示例#1
0
    def test_hadamard_accuracy(self):
        systemsize = 4
        eigen_decayrate = 2.0

        # Create Hadmard Quadratic object
        QoI = examples.HadamardQuadratic(systemsize, eigen_decayrate)

        mu = np.zeros(systemsize)
        std_dev = np.eye(systemsize)
        jdist = cp.MvNormal(mu, std_dev)

        active_subspace = ActiveSubspace(QoI, n_dominant_dimensions=4,
                                             n_monte_carlo_samples=10000,
                                             use_svd=True, read_rv_samples=False,
                                             write_rv_samples=False)
        active_subspace.getDominantDirections(QoI, jdist)

        mu_j_analytical = QoI.eval_analytical_QoI_mean(mu, cp.Cov(jdist))
        var_j_analytical = QoI.eval_analytical_QoI_variance(mu, cp.Cov(jdist))

        # Create reduced collocation object
        QoI_dict = {'Hadamard' : {'QoI_func' : QoI.eval_QoI,
                                  'output_dimensions' : 1,
                                  },
                    }
        sc_obj_active = StochasticCollocation2(jdist, 4, 'MvNormal', QoI_dict,
                                        include_derivs=False,
                                        reduced_collocation=True,
                                        dominant_dir=active_subspace.dominant_dir)
        sc_obj_active.evaluateQoIs(jdist)

        mu_j_active = sc_obj_active.mean(of=['Hadamard'])
        var_j_active = sc_obj_active.variance(of=['Hadamard'])
    def test_multipleQoI(self):

        # This tests for multiple QoIs. We only compute the mean in this test,
        # because it is only checking if it can do multiple loops

        systemsize = 2
        theta = 0
        mu = mean_2dim  # np.random.randn(systemsize)
        std_dev = std_dev_2dim  # np.diag(np.random.rand(systemsize))
        jdist = cp.MvNormal(mu, std_dev)
        QoI1 = examples.Paraboloid2D(systemsize, (theta, ))
        QoI2 = examples.PolyRVDV()
        QoI_dict = {
            'paraboloid2': {
                'QoI_func': QoI1.eval_QoI,
                'output_dimensions': 1,
            },
            'PolyRVDV': {
                'QoI_func': QoI2.eval_QoI,
                'output_dimensions': 1,
            }
        }
        sc_obj = StochasticCollocation2(jdist, 3, 'MvNormal', QoI_dict)
        sc_obj.evaluateQoIs(jdist)
        mu_js = sc_obj.mean(of=['paraboloid2', 'PolyRVDV'])

        # Compare against known values
        # 1. Paraboloid2D, we use nested loops
        mu_j1_analytical = QoI1.eval_QoI_analyticalmean(mu, cp.Cov(jdist))
        err = abs(
            (mu_js['paraboloid2'][0] - mu_j1_analytical) / mu_j1_analytical)
        self.assertTrue(err < 1.e-15)
    def test_nonrv_derivatives(self):
        # This test checks the analytical derivative w.r.t complex step
        systemsize = 2
        n_parameters = 2
        mu = mean_2dim  # np.random.randn(systemsize)
        std_dev = std_dev_2dim  # np.diag(np.random.rand(systemsize))
        jdist = cp.MvNormal(mu, std_dev)
        QoI = examples.PolyRVDV(data_type=complex)
        # Create the Stochastic Collocation object
        deriv_dict = {
            'dv': {
                'dQoI_func': QoI.eval_QoIGradient_dv,
                'output_dimensions': n_parameters
            }
        }
        QoI_dict = {
            'PolyRVDV': {
                'QoI_func': QoI.eval_QoI,
                'output_dimensions': 1,
                'deriv_dict': deriv_dict
            }
        }
        dv = np.random.randn(systemsize) + 0j
        QoI.set_dv(dv)
        sc_obj = StochasticCollocation2(jdist,
                                        3,
                                        'MvNormal',
                                        QoI_dict,
                                        include_derivs=True,
                                        data_type=complex)
        sc_obj.evaluateQoIs(jdist, include_derivs=True)
        dmu_j = sc_obj.dmean(of=['PolyRVDV'], wrt=['dv'])
        dvar_j = sc_obj.dvariance(of=['PolyRVDV'], wrt=['dv'])
        dstd_dev = sc_obj.dStdDev(of=['PolyRVDV'], wrt=['dv'])

