示例#1
0
def make_cube(files=(file_nh311_dr1, file_nh322_dr1),
              rms_files=(file_rms_nh311_dr1, file_rms_nh322_dr1)):
    """
    Opens the cube and calculates all the pre-fitting attributes of interest.
    """
    # make sure we're working on arrays (why?)
    files = np.atleast_1d([f for f in files])
    rms_files = np.atleast_1d([f for f in rms_files])

    if files.size > 1:
        spc_dict = {f: pyspeckit.Cube(f) for f in files}
        rmsmaps = {f: fits.getdata(ef) for f, ef in zip(files, rms_files)}
        for f in files:
            spc_dict[f].errorcube = np.repeat([rmsmaps[f]],
                                              spc_dict[f].xarr.size,
                                              axis=0)
        # now the errorcubes should merge automatically
        spc = pyspeckit.CubeStack([spc_dict[f] for f in files])
        spc.xarr.refX = spc.cubelist[0].xarr.refX
        spc.xarr.refX_unit = spc.cubelist[0].xarr.refX_unit
    else:
        spc = pyspeckit.Cube(files[0])
        rms = fits.getdata(rms_files[0])
        # easier to handle everything get_spectrum-related
        spc.errorcube = np.repeat([rms], spc.xarr.size, axis=0)

    # I don't see a reason why errorcube should be a masked array
    if type(spc.errorcube) == np.ma.MaskedArray:
        spc.errorcube = np.array(spc.errorcube)

    spc.xarr.velocity_convention = 'radio'
    spc.xarr.convert_to_unit('km/s')

    snr = (spc.cube / spc.errorcube).max(axis=0)

    # TODO: fix multinest-pipeline.py and run_multicube.py
    #spc.errmap = rms
    spc.snrmap = snr

    return spc
def get_subregion_pcube(cube303m, cube303, cube321, region):
    #scube = cube_merge_high.subcube_from_ds9region(pyregion.ShapeList([region]))
    scube303m = cube303m.subcube_from_ds9region(pyregion.ShapeList([region]))
    scube303 = cube303.subcube_from_ds9region(pyregion.ShapeList([region]))
    scube321 = cube321.subcube_from_ds9region(pyregion.ShapeList([region]))
    # TODO: get error map
    #pcube = pyspeckit.Cube(cube=scube)
    pcube303 = pyspeckit.Cube(cube=scube303)
    pcube303.xarr.refX = cube303.wcs.wcs.restfrq
    pcube303.xarr.refX_unit = 'Hz'
    pcube321 = pyspeckit.Cube(cube=scube321)
    pcube321.xarr.refX = cube321.wcs.wcs.restfrq
    pcube321.xarr.refX_unit = 'Hz'
    pcube = pyspeckit.CubeStack([
        pcube303,
        pcube321,
    ])
    pcube.specfit.Registry.add_fitter('h2co_simple',
                                      simple_fitter3,
                                      4,
                                      multisingle='multi')
    pcube.xarr.refX = cube303m.wcs.wcs.restfrq
    pcube.xarr.refX_unit = 'Hz'
    return pcube, scube303m
示例#3
0
# essentially the same, but you could use a different error map for each
# frequency
oneonemomentfn = '11_err_mosaic.fits'
errmap11 = (
    pyfits.getdata(oneonemomentfn).squeeze() * 13.6 *
    (300.0 /
     (pyspeckit.spectrum.models.ammonia.freq_dict['oneone'] / 1e9))**2 * 1. /
    cube11.header.get('BMAJ') / 3600. * 1. / cube11.header.get('BMIN') / 3600.)
# Interpolate errors across NaN pixels
errmap11[errmap11 != errmap11] = convolve_fft(
    errmap11, Gaussian2DKernel(3),
    nan_treatment='interpolate')[errmap11 != errmap11]

# Stack the cubes into one big cube.  The X-axis is no longer linear: there
# will be jumps from 1-1 to 2-2 to 4-4.
cubes = pyspeckit.CubeStack([cube11, cube22, cube44], maskmap=mask)
cubes.unit = "K"

