def main(): print("Initializing vid server") serv = Roni.RoniServer() serv.listen() cl = serv.getClient() cv2.namedWindow('RoniStream', cv2.WINDOW_AUTOSIZE) while True: data = serv.receiveData(cl, Roni.TYPE_RGB) if len(data) > 0: img = Coppa.decodeColorFrame(data) cv2.imshow('RoniStream', img) cv2.waitKey(1)
def main(): global keyPress global gui global showConf global clients global nindex global connHandler global serv print("Reading in config file") config = None try: with open("config.json", 'r') as f: config = json.loads(f.read()) except: print("Unable to open config file") exit() print("Loaded config file\n", json.dumps(config)) print("Initializing vid server") serv = Roni.RoniServer() serv.listen() connHandler = NewConnHandler() # For averaging framerate t0 = time.time() t1 = 0 last10 = [0] * 10 it = 0 frames = 0 # adjust this to point to your downloaded/trained model model_path = '/home/nvidia/Documents/SalamiSense/snapshots_1/resnet50_csv_inference.h5' #model_path = '/home/nvidia/Documents/SalamiSense/resnet50_csv_inference10.h5' print("loading CNN model") # load retinanet model bThread = BoxThread(model_path) bThread.start() theta, meanStd = Reg.loadModel("noisy_sensor_model.csv") gui = initGUI() thresh = 0 pdist = 0 while keyPress != ord('q'): connHandler.tick() # New client connection established if connHandler.getState() == connHandler.STATE_FINISHED: newClient = connHandler.getClient() if newClient is not None: cids = [citer.getID() for citer in clients] c = NodeData() c.setClient(newClient) for i in range(1000): if not i in cids: c.setID(i) break clients.append(c) nindex = len(clients) - 1 bThread.addClient(c) statusStr, statusColor = connHandler.getStatusStr() gui.setButtonText("newnode", statusStr, statusColor) gui.update() gui.setFrameText("nodeno", "%d/%d" % (nindex + 1, len(clients))) if not clients: gui.setFrameImage("vid", []) gui.setFrameImage("depth", []) continue # Receive color and depth data from each client for c in clients: data = serv.receiveData(c.getClient(), Roni.TYPE_RGB) depth = serv.receiveData(c.getClient(), Roni.TYPE_DEPTH) sense = serv.receiveData(c.getClient(), Roni.TYPE_EDGE) vfrac = 0 vertStr = None for i in range(8): vertStr = serv.receiveData(c.getClient(), Roni.TYPE_3D_0 + i) if vertStr is not None and vertStr: vertStr = pickle.loads(vertStr) vfrac = i break # Decode data to images and sensor readings if data is not None and data: img = Coppa.decodeColorFrame(data) c.setColor(img.copy()) if depth is not None and depth: depImg = Coppa.decodeDepthFrame(depth) c.setDepth(depImg.copy()) if sense is not None and sense: sense = pickle.loads(sense) if len(sense) > 3: c.setCO2(sense[0]) c.setTVOC(sense[1]) c.setTemp(sense[2]) c.setHumidity(sense[3]) if vertStr is not None and len(vertStr) > 0: c.setVertex(vertStr, vfrac) # Skip first 10 frames, just in case frames += 1 if frames < 10: continue newThresh = gui.getEntryValue("thresh") try: thresh = int(newThresh) except: pass newPDist = gui.getEntryValue("pdist") try: pdist = float(newPDist) except: pass newTrgtTemp = gui.getEntryValue("temp") try: config["Sensors"]["TargetOccupTemp"] = int(newTrgtTemp) except: pass # get copies of color and depth frames img = clients[nindex].getColor().copy() depImg = clients[nindex].getDepth().copy() if len(img) < 1 or len(depImg) < 1: continue fVert = clients[nindex].getVertex() # Display calibration points refXY = clients[nindex].getRefXY() for pt in refXY: cv2.circle(img, (pt[0], pt[1]), 4, (0, 255, 255), 1) img[pt[1]][pt[0]] = [0, 255, 255] # Find valid boxes and add to or update people list people = [] for c in clients: boxes, scores, labels = c.getResults() if len(boxes) > 0: for box, score, label in zip(boxes[0], scores[0], labels[0]): # scores are sorted so we can break at first low score found if score < (thresh / 100): break