_rdd = values.flatMap(lambda x: x.split("\n")).map(lambda x: json.loads(x)) \ .map(lambda x: dp.dict_del(x)) data_frame = sqlContext.read.json(init_rdd) # data_frame.show() # data_frame.printSchema() result = data_frame.groupBy('qualifier').agg( F.min(data_frame.value), F.max(data_frame.value), F.avg(data_frame.value), F.sum(data_frame.value), F.count(data_frame.value)).collect() for x in result: print(x) # valid_rdd = init_rdd.filter( # lambda x: x.get('A1')[0:4] == '0110' and int(x.get('A6')) == 0).cache() # roll_filter_rdd = valid_rdd.filter(lambda x: not x.get('A2') is None).map(lambda x: float(x.get('A2'))).cache() # roll_mean = roll_filter_rdd.mean() # roll_count = roll_filter_rdd.count() # roll_max = roll_filter_rdd.max() # roll_min = roll_filter_rdd.min() # # pitch_filter_rdd = valid_rdd.filter(lambda x: not x.get('A3') is None).map(lambda x: float(x.get('A3'))).cache() # pitch_mean = pitch_filter_rdd.mean() # pitch_count = pitch_filter_rdd.count()
.getOrCreate() #part 1 question 1 df = spark.read.csv(r"C:\Users\pallavi\PycharmProjects\BDP_ICP10\survey.csv", header=True) df.createOrReplaceTempView("Survey") #part 1 question 2 df.write.option("header", "true").csv("spark_survey3.csv") #part 1 question 3 print(df.dropDuplicates().count()) df.groupBy(df.columns)\ .count()\ .where(f.col('count') > 1)\ .select(f.sum('count'))\ .show() #part 1 question 4 spark.sql( "select * from Survey where Gender = 'Male' or Gender = 'M' or Gender='male'" ).createTempView("Table_Male") spark.sql("select * from Survey where Gender = 'Female' or Gender = 'female'" ).createTempView("Table_Female") spark.sql( "select * from Table_Male union select * from Table_Female order by Country " ).show(50) #part 1 question 5 spark.sql("select treatment,count(*) as count from Survey group by treatment" ).show()
def test_complex_expressions(self): df = self.data plus_one = self.python_plus_one plus_two = self.pandas_scalar_plus_two sum_udf = self.pandas_agg_sum_udf # Test complex expressions with sql expression, python UDF and # group aggregate pandas UDF result1 = (df.withColumn('v1', plus_one(df.v)) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum_udf(col('v')), sum_udf(col('v1') + 3), sum_udf(col('v2')) + 5, plus_one(sum_udf(col('v1'))), sum_udf(plus_one(col('v2')))) .sort(['id', '(v % 2)']) .toPandas().sort_values(by=['id', '(v % 2)'])) expected1 = (df.withColumn('v1', df.v + 1) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum(col('v')), sum(col('v1') + 3), sum(col('v2')) + 5, plus_one(sum(col('v1'))), sum(plus_one(col('v2')))) .sort(['id', '(v % 2)']) .toPandas().sort_values(by=['id', '(v % 2)'])) # Test complex expressions with sql expression, scala pandas UDF and # group aggregate pandas UDF result2 = (df.withColumn('v1', plus_one(df.v)) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum_udf(col('v')), sum_udf(col('v1') + 3), sum_udf(col('v2')) + 5, plus_two(sum_udf(col('v1'))), sum_udf(plus_two(col('v2')))) .sort(['id', '(v % 2)']) .toPandas().sort_values(by=['id', '(v % 2)'])) expected2 = (df.withColumn('v1', df.v + 1) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum(col('v')), sum(col('v1') + 3), sum(col('v2')) + 5, plus_two(sum(col('v1'))), sum(plus_two(col('v2')))) .sort(['id', '(v % 2)']) .toPandas().sort_values(by=['id', '(v % 2)'])) # Test sequential groupby aggregate result3 = (df.groupby('id') .agg(sum_udf(df.v).alias('v')) .groupby('id') .agg(sum_udf(col('v'))) .sort('id') .toPandas()) expected3 = (df.groupby('id') .agg(sum(df.v).alias('v')) .groupby('id') .agg(sum(col('v'))) .sort('id') .toPandas()) assert_frame_equal(expected1, result1) assert_frame_equal(expected2, result2) assert_frame_equal(expected3, result3)
from pyspark.sql import SparkSession from pyspark import SparkConf, SparkContext my_spark = SparkSession.builder.getOrCreate() df = my_spark.read.format("com.mongodb.spark.sql.DefaultSource").option( "uri", "mongodb://*****:*****@ec2-54-210-44-189.compute-1.amazonaws.com/test.reviews" ).load() df1 = my_spark.read.format("com.mongodb.spark.sql.DefaultSource").option( "uri", "mongodb://*****:*****@ec2-54-210-44-189.compute-1.amazonaws.com/test.metadata" ).load() df3 = df.groupBy("asin").agg( func.sum("overall").alias("item_sum"), func.count(func.lit(1)).alias("item_counts")) df3 = df3.filter(df3["item_counts"] >= 100) df3 = df3.withColumn("item_avg", func.col("item_sum") / func.col("item_counts")).drop('item_sum') #select from metadata df4 = df1.select("asin", "categories", "title") df5 = df4.join(df3, "asin", "inner").drop("asin") df6 = df5.select("categories", "title", "item_counts", "item_avg", func.explode_outer("categories")) df7 = df6.drop("categories").withColumnRenamed("col", "categories") df9 = df7.select("categories", "title", "item_counts", "item_avg").sort("categories")