# Make a "moment map" to contain the initial guesses
# If you've already fit the cube, just re-load the saved version
if os.path.exists('mosaic_momentcube.fits'):
    momentcubefile = pyfits.open('mosaic_momentcube.fits')
    momentcube = momentcubefile[0].data
else:
    cube11.mapplot()
    # compute the moment at each pixel
    cube11.momenteach()
    momentcube = cube11.momentcube
    momentcubefile = pyfits.PrimaryHDU(data=momentcube, header=cube11.header)
if astropy.version.major >= 2 or (astropy.version.major == 1
                                  and astropy.version.minor >= 3):
def hmm1_cubefit(vmin=3.4,
                 vmax=5.0,
                 tk_ave=10.,
                 do_plot=False,
                 snr_min=5.0,
                 multicore=1,
                 do_thin=False):
    """
    Fit NH3(1,1) and (2,2) cubes for H-MM1.
    It fits all pixels with SNR larger than requested. 
    Initial guess is based on moment maps and neighboring pixels. 
    The fitting can be done in parallel mode using several cores, 
    however, this is dangerous for large regions, where using a 
    good initial guess is important. 
    It stores the result in a FITS cube. 

    TODO:
    -convert FITS cube into several FITS files
    -Improve initial guess
    
    Parameters
    ----------
    vmin : numpy.float
        Minimum centroid velocity to plot, in km/s.
    vmax : numpy.float
        Maximum centroid velocity to plot, in km/s.
    tk_ave : numpy.float
        Mean kinetic temperature of the region, in K.
    do_plot : bool
        If True, then a map of the region to map is shown.
    snr_min : numpy.float
        Minimum signal to noise ratio of the spectrum to be fitted.
    multicore : int
        Numbers of cores to use for parallel processing. 
    """

    cube11sc = SpectralCube.read(OneOneFile)
    cube22sc = SpectralCube.read(TwoTwoFile)
    cube11_v = cube11sc.with_spectral_unit(u.km / u.s,
                                           velocity_convention='radio',
                                           rest_value=freq11)
    cube22_v = cube22sc.with_spectral_unit(u.km / u.s,
                                           velocity_convention='radio',
                                           rest_value=freq22)
    from pyspeckit.spectrum.units import SpectroscopicAxis
    spec11 = SpectroscopicAxis(cube11_v.spectral_axis,
                               refX=freq11,
                               velocity_convention='radio')
    spec22 = SpectroscopicAxis(cube22_v.spectral_axis,
                               refX=freq22,
                               velocity_convention='radio')

    errmap11 = fits.getdata(RMSFile_11)
    errmap22 = fits.getdata(RMSFile_22)
    errmap_K = errmap11  #[errmap11, errmap22]
    Tpeak11 = fits.getdata(OneOnePeak)

    moment1 = fits.getdata(OneOneMom1)
    moment2 = (fits.getdata(OneOneMom2))**0.5

    snr = cube11sc.filled_data[:].value / errmap11
    peaksnr = Tpeak11 / errmap11

    planemask = (peaksnr > snr_min)  # *(errmap11 < 0.15)
    planemask = remove_small_objects(planemask, min_size=40)
    planemask = opening(planemask, disk(1))
    #planemask = (peaksnr>20) * (errmap11 < 0.2)

    mask = (snr > 3) * planemask

    maskcube = cube11sc.with_mask(mask.astype(bool))
    maskcube = maskcube.with_spectral_unit(u.km / u.s,
                                           velocity_convention='radio')
    slab = maskcube.spectral_slab(vmax * u.km / u.s, vmin * u.km / u.s)
    w11 = slab.moment(order=0, axis=0).value
    peakloc = np.nanargmax(w11)
    ymax, xmax = np.unravel_index(peakloc, w11.shape)