        # Lets do complex step
        pert = complex(0, 1e-30)
        dmu_j_complex = np.zeros(n_parameters, dtype=complex)
        dvar_j_complex = np.zeros(n_parameters, dtype=complex)
        dstd_dev_complex = np.zeros(n_parameters, dtype=complex)
        for i in range(0, n_parameters):
            dv[i] += pert
            QoI.set_dv(dv)
            sc_obj.evaluateQoIs(jdist, include_derivs=False)
            mu_j = sc_obj.mean(of=['PolyRVDV'])
            var_j = sc_obj.variance(of=['PolyRVDV'])
            std_dev_j = np.sqrt(var_j['PolyRVDV'][0, 0])
            dmu_j_complex[i] = mu_j['PolyRVDV'].imag / pert.imag
            dvar_j_complex[i] = var_j['PolyRVDV'].imag / pert.imag
            dstd_dev_complex[i] = std_dev_j.imag / pert.imag
            dv[i] -= pert

        err1 = dmu_j['PolyRVDV']['dv'] - dmu_j_complex
        self.assertTrue((err1 < 1.e-13).all())

        err2 = dvar_j['PolyRVDV']['dv'] - dvar_j_complex
        self.assertTrue((err2 < 1.e-13).all())

        err3 = dstd_dev['PolyRVDV']['dv'] - dstd_dev_complex
        self.assertTrue((err2 < 1.e-13).all())
def run_hadamard(systemsize, eigen_decayrate, std_dev, n_eigenmodes):
    n_collocation_pts = 2

    # Create Hadmard Quadratic object
    QoI = examples.HadamardQuadratic(systemsize, eigen_decayrate)

    # # Create stochastic collocation object
    # collocation = StochasticCollocation(n_collocation_pts, "Normal")

    # Initialize chaospy distribution
    x = np.random.rand(QoI.systemsize)
    jdist = cp.MvNormal(x, np.diag(std_dev))

    threshold_factor = 0.5
    dominant_space = DimensionReduction(threshold_factor=threshold_factor,
                                        exact_Hessian=False,
                                        n_arnoldi_sample=71,
                                        min_eigen_accuracy=1.e-2)
    dominant_space.getDominantDirections(QoI,
                                         jdist,
                                         max_eigenmodes=n_eigenmodes)

    # if systemsize == 64:
    # print('x = \n', repr(x))
    # print('std_dev = \n', repr(std_dev))
    # print('iso_eigenvals = ', dominant_space.iso_eigenvals)
    # print("dominant_indices = ", dominant_space.dominant_indices)

    # Collocate
    # collocation = StochasticCollocation(n_collocation_pts, "Normal")
    # mu_j = collocation.normal.reduced_mean(QoI.eval_QoI, jdist, dominant_space)
    # print "mu_j = ", mu_j

    QoI_dict = {
        'Hadamard': {
            'QoI_func': QoI.eval_QoI,
            'output_dimensions': 1,
        },
    }
    sc_obj = StochasticCollocation2(jdist,
                                    n_collocation_pts,
                                    'MvNormal',
                                    QoI_dict,
                                    include_derivs=False,
                                    reduced_collocation=True,
                                    dominant_dir=dominant_space.dominant_dir)
    sc_obj.evaluateQoIs(jdist)
    mu_j_dict = sc_obj.mean(of=['Hadamard'])
    mu_j = mu_j_dict['Hadamard']

    # Evaluate the analytical value of the Hadamard Quadratic
    covariance = cp.Cov(jdist)
    mu_analytic = QoI.eval_analytical_QoI_mean(x, covariance)
    # print "mu_analytic = ", mu_analytic

    relative_error = np.linalg.norm((mu_j - mu_analytic) / mu_analytic)
    # print "relative_error = ", relative_error

    return relative_error
    def test_reduced_montecarlo(self):
        systemsize = 4
        eigen_decayrate = 2.0

        # Create Hadmard Quadratic object
        QoI = HadamardQuadratic(systemsize, eigen_decayrate)
        true_eigenvals = np.array([0.08, 0.02, 0.005, 0.00888888888888889])
        true_eigenvecs = np.array([[0.5, 0.5, -0.5, -0.5],
                                   [0.5, -0.5, 0.5,
                                    -0.5], [0.5, 0.5, 0.5, 0.5],
                                   [0.5, -0.5, -0.5, 0.5]])
        dominant_dir = true_eigenvecs[:, 0:3]

        QoI_dict = {
            'hadamard4_2': {
                'QoI_func': QoI.eval_QoI,
                'output_dimensions': 1,
            }
        }

        # Create the distribution
        mu = np.ones(systemsize)
        std_dev = 0.2 * np.eye(systemsize)
        jdist = cp.MvNormal(mu, std_dev)
        # Create the Monte Carlo object
        nsample = 100000
        mc_obj = MonteCarlo(nsample,
                            jdist,
                            QoI_dict,
                            reduced_collocation=True,
                            dominant_dir=dominant_dir,
                            include_derivs=False)
        mc_obj.getSamples(jdist, include_derivs=False)
        mu_j_mc = mc_obj.mean(jdist, of=['hadamard4_2'])

        # Compare against a reduced stochastic collocation object
        sc_obj = StochasticCollocation2(jdist,
                                        3,
                                        'MvNormal',
                                        QoI_dict,
                                        reduced_collocation=True,
                                        dominant_dir=dominant_dir)
        sc_obj.evaluateQoIs(jdist)
        mu_j_sc = sc_obj.mean(of=['hadamard4_2'])

        rel_err = abs((mu_j_mc['hadamard4_2'] - mu_j_sc['hadamard4_2']) /
                      mu_j_sc['hadamard4_2'])
        self.assertTrue(rel_err[0] < 1.e-3)
    def test_reduced_normalStochasticCollocation3D(self):