#master_regex_one_df = master_regex_one_df.repartition(160) mid_time1 = time.time() print("Number of partitions of master_regex_one_df: {}".format( master_regex_one_df.rdd.getNumPartitions())) master_shrunken_df = master_regex_one_df.where( 'regexes_diff_bool == 1 or core_diff_bool == 1') print("--- %s seconds ---" % (time.time() - mid_time1)) print( 'these two should be these same, the summing of regexes_diff_bool and core_diff_bool:' ) # TEST - these two should be the same (if not 0): print("master:") master_regex_one_df.groupBy("year", "month").agg( f.sum("regexes_diff_bool").alias("num_revs_with_regex_diff"), f.sum("core_diff_bool").alias("num_revs_with_core_diff")).orderBy( master_regex_one_df.year, master_regex_one_df.month).show(n=30) print("filtered:") master_shrunken_df.groupBy("year", "month").agg( f.sum("regexes_diff_bool").alias("num_revs_with_regex_diff"), f.sum("core_diff_bool").alias("num_revs_with_core_diff")).orderBy( master_shrunken_df.year, master_shrunken_df.month).show(n=30) print('\n\n\n') # MASTER #TODO See if we can export the master_regex_one_df file actually #print("Preview master_regex_one_df: ") #master_regex_one_df.orderBy(master_regex_one_df.articleid.asc_nulls_first(), master_regex_one_df.year, master_regex_one_df.month, master_regex_one_df.date_time).show(n=10) #out_filepath_master = "{}/{}_master_{}.tsv".format(args.output_directory,args.output_filename,datetime.utcnow().strftime("%Y-%m-%d_%H-%M-%S"))
# MAGIC - Explore the data to see whether we can use it to produce energy consumption forecasts, and if yes, write code to prepare the data to fit a model on # MAGIC # MAGIC We can start by calculating energy consumption at daily and monthly levels. # MAGIC We can do that by doing separate aggregations and save the datasets separately. Alternatively, we can do roll up aggregations, where we calculate hiearchical subtotals # MAGIC (from left to right). # COMMAND ---------- consumption_df = (consumption_df.selectExpr('to_date(DateTime) AS Date', '*') .selectExpr('year(date) AS Year', 'month(Date) as Month', '*') ) # COMMAND ---------- consumption_rollup_df = (consumption_df.rollup(['Year', 'Month', 'Date', 'LCLid']) # pay attention to the ordering of cols, as aggregations goes left-to-right .agg(f.sum('KWH_half_hour').alias('KWH'), f.countDistinct('LCLid').alias('n_households') ) .orderBy(['Year', 'Month', 'Date', 'LCLid']) ).cache() # COMMAND ---------- # triggering the computation display(consumption_rollup_df) # COMMAND ---------- # we cached the object, so this will be instantaneous: display(consumption_rollup_df)
StructField("name", StringType(), True) ]) names = spark.read.schema(schema).option("sep", " ").csv("./Marvel-Names.txt") lines = spark.read.text("./Marvel-Graph.txt") connections = ( # the first column of each row is the id of a superhero we want to check lines.withColumn("id", func.split(func.col("value"), " ")[0]) # - 1 means exclude the superhero him/herself .withColumn("connections", func.size(func.split(func.col("value"), " ")) - 1).groupBy("id").agg( func.sum("connections").alias("connections"))) minConnectionCount = connections.agg(func.min("connections")).first()[0] # list all heroes who has the least amount of connections mostObscureHeroes = connections.filter( func.col("connections") == minConnectionCount) mostObscureHeroNames = names.join(mostObscureHeroes, "id", "inner") print( f"The following characters have only {minConnectionCount} connection{ '' if minConnectionCount <=1 else 's' }" ) mostObscureHeroNames.select("name").show() # Stop the session
target, F.log1p(F.col(target)))) fitted = gbt.fit(X_train) yhat = (fitted.transform(X_test).withColumn( "prediction", F.expm1(F.col("prediction"))).withColumn( target, F.expm1(F.col(target))).withColumn( 'fiability', 1 - F.abs(F.col(target) - F.col("prediction")) / F.col(target)).withColumn( 'fiability', F.when(F.col("fiability") < 0, 0).otherwise(F.col("fiability")))) print( yhat.select( F.sum(F.col(target) * F.col("fiability")) / F.sum(F.col(target))).show()) eval_ = RegressionEvaluator(labelCol=target, predictionCol="prediction", metricName="rmse") rmse = eval_.evaluate(yhat) print('rmse is %.2f' % rmse) mae = eval_.evaluate(yhat, {eval_.metricName: "mae"}) print('mae is %.2f' % mae) r2 = eval_.evaluate(yhat, {eval_.metricName: "r2"}) print('r2 is %.2f' % r2)
df.createTempView('orders_VW') spark.sql('select * from orders_VW order by order_status desc').show() #-------------------------------------------- #-------------------AGGREGATE---------------- #-------------------------------------------- # list all availale functions , spark-shell can be used for this to print all available apis' # spark-shell # org.apache.spark.sql.functions. from pyspark.sql.functions import sum # check if required df.select(round(sum('order_price'),2)).show() #GROUPBY df.groupBy('Order_id').sum('order_price').show() df.groupBy('Order_id').agg(sum('order_price')).show() df.groupBy('Order_id').agg(sum('order_price').alias('sum_price')).show() # alias not allowed without agg df.groupBy('Order_id').count().show() df.groupBy("department","state").sum("salary","bonus") # to have alias and every function inside agg reuqires column name` df_orderItems.groupBy('Order_id').agg(count('order_id').alias('price_count')).show()