    moment2[np.isnan(moment2)] = 0.2
    moment2[moment2 < 0.2] = 0.2

    ## Load FITS files
    cube11 = pyspeckit.Cube(OneOneFile, maskmap=planemask)
    cube22 = pyspeckit.Cube(TwoTwoFile, maskmap=planemask)
    # Stack files
    cubes = pyspeckit.CubeStack([cube11, cube22], maskmap=planemask)
    cubes.unit = "K"
    # Define initial guess
    guesses = np.zeros((6, ) + cubes.cube.shape[1:])
    moment1[moment1 < vmin] = vmin + 0.2
    moment1[moment1 > vmax] = vmax - 0.2
    guesses[0, :, :] = tk_ave  # Kinetic temperature
    guesses[1, :, :] = 7  # Excitation  Temp
    guesses[2, :, :] = 14.5  # log(column)
    guesses[
        3, :, :] = moment2  # Line width / 5 (the NH3 moment overestimates linewidth)
    guesses[4, :, :] = moment1  # Line centroid
    guesses[5, :, :] = 0.5  # F(ortho) - ortho NH3 fraction (fixed)
    if do_plot:
        import matplotlib.pyplot as plt
        plt.imshow(w11 * planemask, origin='lower')
        plt.show()
    print('start fit')
    cubes.specfit.Registry.add_fitter('cold_ammonia',
                                      ammonia.cold_ammonia_model(), 6)
    if do_thin:
        file_out = "{0}H-MM1_cold_parameter_maps_snr{1}_thin_v1.fits".format(
            fit_dir, snr_min)
    else:
        file_out = "{0}H-MM1_cold_parameter_maps_snr{1}_thick_v1.fits".format(
            fit_dir, snr_min)
    cubes.fiteach(fittype='cold_ammonia',
                  guesses=guesses,
                  integral=False,
                  verbose_level=3,
                  fixed=[do_thin, False, False, False, False, True],
                  signal_cut=2,
                  limitedmax=[True, False, False, False, True, True],
                  maxpars=[20, 15, 20, 0.4, vmax, 1],
                  limitedmin=[True, True, True, True, True, True],
                  minpars=[5, 2.8, 12.0, 0.05, vmin, 0],
                  start_from_point=(xmax, ymax),
                  use_neighbor_as_guess=True,
                  position_order=1 / peaksnr,
                  errmap=errmap_K,
                  multicore=multicore)
    # Store fits into FITS cube
    fitcubefile = fits.PrimaryHDU(data=np.concatenate(
        [cubes.parcube, cubes.errcube]),
                                  header=cubes.header)
    fitcubefile.header.set('PLANE1', 'TKIN')
    fitcubefile.header.set('PLANE2', 'TEX')
    fitcubefile.header.set('PLANE3', 'COLUMN')
    fitcubefile.header.set('PLANE4', 'SIGMA')
    fitcubefile.header.set('PLANE5', 'VELOCITY')
    fitcubefile.header.set('PLANE6', 'FORTHO')
    fitcubefile.header.set('PLANE7', 'eTKIN')
    fitcubefile.header.set('PLANE8', 'eTEX')
    fitcubefile.header.set('PLANE9', 'eCOLUMN')
    fitcubefile.header.set('PLANE10', 'eSIGMA')
    fitcubefile.header.set('PLANE11', 'eVELOCITY')
    fitcubefile.header.set('PLANE12', 'eFORTHO')
    fitcubefile.header.set('CDELT3', 1)
    fitcubefile.header.set('CTYPE3', 'FITPAR')
    fitcubefile.header.set('CRVAL3', 0)
    fitcubefile.header.set('CRPIX3', 1)
    fitcubefile.writeto(file_out, overwrite=True)
示例#5
0
def cubefit(region='NGC1333', blorder=1, vmin=5, vmax=15, do_plot=False, 
            snr_min=5.0, multicore=1, file_extension=None, mask_function = None, gauss_fit=False):
    """
    Fit NH3(1,1) and (2,2) cubes for the requested region. 
    It fits all pixels with SNR larger than requested. 
    Initial guess is based on moment maps and neighboring pixels. 
    The fitting can be done in parallel mode using several cores, 
    however, this is dangerous for large regions, where using a 
    good initial guess is important. 
    It stores the result in a FITS cube. 