Peeps.AddToPeople(c, box, people, pdist, score) totalPeeps = len(people) frameBoxes, scores, isDupe = Peeps.GetIDBoxes(nindex, people) framePeeps = len(frameBoxes) # Visualize People found in frame for i in range(framePeeps): # color based on if appears in multiple frames color = (0, 0, 255) if isDupe[i]: color = (0, 255, 0) b = frameBoxes[i].astype(int) draw_box(img, b, color=color) # draw center point of box x = int((frameBoxes[i][0] + frameBoxes[i][2]) / 2) y = int((frameBoxes[i][1] + frameBoxes[i][3]) / 2) cv2.circle(img, (x, y), 3, (255, 255, 0), -1) if showConf: draw_caption(img, b, "%0.0f%%" % (float(scores[i]) * 100)) # Calculate frame rate and display on image t1 = time.time() last10[it] = 1.0 / (t1 - t0) it = (it + 1) % 10 fps = np.average(last10) t0 = t1 cv2.putText(img, "stream FPS: %.2f" % fps, (0, 30), cv2.FONT_HERSHEY_PLAIN, 1.2, (0, 0, 255)) # Sensor readings fCO2 = clients[nindex].getCO2() fTVOC = clients[nindex].getTVOC() fTemp = clients[nindex].getTemp() fHum = clients[nindex].getHumidity() # Regression # [people, co2, tvoc, tempr, humid] regInput = [totalPeeps, fCO2, fTVOC, 70, fHum] res = Reg.runThroughModel(regInput, theta, meanStd) # Do HVAC stuff ctrl = controlHVAC(config, res, 70) + ("(%.2f)" % res) gui.setFrameText("HVAC", ctrl) # Display sensor readings on GUI gui.setFrameText("people", "%d/%d (frame/total)" % (framePeeps, totalPeeps)) gui.setFrameText("temp", "%.2f ºF" % fTemp) gui.setFrameText("humid", "%.2f%%" % fHum) gui.setFrameText("co2", "%.0f ppm" % fCO2) gui.setFrameText("tvoc", "%.0f ppb" % fTVOC) # Display color and depth images (depth picture-in-picture) imRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) depRGB = cv2.cvtColor(depImg, cv2.COLOR_BGR2RGB) guiImg = ImageTk.PhotoImage(Image.fromarray(imRGB)) depImg = ImageTk.PhotoImage( Image.fromarray(cv2.resize(depRGB, (160, 120)))) gui.setFrameImage("vid", guiImg) gui.setFrameImage("depth", depImg) # Close server and display window bThread.stop() bThread.join() serv.close() cv2.destroyAllWindows()
def main(): global keyPress global gui global showConf global clients global nindex global connHandler global serv print("Initializing vid server") serv = Roni.RoniServer() serv.listen() connHandler = NewConnHandler() #connHandler.newClient(serv) #while(connHandler.getState() != connHandler.STATE_FINISHED): # connHandler.tick() #cl = connHandler.getClient() t0 = time.time() t1 = 0 last10 = [0] * 10 it = 0 frames = 0 # adjust this to point to your downloaded/trained model model_path = '/home/nvidia/Documents/SalamiSense/snapshots_1/resnet50_csv_inference.h5' #model_path = '/home/nvidia/Documents/SalamiSense/resnet50_csv_inference10.h5' print("loading model") # load retinanet model bThread = BoxThread(model_path) bThread.start() # load label to names mapping for visualization purposes labels_to_names = {0: 'person'} colorizer = rs.colorizer() gui = initGUI() thresh = 0 while keyPress != ord('q'): connHandler.tick() if connHandler.getState() == connHandler.STATE_FINISHED: clients.append(connHandler.getClient()) nindex += 1 gui.setButtonText("newnode", connHandler.getStatusStr()) gui.update() if not clients: continue data = [] depth = [] while not data or not depth: if not data: data = serv.receiveData(clients[nindex], Roni.TYPE_RGB) if not depth: depth = serv.receiveData(clients[nindex], Roni.TYPE_DEPTH) frames += 1 if frames < 10: continue # get image img = Coppa.decodeColorFrame(data) depImg = Coppa.decodeDepthFrame(depth) if depImg is None: continue newThresh = gui.getEntryValue("thresh") try: thresh = int(newThresh) except: pass bThread.setData(img) boxes, scores, labels = bThread.getBoxes() bc = 0 if len(boxes) > 0: for box, score, label in zip(boxes[0], scores[0], labels[0]): # scores are sorted so we can break if score < (thresh / 100): break bc += 1 color = label_color(label) b = box.astype(int) draw_box(img, b, color=color) if showConf: draw_caption(img, b, "%s" % score) # Calculate frame rate and display on image t1 = time.time() last10[it] = 1.0 / (t1 - t0) it = (it + 1) % 10 fps = np.average(last10) t0 = t1 cv2.putText(img, "stream FPS: %.2f" % fps, (0, 30), cv2.FONT_HERSHEY_PLAIN, 1.2, (0, 0, 255)) gui.setFrameText("people", "%d" % bc) imRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) depRGB = cv2.cvtColor(depImg, cv2.COLOR_BGR2RGB) guiImg = ImageTk.PhotoImage(Image.fromarray(imRGB)) depImg = ImageTk.PhotoImage( Image.fromarray(cv2.resize(depRGB, (160, 120)))) gui.setFrameImage("vid", guiImg) gui.setFrameImage("depth", depImg) # Display # Close server and display window bThread.stop() bThread.join() serv.close() cv2.destroyAllWindows()
def main(): print("Initializing vid server") serv = Roni.RoniServer() serv.listen() cl = serv.getClient() cv2.namedWindow('RoniStream', cv2.WINDOW_AUTOSIZE) t0 = time.time() t1 = 0 last10 = [0] * 10 it = 0 frames = 0 framerates = [] keyPressed = None while keyPressed != ord('q'): data = serv.receiveData(cl, Roni.TYPE_RGB) if len(data) > 0: frames += 1 # get image, copy, and edge detect img = Coppa.decodeColorFrame(data) orig = np.copy(img) w = img.shape[1] h = img.shape[0] #edge detect edge = cv2.Canny(img, 100, 400) for i, row in enumerate(edge): for j, px in enumerate(row): if px: img[i][j] = [0, 255, 64] # Calculate framerate and display on image t1 = time.time() last10[it] = 1.0 / (t1 - t0) it = (it + 1) % 10 fps = np.average(last10) if 550 > frames >= 50: framerates.append(fps) t0 = t1 cv2.putText(img, "FPS: %.2f" % fps, (0, 30), cv2.FONT_HERSHEY_PLAIN, 1.2, (0, 0, 255)) # Combine original, edge dectect, and overlay images edge3 = np.empty_like(img) edge3 = cv2.cvtColor(edge, cv2.COLOR_GRAY2BGR) img = cv2.copyMakeBorder(img, 0, 0, int(w / 2), int(w / 2), cv2.BORDER_CONSTANT, (0, 0, 0)) combined = np.hstack((orig, edge3)) combined = np.vstack((combined, img)) # Display cv2.imshow('RoniStream', combined) keyPressed = cv2.waitKey(1) #with open("last1000frames_cpu.csv", 'w') as fi: # for n in framerates: # fi.write("%f," % n) print(np.average(framerates)) # Close server and display window serv.close() cv2.destroyAllWindows()
def main(): print("Initializing vid server") serv = Roni.RoniServer() serv.listen() cl = serv.getClient() cv2.namedWindow('RoniStream', cv2.WINDOW_AUTOSIZE) t0 = time.time() t1 = 0 last10 = [0]*10 it = 0 frames = 0 keyPress = None # adjust this to point to your downloaded/trained model model_path = '/home/nvidia/Documents/SalamiSense/snapshots_1/resnet50_csv_inference.h5' #model_path = '/home/nvidia/Documents/SalamiSense/resnet50_csv_inference10.h5' print("loading model") # load retinanet model bThread = BoxThread(model_path) bThread.start() # load label to names mapping for visualization purposes labels_to_names = {0: 'person'} while keyPress != ord('q'): data = [] depth = [] while not data or not depth: if not data: data = serv.receiveData(cl, Roni.TYPE_RGB) if not depth: depth = serv.receiveData(cl, Roni.TYPE_DEPTH) frames += 1 if frames < 10: continue # get image img = Coppa.decodeColorFrame(data) depImg = Coppa.decodeDepthFrame(depth) if depImg is None: continue depImg = np.asanyarray(depImg) depColorMap = cv2.applyColorMap(cv2.convertScaleAbs(depImg, alpha=0.03), cv2.COLORMAP_JET) bThread.setData(img) boxes, scores, labels = bThread.getBoxes() bc = 0 if len(boxes) > 0: for box, score, label in zip(boxes[0], scores[0], labels[0]): # scores are sorted so we can break if score < 0.6: break bc += 1 color = label_color(label) b = box.astype(int) draw_box(img, b, color=color) draw_caption(img, b, "%s" % score) # Calculate frame rate and display on image t1 = time.time() last10[it] = 1.0 / (t1 - t0) it = (it + 1) % 10 fps = np.average(last10) t0 = t1 cv2.putText(img, "stream FPS: %.2f" % fps, (0, 30), cv2.FONT_HERSHEY_PLAIN, 1.2, (0, 0, 255)) cv2.putText(img, "People: %d" % bc, (0, 60), cv2.FONT_HERSHEY_PLAIN, 1.2, (0, 0, 255)) combined = np.hstack((img, depColorMap)) # Display cv2.imshow('RoniStream', combined) keyPress = cv2.waitKey(1) # Close server and display window bThread.stop() bThread.join() serv.close() cv2.destroyAllWindows()