# COMMAND ---------- # TEST from test_helper import Test Test.assertEquals(sizedFirst[0], len(sizedFirst[1]), 'incorrect implementation for sized') # COMMAND ---------- # MAGIC %md # MAGIC Next, you'll need to aggregate the counts. You can do this using `func.sum` in either a `.select` or `.agg` method call on the `DataFrame`. Make sure to give your `Column` the alias `numberOfWords`. There are some examples in [Python](http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.GroupedData.agg) and [Scala](https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame) in the APIs. # COMMAND ---------- # ANSWER numberOfWords = sized.agg(func.sum('size').alias('numberOfWords')) wordCount = numberOfWords.first()[0] print wordCount # COMMAND ---------- # TEST Test.assertEquals(wordCount, 1903220, 'incorrect word count') # COMMAND ---------- # MAGIC %md # MAGIC Next, we'll compute the word count using `select`, the function `func.explode()`, and then taking a `count()` on the `DataFrame`. Make sure to name the column returned by the `explode` function 'word'. # COMMAND ----------
# - daily_usage_aggs # as health: # - as_health_aggs # as sessions: # - as_session_aggs # as clicks: # - as_clicks_aggs # as snippets: # - as_snippets_aggs = get_as_snippets_aggs(message_id=None) # agg fields: main summary usage ------------------ days_used = F.countDistinct(F.col('activity_dt')).alias('days_used') active_hours = F.sum( F.coalesce(F.col('active_ticks'), F.lit(0)) * F.lit(5) / F.lit(3600)).alias('active_hours') uris = F.sum( F.coalesce(F.col('scalar_parent_browser_engagement_total_uri_count'), F.lit(0))).alias('uris') tabs_opened = F.sum( F.coalesce(F.col('scalar_parent_browser_engagement_tab_open_event_count'), F.lit(0))).alias('tabs_opened') windows_opened = F.sum( F.coalesce( F.col('scalar_parent_browser_engagement_window_open_event_count'), F.lit(0))).alias('windows_opened')
# data_c = spark.read.json('channel_base/part*', schema = channel_sch) convertTime = functions.udf(timeToFrame) data_s = spark.read.json('stream_info.json', schema = stream_sch) data_c = spark.read.json('channel_info.json', schema = channel_sch).cache() data_s = data_s.withColumn('time_frame', convertTime(data_s.created_at)).cache() data_s.createOrReplaceTempView('data_s') data_c.createOrReplaceTempView('data_c') game_count_by_time = data_s.groupBy('time_frame', 'game_name').count() game_count_by_time = game_count_by_time.orderBy(game_count_by_time['count'].desc()) view_count_by_time = data_s.groupBy('time_frame', 'game_name').agg(functions.sum('viewers').alias('total_view')) view_count_by_time = view_count_by_time.orderBy(view_count_by_time['total_view'].desc()) game_count_by_time.coalesce(1).write.json('game_count_by_time', mode = 'overwrite') view_count_by_time.coalesce(1).write.json('view_count_by_time', mode = 'overwrite') view_num_by_game = data_c.groupby(data_c['game']).agg(functions.sum(data_c['views']),functions.sum(data_c['followers'])) view_num_by_streamer = data_c\ .select('stream_id','channel_id','game','name','views','followers','created_at','updated_at','partner')\ .orderBy(functions.desc('views'),'game') print(view_num_by_streamer.show(5)) viewcount_by_game = view_num_by_game\
df_vuelos_retraso = df_vuelos_retraso.join(df_pais, df_pais["cod_pais"] == df_vuelos_retraso["origen"], 'inner') df_vuelos_retraso = df_vuelos_retraso.select("vuelo", f.col("pais").alias("origen"), "destino","dias_retraso") df_vuelos_retraso = df_vuelos_retraso.join(df_pais, df_pais["cod_pais"] == df_vuelos_retraso["destino"], 'inner') df_vuelos_retraso = df_vuelos_retraso.select("vuelo", "origen", f.col("pais").alias("destino"),"dias_retraso") print("Retraso Vuelos") print(df_vuelos_retraso.show()) #df_top_dia_retrasos.write.mode("overwrite").saveAsTable("top_dia_retrasos") df_retraso_acumulado = df_join.join(df_vuelos, "vuelo", 'inner') df_retraso_acumulado = df_retraso_acumulado.groupBy('origen', 'dia').sum('dias_retraso') df_retraso_acumulado = df_retraso_acumulado.select("origen","dia",f.col("sum(dias_retraso)").alias("retraso")) window = w.Window.partitionBy(f.col("origen")).orderBy(f.col("retraso")) df_retraso_acumulado = df_retraso_acumulado.withColumn("retraso_acumulado", f.sum("retraso").over(window)) df2 = df_retraso_acumulado.repartition(4) ##testing """ pais_vip = ["Peru", "España", "Mexico"] udf_pais_vip = f.udf(lambda x : "VIP" if x in pais_vip else "NO VIP") df = df_salidas.select(f.col("pais"),f.col("top_salidas"), udf_pais_vip(f.col("pais")).alias("vip")) columns = ["Seqno","Name"] data = [("1", "john jones"), ("2", "tracey smith"), ("3", "amy sanders")] df = spark.createDataFrame(data=data,schema=columns)
duration_udf = udf(lambda start, end: getDuration(start, end)) length_udf = udf(lambda length: convertLength(length)) count_active_udf = udf( lambda duration, length: countForActive(duration, length)) percentage_udf = udf( lambda numActive, numTotal: percentageActive(numActive, numTotal)) content_map = spark.read.csv('../content_mapping.csv', header='true').select('title', 'length') df = spark.read.parquet( './DLT_03_users_device_logs_shifted/*').dropDuplicates().na.drop() df = df.join(content_map, [df.item_name == content_map.title]) df = df.withColumn('duration', duration_udf(df['start_time'], df['end_time'])) df = df.withColumn('length', length_udf(df['length'])) df = df.withColumn('counts_for_active', count_active_udf(df['duration'], df['length'])) df = df.groupBy('device_id', 'month').agg(F.sum('counts_for_active').alias('count')) active = df.filter(df['count'] >= 20) non_active = df.filter(df['count'] < 20) active = active.groupBy('month').agg( F.count('device_id').alias('active')).orderBy('month') non_active = non_active.groupBy('month').agg( F.count('device_id').alias('user_counts')).orderBy('month').selectExpr( 'month as month2', 'user_counts as non_active') all_users = active.join( non_active, [active.month == non_active.month2]).drop('month2').orderBy('month') all_users.coalesce(1).write.parquet('DTL_04_users_by_month')