    TODO:
    -Improve initial guess
    
    Parameters
    ----------
    region : str
        Name of region to reduce
    blorder : int
        order of baseline removed
    vmin : numpy.float
        Minimum centroid velocity to plot, in km/s.
    vmax : numpy.float
        Maximum centroid velocity to plot, in km/s.
    do_plot : bool
        If True, then a map of the region to map is shown.
    snr_min : numpy.float
        Minimum signal to noise ratio of the spectrum to be fitted.
    multicore : int
        Numbers of cores to use for parallel processing.
    file_extension : str
        File extension of the input maps. Default is 'base#' where # is the 
        blorder parameter above.
    mask_function : fun
        function to create a custom made mask for analysis. Defaults to using 
        `default_masking`
    """
    if file_extension:
        root = file_extension
    else:
        # root = 'base{0}'.format(blorder)
        root = 'all'

    OneOneIntegrated = '{0}/{0}_NH3_11_{1}_mom0.fits'.format(region,root)
    OneOneFile = '{0}/{0}_NH3_11_{1}.fits'.format(region,root)
    RMSFile = '{0}/{0}_NH3_11_{1}_rms.fits'.format(region,root)
    TwoTwoFile = '{0}/{0}_NH3_22_{1}.fits'.format(region,root)
    ThreeThreeFile = '{0}/{0}_NH3_33_{1}.fits'.format(region,root)
        
    cube11sc = SpectralCube.read(OneOneFile)
    cube22sc = SpectralCube.read(TwoTwoFile)
    errmap11 = fits.getdata(RMSFile)
    rms = np.nanmedian(errmap11)

    snr = cube11sc.filled_data[:].value/errmap11
    peaksnr = np.max(snr,axis=0)
    if mask_function is None:
        planemask = default_masking(peaksnr,snr_min = snr_min)
    else:
        planemask = mask_function(peaksnr,snr_min = snr_min)
    
    #planemask = (peaksnr>20) * (errmap11 < 0.2)

    mask = (snr>3)*planemask
    maskcube = cube11sc.with_mask(mask.astype(bool))
    maskcube = maskcube.with_spectral_unit(u.km/u.s,velocity_convention='radio')
    slab = maskcube.spectral_slab( vmax*u.km/u.s, vmin*u.km/u.s)
    w11=slab.moment( order=0, axis=0).value
    peakloc = np.nanargmax(w11)
    ymax,xmax = np.unravel_index(peakloc,w11.shape)
    moment1 = slab.moment( order=1, axis=0).value
    moment2 = (slab.moment( order=2, axis=0).value)**0.5
    moment2[np.isnan(moment2)]=0.2
    moment2[moment2<0.2]=0.2
    cube11 = pyspeckit.Cube(OneOneFile,maskmap=planemask)
    cube11.unit="K"
    cube22 = pyspeckit.Cube(TwoTwoFile,maskmap=planemask)
    cube22.unit="K"
    #cube33 = pyspeckit.Cube(ThreeThreeFile,maskmap=planemask)
    #cube33.unit="K" # removed as long as we're not modeling OPR
    cubes = pyspeckit.CubeStack([cube11,cube22],maskmap=planemask)
    cubes.unit="K"
    guesses = np.zeros((6,)+cubes.cube.shape[1:])
    moment1[moment1<vmin] = vmin+0.2
    moment1[moment1>vmax] = vmax-0.2
    guesses[0,:,:] = 12                    # Kinetic temperature 
    guesses[1,:,:] = 3                     # Excitation  Temp
    guesses[2,:,:] = 14.5                  # log(column)
    guesses[3,:,:] = moment2  # Line width / 5 (the NH3 moment overestimates linewidth)               
    guesses[4,:,:] = moment1  # Line centroid              
    guesses[5,:,:] = 0.0                   # F(ortho) - ortho NH3 fraction (fixed)
    if do_plot:
        import matplotlib.pyplot as plt
        plt.imshow( w11, origin='lower',interpolation='nearest')
        plt.show()
    F=False
    T=True
    
    if not 'cold_ammonia' in cubes.specfit.Registry.multifitters:
        cubes.specfit.Registry.add_fitter('cold_ammonia',ammonia.cold_ammonia_model(),6)
        
    print('start fit')
    cubes.fiteach(fittype='cold_ammonia',  guesses=guesses,
                  integral=False, verbose_level=3, 
                  fixed=[F,F,F,F,F,T], signal_cut=2,
                  limitedmax=[F,F,T,F,T,T],
                  maxpars=[0,0,17.0,0,vmax,1],
                  limitedmin=[T,T,T,T,T,T],
                  minpars=[5,2.8,12.0,0.04,vmin,0],
                  start_from_point=(xmax,ymax),
                  use_neighbor_as_guess=True, 
                  position_order = 1/peaksnr,
                  errmap=errmap11, multicore=multicore)

