sys.path.append(pyssa_path) import pyssa.ssa as ssa import pyssa.models.standard_models as sm from pyssa.models.reaction_model import ReactionModel import pyssa.ssa_compiled.gillespie as gillespie from pyssa.models.cle_model import RREModel pymbvi_path = '/Users/christian/Documents/Code/pymbvi' sys.path.append(pymbvi_path) from pymbvi.models.observation.kinetic_obs_model import LognormObs # fix seed np.random.seed(2007141048) # prepare model for simulation pre, post, rates = sm.get_standard_model("degradation_oscillator") pre = np.array(pre, dtype=np.float64) post = np.array(post, dtype=np.float64) rates = np.array(rates) initial = np.array([0.0, 0.0, 0.0, 0.0]) tspan = np.array([0.0, 6 * 60 * 60]) # number of trajectories num_samples = 5000 # prepare initial conditions t_plot = np.linspace(tspan[0], tspan[1], 200) # compute ODE mean rre_model = RREModel(pre, post, rates)
import linear_memory.utils as ut from import_utils import add_path from scipy.interpolate import interp1d add_path('pyssa') import pyssa.ssa as ssa import pyssa.models.standard_models as sm add_path('pymbvi') from pymbvi.models.mjp.autograd_partition_specific_models import SimpleGeneExpression from pymbvi.util import num_derivative, autograd_jacobian torch.manual_seed(2007301620) # get simulation model pre, post, rates = sm.get_standard_model("simple_gene_expression") # prepare initial conditions initial = np.array([0.0, 1.0, 0.0, 0.0]) tspan = np.array([0.0, 3e3]) # set up gene expression model moment_initial = np.zeros(9) moment_initial[0:3] = initial[1:4] model = SimpleGeneExpression(moment_initial, np.log(np.array(rates)), tspan) def searchsorted(vector, elements): ind = np.searchsorted(vector.detach().numpy(), elements.detach().numpy()) return (torch.tensor(ind))
sys.path.append(pyssa_path) import pyssa.ssa as ssa import pyssa.models.standard_models as sm from pyssa.models.reaction_model import ReactionModel import pyssa.ssa_compiled.gillespie as gillespie from pyssa.models.cle_model import RREModel pymbvi_path = '/Users/christian/Documents/Code/pymbvi' sys.path.append(pymbvi_path) from pymbvi.models.observation.kinetic_obs_model import LognormObs # fix seed np.random.seed(2007141048) # prepare model for simulation pre, post, rates = sm.get_standard_model("single_gene_oscillator") pre = np.array(pre, dtype=np.float64) post = np.array(post, dtype=np.float64) rates = np.array(rates) initial = np.array([1.0, 0.0, 0.0, 0.0]) tspan = np.array([0.0, 5000.0]) # number of trajectories num_samples = 1000 # prepare initial conditions initial = np.array([1.0, 0.0, 0.0, 0.0]) tspan = np.array([0.0, 2e3]) t_plot = np.linspace(tspan[0], tspan[1], 200) # compute ODE mean
from pyssa.models.reaction_model import ReactionModel import pyssa.ssa_compiled.gillespie as gillespie from pyssa.models.cle_model import RREModel pymbvi_path = '/Users/christian/Documents/Code/pymbvi' sys.path.append(pymbvi_path) from pymbvi.models.observation.kinetic_obs_model import LognormObs # fix seed np.random.seed(2008061030) file_path = '/Users/christian/Documents/Code/pyssa/pyssa/models/collection/stochastic_repressilator.xlsx' df = pd.ExcelFile(file_path).parse() # load model pre, post, rates = sm.get_standard_model("stochastic_toggle_switch") # prepare initial conditions initial = np.zeros(8) initial[1] = 1 #initial[2] = 10 #initial[3] = 300 initial[5] = 1 tspan = np.array([0.0, 200 * 60 * 60]) t_plot = np.linspace(tspan[0], tspan[1], 200) # compute rre solution rre_model = RREModel(pre, post, rates) def odefun(time, state):
from pyssa.models.reaction_model import ReactionModel import pyssa.ssa_compiled.gillespie as gillespie from pyssa.models.cle_model import RREModel pymbvi_path = '/Users/christian/Documents/Code/pymbvi' sys.path.append(pymbvi_path) from pymbvi.models.observation.kinetic_obs_model import LognormObs # fix seed #np.random.seed(2007211010) file_path = '/Users/christian/Documents/Code/pyssa/pyssa/models/collection/stochastic_repressilator.xlsx' df = pd.ExcelFile(file_path).parse() # load model pre, post, rates = sm.get_standard_model("stochastic_repressilator") # prepare initial conditions initial = np.zeros(15) initial[1] = 20 initial[2] = 0.1 initial[3] = 0 initial[6] = 20 initial[11] = 20 tspan = np.array([0.0, 50000 * 60]) t_plot = np.linspace(tspan[0], tspan[1], 200) # compute rre solution rre_model = RREModel(pre, post, rates)