def test_select_aggregate_dont_preserve_order(self): from pyspark.sql.functions import sum self.shared_test_partition_preserving(lambda df: df.select(sum('forecast')), False)
def count_not_null(c): return sum(col(c).isNotNull().cast("integer")).alias(c)
def count_null(col_name): """ Build up a list of column expressions, one per column. """ return sum(col(col_name).isNull().cast("integer")).alias(col_name)
.master("local[4]")\ .appName("NASA Kennedy Space Center WWW server")\ .config("spark.sql.execution.arrow.enabled", "true")\ .config("spark.memory.fraction", 0.8)\ .config("spark.executor.memory", "1g")\ .config("spark.driver.memory", "1g")\ .getOrCreate() nasaSchema = StructType([StructField("host",StringType(),True),\ StructField("timestamp",StringType(),True),\ StructField("requisicao",StringType(),True),\ StructField("code_http",IntegerType(),True),\ StructField("total_bytes",StringType(),True)]) nasa = spark.createDataFrame(df_nasa, schema=nasaSchema) nasa.select('host').distinct().count().show() nasa.filter(f.col('code_http') == 404).count().show() nasa.groupBy("requisicao").agg(f.count('requisicao').alias('qtd')).sort( f.desc(qtd)).limit(5).show() nasa.withColumn('data', nasa['timestamp'].substr(1, 10)).show() nasa.filter(f.col('code_http') == 404).groupBy('data').agg( f.count('code_http')).show() nasa.filter(f.col('code_http') == 404).groupBy('data').agg( f.sum('total_bytes')).show()
def trioAnalysis(nMax): routed = itens.map(lambda x: (x[0],x[1],(parseResults(closestRoute(x[0],x[1],0,0),"trios")),x[2],x[3])) routed = routed.map(lambda x: (x[0],x[1],x[2],(x[4]-tripDistance(x[2]))*x[3])) print("Calculating optimal routes... (this could take a minute, but let's see you try to give directions to 5.8 million people!)") schemaString = ['ORIGIN_AIRPORT_ID','Dest','Trip','kmSaved'] kmSavedDF=sqlc.createDataFrame(routed,schemaString).groupBy("ORIGIN_AIRPORT_ID").agg(sum("kmSaved").alias("kmSaved")) print("Looking up airport names...") kmSavedDF=kmSavedDF.map(lambda x: Row(Name=getName(x[0]),kmPerDept=(x[1]/getApt(x[0])['depts']),totalDepts=getApt(x[0])['depts'],totalKm = x[1])) kmSavedDF=sqlc.createDataFrame(kmSavedDF,['Name','kmPerDept','totalDepts','totalKm']) print("Saving data...") cwd = os.getcwd() kmSavedDF.write.parquet(cwd+"/FlightData/FlightOptResults.parquet") routes.write.parquet(cwd+"/FlightData/FlightOptRoutes.parquet") itens.write.parquet(cwd+"/FlightData/FlightOptItens.parquet") return kmSavedDF
.option("kafka.bootstrap.servers", "localhost:9092") \ .option("subscribe", "trades") \ .option("startingOffsets", "earliest") \ .load() value_df = kafka_df.select( from_json(col("value").cast("string"), stock_schema).alias("value")) trade_df = value_df.select("value.*") \ .withColumn("CreatedTime", to_timestamp(col("CreatedTime"), "yyyy-MM-dd HH:mm:ss")) \ .withColumn("Buy", expr("case when Type == 'BUY' then Amount else 0 end")) \ .withColumn("Sell", expr("case when Type == 'SELL' then Amount else 0 end")) window_agg_df = trade_df \ .withWatermark("CreatedTime", "30 minute") \ .groupBy(window(col("CreatedTime"), "15 minute")) \ .agg(sum("Buy").alias("TotalBuy"), sum("Sell").alias("TotalSell")) output_df = window_agg_df.select("window.start", "window.end", "TotalBuy", "TotalSell") window_query = output_df.writeStream \ .format("console") \ .outputMode("update") \ .option("checkpointLocation", "chk-point-dir") \ .trigger(processingTime="30 second") \ .start() logger.info("Waiting for Query") window_query.awaitTermination()
def test_mixed_udfs(self): """ Test mixing group aggregate pandas UDF with python UDF and scalar pandas UDF. """ df = self.data plus_one = self.python_plus_one plus_two = self.pandas_scalar_plus_two sum_udf = self.pandas_agg_sum_udf # Mix group aggregate pandas UDF and python UDF result1 = (df.groupby('id') .agg(plus_one(sum_udf(df.v))) .sort('id')) expected1 = (df.groupby('id') .agg(plus_one(sum(df.v))) .sort('id')) # Mix group aggregate pandas UDF and python UDF (order swapped) result2 = (df.groupby('id') .agg(sum_udf(plus_one(df.v))) .sort('id')) expected2 = (df.groupby('id') .agg(sum(plus_one(df.v))) .sort('id')) # Mix group aggregate pandas UDF and scalar pandas UDF result3 = (df.groupby('id') .agg(sum_udf(plus_two(df.v))) .sort('id')) expected3 = (df.groupby('id') .agg(sum(plus_two(df.v))) .sort('id')) # Mix group aggregate pandas UDF and scalar pandas UDF (order swapped) result4 = (df.groupby('id') .agg(plus_two(sum_udf(df.v))) .sort('id')) expected4 = (df.groupby('id') .agg(plus_two(sum(df.v))) .sort('id')) # Wrap group aggregate pandas UDF with two python UDFs and use python UDF in groupby result5 = (df.groupby(plus_one(df.id)) .agg(plus_one(sum_udf(plus_one(df.v)))) .sort('plus_one(id)')) expected5 = (df.groupby(plus_one(df.id)) .agg(plus_one(sum(plus_one(df.v)))) .sort('plus_one(id)')) # Wrap group aggregate pandas UDF with two scala pandas UDF and user scala pandas UDF in # groupby result6 = (df.groupby(plus_two(df.id)) .agg(plus_two(sum_udf(plus_two(df.v)))) .sort('plus_two(id)')) expected6 = (df.groupby(plus_two(df.id)) .agg(plus_two(sum(plus_two(df.v)))) .sort('plus_two(id)')) self.assertPandasEqual(expected1.toPandas(), result1.toPandas()) self.assertPandasEqual(expected2.toPandas(), result2.toPandas()) self.assertPandasEqual(expected3.toPandas(), result3.toPandas()) self.assertPandasEqual(expected4.toPandas(), result4.toPandas()) self.assertPandasEqual(expected5.toPandas(), result5.toPandas()) self.assertPandasEqual(expected6.toPandas(), result6.toPandas())