def main(): print("Initializing vid server") serv = Roni.RoniServer() serv.listen() cl = serv.getClient() cv2.namedWindow('RoniStream', cv2.WINDOW_AUTOSIZE) t0 = time.time() t1 = 0 last10 = [0] * 10 it = 0 frames = 0 keyPress = None # set the modified tf session as backend in keras keras.backend.tensorflow_backend.set_session(get_session()) # adjust this to point to your downloaded/trained model model_path = '/home/nvidia/Documents/SalamiSense/snapshots_1/resnet50_csv_inference.h5' #model_path = '/home/nvidia/Documents/SalamiSense/resnet50_csv_inference.h5' print("loading model") # load retinanet model model = models.load_model(model_path, backbone_name='resnet50') # load label to names mapping for visualization purposes labels_to_names = {0: 'person'} while keyPress != ord('q'): data = serv.receiveData(cl, Roni.TYPE_RGB) if len(data) > 0: frames += 1 if frames < 50: continue # get image img = Coppa.decodeColorFrame(data) img_copy = img.copy() img = preprocess_image(img) boxes, scores, labels = model.predict_on_batch( np.expand_dims(img, axis=0)) for box, score, label in zip(boxes[0], scores[0], labels[0]): # scores are sorted so we can break if score < 0.6: break color = label_color(label) b = box.astype(int) draw_box(img_copy, b, color=color) draw_caption(img_copy, b, "%s" % score) # Calculate frame rate and display on image t1 = time.time() last10[it] = 1.0 / (t1 - t0) it = (it + 1) % 10 fps = np.average(last10) t0 = t1 cv2.putText(img_copy, "FPS: %.2f" % fps, (0, 30), cv2.FONT_HERSHEY_PLAIN, 1.2, (0, 0, 255)) # Display cv2.imshow('RoniStream', img_copy) keyPress = cv2.waitKey(1) # Close server and display window serv.close() cv2.destroyAllWindows()
def main(): print("Initializing vid server") serv = Roni.RoniServer() serv.listen() cl = serv.getClient() cv2.namedWindow('RoniStream', cv2.WINDOW_AUTOSIZE) mod = GC.makeGpuFun("func", funcStr) t0 = time.time() t1 = 0 last10 = [0] * 10 it = 0 framerates = [] frames = 0 keyPress = None disco = 0 while keyPress != ord('q'): data = serv.receiveData(cl, Roni.TYPE_RGB) if keyPress == ord('d'): disco = 0 if disco else 1 if len(data) > 0: frames += 1 # get image, copy, and edge detect img = Coppa.decodeColorFrame(data) orig = np.copy(img) edge = cv2.Canny(img, 100, 400) w = img.shape[1] h = img.shape[0] RGB = RB.tick(15) # Copy data to GPU imgGPU = GC.gpuMemcpy(img, img.nbytes) edgeGPU = GC.gpuMemcpy(edge, edge.nbytes) # Launch kernel grid = (int((w + 15) / 16), int((h + 15) / 16), 1) GC.execute(mod, imgGPU, edgeGPU, np.int32(h), np.int32(w), np.int32(RGB[2]), np.int32(RGB[1]), np.int32(RGB[0]), np.int32(disco), grid=grid) # Copy memory back from GPU GC.gpuMemget(img, imgGPU) # Calculate frame rate and display on image t1 = time.time() last10[it] = 1.0 / (t1 - t0) it = (it + 1) % 10 fps = np.average(last10) if 550 > frames >= 50: framerates.append(fps) t0 = t1 cv2.putText(img, "FPS: %.2f" % fps, (0, 30), cv2.FONT_HERSHEY_PLAIN, 1.2, (0, 0, 255)) # Combine original, edge detect, and overlay images edge3 = np.empty_like(img) edge3 = cv2.cvtColor(edge, cv2.COLOR_GRAY2BGR) img = cv2.copyMakeBorder(img, 0, 0, int(w / 2), int(w / 2), cv2.BORDER_CONSTANT, (0, 0, 0)) combined = np.hstack((orig, edge3)) combined = np.vstack((combined, img)) # Display cv2.imshow('RoniStream', combined) keyPress = cv2.waitKey(1) #with open("last1000frames.csv", 'w') as fi: # for n in framerates: # fi.write("%f," % n) print(np.average(framerates)) # Close server and display window serv.close() cv2.destroyAllWindows()