def setUp(self): self.n = 50000 self.B = poisson.poisson1d(self.n).to_csr() self.b = numpy.zeros(self.n, 'd') self.x = numpy.zeros(self.n, 'd') self.x_exact = numpy.ones(self.n, 'd') self.x_exact /= math.sqrt(self.n) self.B.matvec(self.x_exact, self.b) lmbd_min = 4.0 * math.sin(math.pi/2.0/self.n) ** 2 lmbd_max = 4.0 * math.sin((self.n - 1)*math.pi/2.0/self.n) ** 2 cond = lmbd_max/lmbd_min self.tol = cond * macheps()
def setUp(self): import numpy self.n = 30 self.P = poisson.poisson1d(self.n) for i in range(self.n): self.P[i,i] = 4.0 self.A = poisson.poisson2d(self.n) self.S = poisson.poisson2d_sym(self.n) self.I = spmatrix.ll_mat_sym(self.n) for i in range(self.n): self.I[i,i] = -1.0 self.mask = numpy.zeros(self.n**2, 'l') self.mask[self.n/2*self.n:(self.n/2 + 1)*self.n] = 1 self.mask1 = numpy.zeros(self.n**2, 'l') self.mask1[(self.n/2 + 1)*self.n:(self.n/2 + 2)*self.n] = 1
def setUp(self): self.n = 50000 self.B = PysparseMatrix( matrix=poisson.poisson1d(self.n) ) self.x_exact = numpy.ones(self.n)/math.sqrt(self.n) self.normx = 1.0/math.sqrt(self.n) self.b = self.B * self.x_exact lmbd_min = 4.0 * math.sin(math.pi/2.0/self.n) ** 2 lmbd_max = 4.0 * math.sin((self.n - 1)*math.pi/2.0/self.n) ** 2 cond = lmbd_max/lmbd_min self.tol = cond * macheps() self.relerr = 0.0 self.nnz = self.B.getNnz() self.LU = None self.fmt = '\t%8.2e %8.2e %8d %8d %8d %6.2f %6.2f\n'
def testSubmatrix(self): n = self.n Psym = poisson.poisson1d_sym(n) P = poisson.poisson1d(n) for i in range(n): P[i,i] = 4.0 Psym[i,i] = 4.0 # read and test diagonal blocks for i in range(n): self.failUnless(llmat_isEqual(self.A[n*i:n*(i+1),n*i:n*(i+1)], P)) self.failUnless(llmat_isEqual(self.S[n*i:n*(i+1),n*i:n*(i+1)], P)) self.failUnless(llmat_isEqual(self.A[n*i:n*(i+1),n*i:n*(i+1)], Psym)) self.failUnless(llmat_isEqual(self.S[n*i:n*(i+1),n*i:n*(i+1)], Psym)) # store and get diagonal blocks R = spmatrix_util.ll_mat_rand(n*n, n*n, 0.01) # random matrix for i in range(n): R[n*i:n*(i+1),n*i:n*(i+1)] = P self.failUnless(llmat_isEqual(R[n*i:n*(i+1),n*i:n*(i+1)], P)) R[n*i:n*(i+1),n*i:n*(i+1)] = Psym self.failUnless(llmat_isEqual(R[n*i:n*(i+1),n*i:n*(i+1)], Psym)) # store and get off-diagonal blocks for i in range(n-1): R[n*i:n*(i+1),n*(i+1):n*(i+2)] = P self.failUnless(llmat_isEqual(R[n*i:n*(i+1),n*(i+1):n*(i+2)], P)) R[n*i:n*(i+1),n*(i+1):n*(i+2)] = Psym self.failUnless(llmat_isEqual(R[n*i:n*(i+1),n*(i+1):n*(i+2)], Psym)) # store and get diagonal blocks in symmetric matrix R = spmatrix.ll_mat_sym(n*n) for i in range(n): R[n*i:n*(i+1),n*i:n*(i+1)] = Psym self.failUnless(llmat_isEqual(R[n*i:n*(i+1),n*i:n*(i+1)], Psym)) # store and get off-diagonal blocks in symmetric matrix for i in range(n-1): R[n*(i+1):n*(i+2),n*i:n*(i+1)] = P self.failUnless(llmat_isEqual(R[n*(i+1):n*(i+2),n*i:n*(i+1)], P)) R[n*(i+1):n*(i+2),n*i:n*(i+1)] = Psym self.failUnless(llmat_isEqual(R[n*(i+1):n*(i+2),n*i:n*(i+1)], Psym))
def testNormGeneral(self): A = poisson.poisson2d(self.n) self.failUnless(A.norm('1') == 8) self.failUnless(A.norm('inf') == 8) self.failUnless(poisson.poisson1d(3).norm('fro') == 4)