# +---+--------------------+ # | id| name| # +---+--------------------+ # | 1|24-HOUR MAN/EMMANUEL| # | 2|3-D MAN/CHARLES CHAN| # | 3| 4-D MAN/MERCURIO| # | 4| 8-BALL/| # | 5| A| # +---+--------------------+ lines = spark.read.text('datasets/Marvel-graph.txt') connections = lines.withColumn('id', F.split(F.col('value'), ' ')[0])\ .withColumn('connections', F.size(F.split(F.col('value'), ' ')) - 1)\ .groupby('id')\ .agg(F.sum('connections').alias('connections'))\ .sort('connections', ascending=True) # We get the first from a ordered rank on #connections least_popular = connections.first() least_popular_conn = connections.filter(F.col('connections') == least_popular.connections) least_popular_conn.show() joined = least_popular_conn.join(hero_names, 'id') joined.show() # +----+-----------+--------------------+ # | id|connections| name| # +----+-----------+--------------------+
# 取出特定欄位 statColumn = ['CUSAUNT', 'CARNO', 'STDNO', 'TDATE', 'QTY', 'MILE'] pDf = df.select(statColumn) # 分離日期欄位的年及月至新欄位 tDf = (pDf.withColumn('TDATEYEAR', pDf['TDATE'].substr(1, 4)).withColumn( 'TDATEMONTH', pDf['TDATE'].substr(5, 2)).withColumn('TDATEDAY', pDf['TDATE'].substr(7, 2))) # 刪除不必要欄位 tDf = tDf.drop('TDATE') # groupColumn = [ 'CUSAUNT', 'CARNO', 'STDNO', 'TDATEYEAR', 'TDATEMONTH', 'TDATEDAY' ] sDf = (tDf.groupBy(groupColumn).agg( sum(tDf.QTY.cast('float')).alias('sQty'), sum(tDf.MILE.cast('float')).alias('sMile'), count(tDf.QTY.cast('float')).alias('cTimes')).orderBy(groupColumn)) # # 目的路徑 outputPath = "/home/cpc/data/resultData" # 目的資料 outputFile = "cusauntCarnoYMDsQtysMilecTimes" # 完整路徑和資料 outputFull = outputPath + "/" + outputFile # sDf.toJSON().coalesce(1).saveAsTextFile(outputFull) # # 年度月油品(汽油/柴油)銷售總量 #
# Subtract startTime from endTime to get lifeTime of each revision tScoring = perf_counter() dfScore = dfScore.withColumn( "LiveSeconds", func.when( func.isnull(dfScore.EpochTimestampEnd - dfScore.EpochTimestampStart), dateOfDataDumpInEpochSeconds - dfScore.EpochTimestampStart).otherwise( dfScore.EpochTimestampEnd - dfScore.EpochTimestampStart)) # dfScore.show() # print("Table with Lifetime Calcs ^^^") # Score each contributor based on the average and total life of their revisions contributors = Window.partitionBy("cleanContributor") outDf = dfScore.withColumn("Score-Sum", func.sum("LiveSeconds").over(contributors)) \ .withColumn("Score-Avg", func.avg("LiveSeconds").over(contributors)) \ .withColumn("Score-Count", func.count("LiveSeconds").over(contributors)) \ .select("cleanContributor","Score-Sum","Score-Avg","Score-Count","isRegistered").distinct().orderBy("cleanContributor","Score-Sum","Score-Avg","Score-Count",ascending=False) # numContributors = outDf.count() tScoringEnd = perf_counter() # outDf.show(numContributors,truncate=False) # outDf.show() # print("Total number contributors: ",numContributors) # Write output to Postgresql database dbTableName = "ContributorScores" tWriteDB = perf_counter() url = 'jdbc:postgresql://10.0.0.11:5442/cluster_output' postgresUser = os.environ['POSTGRES_USER'] postgresPass = os.environ['POSTGRES_PASS']
spark = SparkSession.builder.master( "spark://ec2-34-206-0-125.compute-1.amazonaws.com:7077").appName( "amazon-insights").config("spark.executor.memory", "6gb").getOrCreate() sqlContext = SQLContext(spark.sparkContext) departments = [] s3 = boto3.client('s3') response = s3.list_objects_v2(Bucket='amazonreviewsinsight', Delimiter='/') obj = response.get('CommonPrefixes') for obj in response.get('CommonPrefixes'): department = str(obj.get('Prefix')).replace("product_category=", "") departments.append(department) reviews = sqlContext.read.parquet( 's3a://amazonreviewsinsight/product_category=Electronics/part-00000-495c48e6-96d6-4650-aa65-3c36a3516ddd.c000.snappy.parquet' ) reviews = sqlContext.read.parquet( 's3a://amazonreviewsinsight/product_category=' + departments[0]) reviews = reviews.filter(reviews.marketplace == 'US') reviews = reviews.drop('market_place', 'product_id', 'customer_id', 'review_id', 'product_parent', 'vine', 'review_headline') reviews = reviews.groupby('product_title', 'review_date').agg( f.mean('star_rating').alias('avg_star_rating_daily'), f.count('product_title').alias('no_of_purchases'), f.sum('helpful_votes').alias('helpful_votes_in_day'), f.sum('total_votes').alias('total_votes_in_day'), f.collect_list('review_body').alias("daily_text_review")) reviews = reviews.withColumn( "reviews_no_punc", lower(trim(regexp_replace('daily_reviews', '[^A-Za-z0-9 ]+', ''))))
def get_aggregared_sum(self, df, dimension_columns): grouped_data = {} for col in dimension_columns: agg_df = df.groupBy(col).agg(FN.sum(col).alias("count")).toPandas() grouped_data[col] = dict(list(zip(agg_df[col], agg_df["count"]))) return grouped_data