    fitcubefile = fits.PrimaryHDU(data=np.concatenate([cubes.parcube,cubes.errcube]), header=cubes.header)
    fitcubefile.header.set('PLANE1','TKIN')
    fitcubefile.header.set('PLANE2','TEX')
    fitcubefile.header.set('PLANE3','COLUMN')
    fitcubefile.header.set('PLANE4','SIGMA')
    fitcubefile.header.set('PLANE5','VELOCITY')
    fitcubefile.header.set('PLANE6','FORTHO')
    fitcubefile.header.set('PLANE7','eTKIN')
    fitcubefile.header.set('PLANE8','eTEX')
    fitcubefile.header.set('PLANE9','eCOLUMN')
    fitcubefile.header.set('PLANE10','eSIGMA')
    fitcubefile.header.set('PLANE11','eVELOCITY')
    fitcubefile.header.set('PLANE12','eFORTHO')
    fitcubefile.header.set('CDELT3',1)
    fitcubefile.header.set('CTYPE3','FITPAR')
    fitcubefile.header.set('CRVAL3',0)
    fitcubefile.header.set('CRPIX3',1)
    fitcubefile.writeto("{0}/{0}_parameter_maps_{1}.fits".format(region,root),clobber=True)

    if gauss_fit==True:
	molecules = ['C2S', 'HC7N_22_21', 'HC7N_21_20', 'HC5N']
	for i in molecules:
        	gauss_fitter(region=region, mol=i, vmin=vmin, vmax=vmax, snr_min=snr_min, multicore=multicore, file_extension=file_extension)
示例#6
0
import pylab as pl

# NH3 (1,1) cube
region = 'L1688'
file_extension = 'DR1_rebase3'
line = 'NH3_11'
OneOneFile = 'nh3_data/{0}_NH3_11_{1}_trim.fits'.format(region, file_extension)
TwoTwoFile = 'nh3_data/{0}_NH3_22_{1}_trim.fits'.format(region, file_extension)
FitFile = 'propertyMaps/{0}_parameter_maps_{1}_flag.fits'.format(
    region, file_extension)

cube11 = pyspeckit.Cube(OneOneFile)
cube11.unit = 'K'
cube22 = pyspeckit.Cube(TwoTwoFile)
cube22.unit = 'K'
cubes = pyspeckit.CubeStack([cube11, cube22])
cubes.unit = 'K'

if not 'cold_ammonia' in cubes.specfit.Registry.multifitters:
    cubes.specfit.Registry.add_fitter('cold_ammonia',
                                      ammonia.cold_ammonia_model(), 6)

#cubes.load_model_fit(FitFile,6,npeaks=1,fittype='cold_ammonia')
#cubes.specfit.parinfo[5]['fixed'] = True

pix_coords = [54, 184]

sp = cubes.get_spectrum(pix_coords[0], pix_coords[1])
F = False
T = True
sp.specfit(fittype='cold_ammonia',
示例#7
0
pcube = pyspeckit.Cube(cube=mycube,
                       xarr=myaxis,
                       xunit='km/s',
                       xarrkwargs=dict(refX=1 * u.GHz,
                                       velocity_convention='radio'))
pcube.xarr.velocity_convention = 'radio'
pcube.xarr.refX = 1 * u.GHz

pcube.xarr.convert_to_unit('m/s')

sp = pcube.get_spectrum(5, 5)

print(pcube)
print(pcube.__repr__())

stack = pyspeckit.CubeStack([pcube, pcube])
stack.xarr.convert_to_unit(u.km / u.s)

x = stack.get_spectrum(0, 0)
y = x.slice(10, 20)
y.xarr.convert_to_unit('km/s')

# Regression test for unit declaration...
pcube = pyspeckit.Cube(cube=mycube,
                       xarr=myaxis,
                       xunit='km/s',
                       xarrkwargs=dict(refX=1 * u.GHz,
                                       velocity_convention='radio'))
pcube.xarr.velocity_convention = 'radio'
pcube.xarr.refX = 1
pcube.xarr.refX_unit = u.GHz