def test_cache_updates_with_changed_particles(self): # Given pa1 = self._make_random_parray('pa1', 5) particles = [pa1] nnps = LinkedListNNPS(dim=3, particles=particles) cache = NeighborCache(nnps, dst_index=0, src_index=0) cache.update() # When pa2 = self._make_random_parray('pa2', 2) pa1.add_particles(x=pa2.x, y=pa2.y, z=pa2.z) nnps.update() cache.update() nb_cached = UIntArray() nb_direct = UIntArray() for i in range(len(particles[0].x)): nnps.get_nearest_particles_no_cache(0, 0, i, nb_direct, False) cache.get_neighbors(0, i, nb_cached) nb_e = nb_direct.get_npy_array() nb_c = nb_cached.get_npy_array() self.assertTrue(np.all(nb_e == nb_c))
def test_neighbors_cached_properly(self): # Given pa1 = self._make_random_parray('pa1', 5) pa2 = self._make_random_parray('pa2', 4) particles = [pa1, pa2] nnps = LinkedListNNPS(dim=3, particles=particles) for dst_index in (0, 1): for src_idx in (0, 1): # When cache = NeighborCache(nnps, dst_index, src_idx) cache.update() nb_cached = UIntArray() nb_direct = UIntArray() # Then. for i in range(len(particles[dst_index].x)): nnps.get_nearest_particles_no_cache( src_idx, dst_index, i, nb_direct, False) cache.get_neighbors(src_idx, i, nb_cached) nb_e = nb_direct.get_npy_array() nb_c = nb_cached.get_npy_array() self.assertTrue(np.all(nb_e == nb_c))
def test_empty_neigbors_works_correctly(self): # Given pa1 = self._make_random_parray('pa1', 5) pa2 = self._make_random_parray('pa2', 2) pa2.x += 10.0 particles = [pa1, pa2] # When nnps = LinkedListNNPS(dim=3, particles=particles) # Cache for neighbors of destination 0. cache = NeighborCache(nnps, dst_index=0, src_index=1) cache.update() # Then nb_cached = UIntArray() nb_direct = UIntArray() for i in range(len(particles[0].x)): nnps.get_nearest_particles_no_cache(1, 0, i, nb_direct, False) # Get neighbors from source 1 on destination 0. cache.get_neighbors(src_index=1, d_idx=i, nbrs=nb_cached) nb_e = nb_direct.get_npy_array() nb_c = nb_cached.get_npy_array() self.assertEqual(len(nb_e), 0) self.assertTrue(np.all(nb_e == nb_c))