).option('mode', 'DROPMALFORMED').load( "file:///media/alessandro/storage/big_data-primoProgetto/dataset/X1_historical_stocks.csv" ) stock_prices = stock_prices.select('ticker', 'close', 'volume', year("date").alias('year')) stocks = stocks.select('ticker', 'sector') joined = stock_prices.join(stocks, on='ticker') filtered = joined.filter((joined.year <= '2018') & (joined.year >= '2004') & (joined.sector != 'N/A')) intermediate1 = filtered.groupBy('sector', 'year').agg( F.sum(filtered.volume).alias('volCompl'), F.mean(filtered.close).alias('avg_volume')) intermediate1 = intermediate1.sort(F.desc('sector'), F.desc('year')) intermediate2 = filtered.groupBy('sector', 'year').agg( F.sum(filtered.close).alias('actualQuote')) intermediate2 = intermediate2.sort(F.desc('sector'), F.desc('year')) intermediate3 = intermediate2.withColumn( 'previousQuote', F.lead('actualQuote').over( Window.partitionBy('sector').orderBy(F.desc('sector'), F.desc('year'))))
def __call__(self, df, c, by=None, index='_idx', result='_res'): return dataframe.percentiles(df, c, by, self.p, index, result) class typeof: def __call__(self, df, c, by=None, index='_idx', result='_res'): _gcols = [by] if isinstance(by, str) and by else by or [] t = df.select(c).schema.fields[0].dataType.simpleString() return df.select(c, *_gcols).groupby(*_gcols).agg( F.lit(c).alias(index), F.lit(t).alias(result)) df_functions = (typeof, topn, topn_count, topn_values, percentiles) null = lambda c: F.sum(c.isNull().cast('int')) nan = lambda c: F.sum(c.isnan) integer = lambda c: F.coalesce(F.sum((F.rint(c) == c).cast('int')), F.lit(0)) boolean = lambda c: F.coalesce( F.sum((c.cast('boolean') == F.rint(c)).cast('int')), F.lit(0)) zero = lambda c: F.sum((c == 0).cast('int')) empty = lambda c: F.sum((F.length(c) == 0).cast('int')) pos = lambda c: F.sum((c > 0).cast('int')) neg = lambda c: F.sum((c < 0).cast('int')) distinct = lambda c: F.countDistinct(c) one = lambda c: F.first(c, False).cast(T.StringType()) count = F.count sum = F.sum sum_pos = lambda c: F.sum(F.when(c > 0, c))
def main(): glueContext = GlueContext(SparkContext.getOrCreate()) spark = glueContext.spark_session # date_now = datetime.now() # preday = date_now + timedelta(days=-1) # d1 = preday.strftime("%Y%m%d") # print("d1 =", d1) # # now = datetime.now() # current date and time # year = now.strftime("%Y%m%d") # print("year:", year) dyf_mapping_lo_student_history = glueContext.create_dynamic_frame.from_catalog( database="nvn_knowledge", table_name="mapping_lo_student_history" ) print('Count:', dyf_mapping_lo_student_history.count()) # # Filter nhung ban ghi cua ngay hom truoc, filter nhung ban ghi co diem != 0 # dyf_mapping_lo_student_history = Filter.apply(frame=dyf_mapping_lo_student_history, f=lambda x: x['date_id'] is not None) dyf_mapping_lo_student_history = Filter.apply(frame=dyf_mapping_lo_student_history, f=lambda x: x['date_id'] is not None and (x['knowledge'] != 0 or x['comprehension'] != 0 or x[ 'application'] != 0 or x['analysis'] != 0 or x[ 'synthesis'] != 0 or x['evaluation'] != 0)) if dyf_mapping_lo_student_history.count() > 0: print('START JOB---------------') df_mapping_lo_student_history = dyf_mapping_lo_student_history.toDF() df_mapping_lo_student_history = df_mapping_lo_student_history.groupby('date_id', 'student_id', 'learning_object_id').agg( f.sum("knowledge").alias("knowledge"), f.sum("comprehension").alias("comprehension"), f.sum("application").alias("application"), f.sum("analysis").alias("analysis"), f.sum("synthesis").alias("synthesis"), f.sum("evaluation").alias("evaluation")) df_mapping_lo_student_history.printSchema() df_mapping_lo_student_history.show() print('END JOB---------------') dyf_mapping_lo_student_used = DynamicFrame.fromDF(df_mapping_lo_student_history, glueContext, "dyf_student_lo_init") # print('COUNT:', dyf_student_lo_init.count()) # dyf_student_lo_init.printSchema() # dyf_student_lo_init.show() dyf_mapping_lo_student_used = ApplyMapping.apply(frame=dyf_mapping_lo_student_used, mappings=[("student_id", "long", "student_id", "long"), ("learning_object_id", "long", "learning_object_id", "long"), ("date_id", "int", "date_id", "long"), ("knowledge", 'long', 'knowledge', 'long'), ("comprehension", 'long', 'comprehension', 'long'), ("application", 'long', 'application', 'long'), ("analysis", 'long', 'analysis', 'long'), ("synthesis", 'long', 'synthesis', 'long'), ("evaluation", 'long', 'evaluation', 'long')]) dyf_mapping_lo_student_used = ResolveChoice.apply(frame=dyf_mapping_lo_student_used, choice="make_cols", transformation_ctx="resolvechoice2") dyf_mapping_lo_student_used = DropNullFields.apply(frame=dyf_mapping_lo_student_used, transformation_ctx="dyf_mapping_lo_student_used") datasink5 = glueContext.write_dynamic_frame.from_jdbc_conf(frame=dyf_mapping_lo_student_used, catalog_connection="glue_redshift", connection_options={ "dbtable": "mapping_lo_student_used", "database": "dts_odin", "postactions": """ call proc_insert_tbhv(); INSERT INTO mapping_lo_student_history SELECT * FROM mapping_lo_student_used; DROP TABLE IF EXISTS mapping_lo_student_used """ }, redshift_tmp_dir="s3n://dts-odin/temp1/dyf_student_lo_init", transformation_ctx="datasink5")
def AggFunctions(df, cols): org_window = Window.partitionBy(F.col("latitude"), F.col("longitude")).orderBy( F.col("date").asc()) windowSpec = org_window.rowsBetween(-7, 0) for idx, col in enumerate(cols): df = df.withColumn(col + "_mean_7_days", F.avg(F.col(col)).over(windowSpec)) df = df.withColumn( col + "_max_7_days", F.max(F.col(col)).over(windowSpec.rowsBetween(-7, 0))) df = df.withColumn( col + "_min_7_days", F.min(F.col(col)).over(windowSpec.rowsBetween(-7, 0))) df = df.withColumn( col + "_cummalitive_7_days", F.sum(F.col(col)).over(windowSpec.rowsBetween(-7, 0))) df = df.withColumn( col + "_std_7_days", F.stddev(F.col(col)).over(windowSpec.rowsBetween(-7, 0))) windowSpec = org_window.rowsBetween(-14, 0) for idx, col in enumerate(cols): df = df.withColumn( col + "_mean_14_days", F.avg(F.col(col)).over(windowSpec.rowsBetween(-14, 0))) df = df.withColumn( col + "_max_14_days", F.max(F.col(col)).over(windowSpec.rowsBetween(-14, 0))) df = df.withColumn( col + "_min_14_days", F.min(F.col(col)).over(windowSpec.rowsBetween(-14, 0))) df = df.withColumn( col + "_cummalitive_14_days", F.sum(F.col(col)).over(windowSpec.rowsBetween(-14, 0))) df = df.withColumn( col + "_std_14_days", F.stddev(F.col(col)).over(windowSpec.rowsBetween(-14, 0))) windowSpec = org_window.rowsBetween(-30, 0) for idx, col in enumerate(cols): df = df.withColumn( col + "_mean_30_days", F.avg(F.col(col)).over(windowSpec.rowsBetween(-30, 0))) df = df.withColumn( col + "_max_30_days", F.max(F.col(col)).over(windowSpec.rowsBetween(-30, 0))) df = df.withColumn( col + "_min_30_days", F.min(F.col(col)).over(windowSpec.rowsBetween(-30, 0))) df = df.withColumn( col + "_cummalitive_30_days", F.sum(F.col(col)).over(windowSpec.rowsBetween(-30, 0))) df = df.withColumn( col + "_std_30_days", F.stddev(F.col(col)).over(windowSpec.rowsBetween(-30, 0))) windowSpec = org_window.rowsBetween(-60, 0) for idx, col in enumerate(cols): df = df.withColumn( col + "_mean_60_days", F.avg(F.col(col)).over(windowSpec.rowsBetween(-60, 0))) df = df.withColumn( col + "_max_60_days", F.max(F.col(col)).over(windowSpec.rowsBetween(-60, 0))) df = df.withColumn( col + "_min_60_days", F.min(F.col(col)).over(windowSpec.rowsBetween(-60, 0))) df = df.withColumn( col + "_cummalitive_60_days", F.sum(F.col(col)).over(windowSpec.rowsBetween(-60, 0))) df = df.withColumn( col + "_std_60_days", F.stddev(F.col(col)).over(windowSpec.rowsBetween(-60, 0))) windowSpec = org_window.rowsBetween(-90, 0) for idx, col in enumerate(cols): df = df.withColumn( col + "_mean_90_days", F.avg(F.col(col)).over(windowSpec.rowsBetween(-90, 0))) df = df.withColumn( col + "_max_90_days", F.max(F.col(col)).over(windowSpec.rowsBetween(-90, 0))) df = df.withColumn( col + "_min_90_days", F.min(F.col(col)).over(windowSpec.rowsBetween(-90, 0))) df = df.withColumn( col + "_cummalitive_90_days", F.sum(F.col(col)).over(windowSpec.rowsBetween(-90, 0))) df = df.withColumn( col + "_std_90_days", F.stddev(F.col(col)).over(windowSpec.rowsBetween(-90, 0))) windowSpec = org_window.rowsBetween(-180, 0) for idx, col in enumerate(cols): df = df.withColumn( col + "_mean_6_months", F.avg(F.col(col)).over(windowSpec.rowsBetween(-180, 0))) df = df.withColumn( col + "_max_6_months", F.max(F.col(col)).over(windowSpec.rowsBetween(-180, 0))) df = df.withColumn( col + "_min_6_months", F.min(F.col(col)).over(windowSpec.rowsBetween(-180, 0))) df = df.withColumn( col + "_cummalitive_6_months", F.sum(F.col(col)).over(windowSpec.rowsBetween(-180, 0))) df = df.withColumn( col + "_std_6_months", F.stddev(F.col(col)).over(windowSpec.rowsBetween(-180, 0))) windowSpec = org_window.rowsBetween(-365, 0) for idx, col in enumerate(cols): df = df.withColumn( col + "_mean_1_year", F.avg(F.col(col)).over(windowSpec.rowsBetween(-365, 0))) df = df.withColumn( col + "_max_1_year", F.max(F.col(col)).over(windowSpec.rowsBetween(-365, 0))) df = df.withColumn( col + "_min_1_year", F.min(F.col(col)).over(windowSpec.rowsBetween(-365, 0))) df = df.withColumn( col + "_cummalitive_1_year", F.sum(F.col(col)).over(windowSpec.rowsBetween(-365, 0))) df = df.withColumn( col + "_std_1_year", F.stddev(F.col(col)).over(windowSpec.rowsBetween(-365, 0))) return df
, (F.log10(t_num / words_df.df ) * words_tf.tf ).alias("tf_idf") ) # 6. cache the TFIDF data framework for further usage tokensWithTfIdf.cache() return tokensWithTfIdf def search_words (query , N ,TFIDF, df): # 1. split the query to words query_lst = set(query.lower().split()) # 2. calculate the number of words in query q_n = len(query_lst) # 3. search for query words in TFIDF and aggregate base on each document # to summerize tf_idf and calculate the frequency of query words in each document search = TFIDF.filter(TFIDF.token.isin(query_lst)).groupby(TFIDF._id)\ .agg(F.sum("tf_idf").alias("sum_tf_idf"), F.count("tf_idf").alias('freq')) # 4. the score is calculated by multiplying sum_tf_idf to frequency of query words in document # and dividing it to the number of words in query # in last step, order the results by highest scores and get N top of them as output search = search.select((search._id).alias("id") , (search.sum_tf_idf * search.freq / q_n).alias('scores'))\ .orderBy("scores", ascending =False).limit(N) # 5. In the end, join the search output with original data framework to fetch text_entry # and select _id , rounded score (3 decimal) and text_entry as result of search search = search.join(df, df._id == search.id).select(search.id, F.bround(search.scores,3), "text_entry").orderBy("scores", ascending =False) return search.collect() def print_result (query ,result):
def test_mixed_udfs(self): """ Test mixing group aggregate pandas UDF with python UDF and scalar pandas UDF. """ df = self.data plus_one = self.python_plus_one plus_two = self.pandas_scalar_plus_two sum_udf = self.pandas_agg_sum_udf # Mix group aggregate pandas UDF and python UDF result1 = (df.groupby('id') .agg(plus_one(sum_udf(df.v))) .sort('id')) expected1 = (df.groupby('id') .agg(plus_one(sum(df.v))) .sort('id')) # Mix group aggregate pandas UDF and python UDF (order swapped) result2 = (df.groupby('id') .agg(sum_udf(plus_one(df.v))) .sort('id')) expected2 = (df.groupby('id') .agg(sum(plus_one(df.v))) .sort('id')) # Mix group aggregate pandas UDF and scalar pandas UDF result3 = (df.groupby('id') .agg(sum_udf(plus_two(df.v))) .sort('id')) expected3 = (df.groupby('id') .agg(sum(plus_two(df.v))) .sort('id')) # Mix group aggregate pandas UDF and scalar pandas UDF (order swapped) result4 = (df.groupby('id') .agg(plus_two(sum_udf(df.v))) .sort('id')) expected4 = (df.groupby('id') .agg(plus_two(sum(df.v))) .sort('id')) # Wrap group aggregate pandas UDF with two python UDFs and use python UDF in groupby result5 = (df.groupby(plus_one(df.id)) .agg(plus_one(sum_udf(plus_one(df.v)))) .sort('plus_one(id)')) expected5 = (df.groupby(plus_one(df.id)) .agg(plus_one(sum(plus_one(df.v)))) .sort('plus_one(id)')) # Wrap group aggregate pandas UDF with two scala pandas UDF and user scala pandas UDF in # groupby result6 = (df.groupby(plus_two(df.id)) .agg(plus_two(sum_udf(plus_two(df.v)))) .sort('plus_two(id)')) expected6 = (df.groupby(plus_two(df.id)) .agg(plus_two(sum(plus_two(df.v)))) .sort('plus_two(id)')) assert_frame_equal(expected1.toPandas(), result1.toPandas()) assert_frame_equal(expected2.toPandas(), result2.toPandas()) assert_frame_equal(expected3.toPandas(), result3.toPandas()) assert_frame_equal(expected4.toPandas(), result4.toPandas()) assert_frame_equal(expected5.toPandas(), result5.toPandas()) assert_frame_equal(expected6.toPandas(), result6.toPandas())
timegroup_pvs=Vectors.sparse(maxInd,[(intervalIndDict[(weekday,hour)],pageviews)]) timegroup_visit=Vectors.sparse(maxInd,[(intervalIndDict[(weekday,hour)],1.)]) return Row(browser=browser,a_user_key=a_user_key,age=age,\ day=day,hour=hour,date=date,weekday=weekday,pv=pageviews,\ pv_nh=pageview_nothome,pv_bet=pageview_betalt,referrer=referrer,\ device=device,gender=gender,days_since_registration=days_since_registration,\ reg_date=reg_date,timegroup_pvs=timegroup_pvs,timegroup_visit=timegroup_visit,\ a_virtual=a_virtual) if __name__ == "__main__": print(intervalIndDict) conf=SparkConf().setAppName('konsumprofiler').setMaster("local[8]").set('spark.app.id','200') sc=SparkContext(conf=conf) sqlContext = SQLContext(sc) period=2. #2 weeks of data konsum=sc.textFile('/home/erlenda/data/konsum/amedia_mainsite_20151124-20151207_15145.tsv').map(parseEntry) konsum_reg_user=konsum.filter(lambda x:(x.a_user_key!='NAN') and (x.a_user_key!='') ) konsum_user=sqlContext.createDataFrame(konsum_reg_user) pprint(konsum_user.take(5)) tt=konsum_user.groupBy('a_user_key').agg(sqlfuncs.sum('timegroup_pvs')) pprint(tt.take(5))
numPartitions = 32 rdd1 = RandomRDDs.normalVectorRDD(spark, nRow, nCol, numPartitions, seed) seed = 3 rdd2 = RandomRDDs.normalVectorRDD(spark, nRow, nCol, numPartitions, seed) sc = spark.sparkContext # convert each tuple in the rdd to a row randomNumberRdd1 = rdd1.map( lambda x: Row(A=float(x[0]), B=float(x[1]), C=float(x[2]), D=float(x[3]))) randomNumberRdd2 = rdd2.map( lambda x: Row(E=float(x[0]), F=float(x[1]), G=float(x[2]), H=float(x[3]))) # create dataframe from rdd schemaRandomNumberDF1 = spark.createDataFrame(randomNumberRdd1) schemaRandomNumberDF2 = spark.createDataFrame(randomNumberRdd2) # cache the dataframe #schemaRandomNumberDF.cache() cross_df = schemaRandomNumberDF1.crossJoin(schemaRandomNumberDF2) # cache the dataframe cross_df.cache() # aggregate results = cross_df.groupBy("A").agg(func.max("B"), func.sum("C")) results.show(n=100) print "----------Count in cross-join--------------- {0}".format( cross_df.count())
def count_null(col_name): return sum(col(col_name).isNull().cast('integer')).alias(col_name)
df.show() """# Aggregate each <window_minutes> window to compute: - average number of people detected - average group size - average velocity """ # seconds = window_minutes * 60 window_str = '{} minutes'.format(window_minutes) agg_df = ( df.groupBy( window('timestamp', windowDuration=window_str, slideDuration=window_str)).agg( F.sum('num_people'), F.sum('num_groups'), F.sum('sum_velocities'), F.sum('num_velocities'), avg('num_people'), collect_list('x_centers'), collect_list('y_centers')).withColumn( 'avg_group_size', avg_udf(struct('sum(num_people)', 'sum(num_groups)'))).withColumn( 'avg_velocity', avg_udf( struct('sum(sum_velocities)', 'sum(num_velocities)'))). withColumnRenamed( 'avg(num_people)', 'avg_num_people').withColumn( 'x_centers', flattenUdf('collect_list(x_centers)')).withColumn( 'y_centers', flattenUdf('collect_list(y_centers)')).drop(