        # This is not a very good test because we are comparing the reduced collocation
        # against the analytical expected value. The only hting it tells us is that
        # the solution is within the ball park of actual value. We still need to
        # come up with a better test.

        systemsize = 3
        mu = mean_3dim  # np.random.randn(systemsize)
        std_dev = std_dev_3dim  # abs(np.diag(np.random.randn(systemsize)))
        jdist = cp.MvNormal(mu, std_dev)
        # Create QoI Object
        QoI = examples.Paraboloid3D(systemsize)
        dominant_dir = np.array([[1.0, 0.0], [0.0, 1.0], [0.0, 0.0]],
                                dtype=np.float)
        # Create the Stochastic Collocation object
        deriv_dict = {
            'xi': {
                'dQoI_func': QoI.eval_QoIGradient,
                'output_dimensions': systemsize
            }
        }
        QoI_dict = {
            'paraboloid': {
                'QoI_func': QoI.eval_QoI,
                'output_dimensions': 1,
                'deriv_dict': deriv_dict
            }
        }
        sc_obj = StochasticCollocation2(jdist,
                                        3,
                                        'MvNormal',
                                        QoI_dict,
                                        reduced_collocation=True,
                                        dominant_dir=dominant_dir)
        sc_obj.evaluateQoIs(jdist)
        mu_js = sc_obj.mean(of=['paraboloid'])
        var_js = sc_obj.variance(of=['paraboloid'])
        # Analytical mean
        mu_j_analytical = QoI.eval_QoI_analyticalmean(mu, cp.Cov(jdist))
        err = abs((mu_js['paraboloid'][0] - mu_j_analytical) / mu_j_analytical)
        self.assertTrue(err < 1e-1)
        # Analytical variance
        var_j_analytical = QoI.eval_QoI_analyticalvariance(mu, cp.Cov(jdist))
        err = abs(
            (var_js['paraboloid'][0, 0] - var_j_analytical) / var_j_analytical)
        self.assertTrue(err < 0.01)
    def test_normalStochasticCollocation3D(self):
        systemsize = 3
        mu = mean_3dim  # np.random.randn(systemsize)
        std_dev = std_dev_3dim  # np.diag(np.random.rand(systemsize))
        jdist = cp.MvNormal(mu, std_dev)
        # Create QoI Object
        QoI = examples.Paraboloid3D(systemsize)

        # Create the Stochastic Collocation object
        deriv_dict = {
            'xi': {
                'dQoI_func': QoI.eval_QoIGradient,
                'output_dimensions': systemsize
            }
        }
        QoI_dict = {
            'paraboloid': {
                'QoI_func': QoI.eval_QoI,
                'output_dimensions': 1,
                'deriv_dict': deriv_dict
            }
        }
        sc_obj = StochasticCollocation2(jdist, 3, 'MvNormal', QoI_dict)
        sc_obj.evaluateQoIs(jdist)
        mu_js = sc_obj.mean(of=['paraboloid'])
        var_js = sc_obj.variance(of=['paraboloid'])

        # Analytical mean
        mu_j_analytical = QoI.eval_QoI_analyticalmean(mu, cp.Cov(jdist))
        err = abs((mu_js['paraboloid'][0] - mu_j_analytical) / mu_j_analytical)
        self.assertTrue(err < 1.e-15)

        # Analytical variance
        var_j_analytical = QoI.eval_QoI_analyticalvariance(mu, cp.Cov(jdist))
        err = abs(
            (var_js['paraboloid'][0, 0] - var_j_analytical) / var_j_analytical)
        self.assertTrue(err < 1.e-15)
    def test_derivatives_scalarQoI(self):
        systemsize = 3
        mu = mean_3dim  # np.random.randn(systemsize)
        std_dev = std_dev_3dim  # np.diag(np.random.rand(systemsize))
        jdist = cp.MvNormal(mu, std_dev)
        # Create QoI Object
        QoI = examples.Paraboloid3D(systemsize)

        # Create the Stochastic Collocation object
        deriv_dict = {
            'xi': {
                'dQoI_func': QoI.eval_QoIGradient,
                'output_dimensions': systemsize
            }
        }
        QoI_dict = {
            'paraboloid': {
                'QoI_func': QoI.eval_QoI,
                'output_dimensions': 1,
                'deriv_dict': deriv_dict
            }
        }
        sc_obj = StochasticCollocation2(jdist,
                                        3,
                                        'MvNormal',
                                        QoI_dict,
                                        include_derivs=True)
        sc_obj.evaluateQoIs(jdist, include_derivs=True)
        dmu_j = sc_obj.dmean(of=['paraboloid'], wrt=['xi'])
        # dvar_j = sc_obj.dvariance(of=['paraboloid'], wrt=['xi'])

        # Analytical dmu_j
        dmu_j_analytical = np.array([100 * mu[0], 50 * mu[1], 2 * mu[2]])
        err = abs(
            (dmu_j['paraboloid']['xi'] - dmu_j_analytical) / dmu_j_analytical)
        self.assertTrue((err < 1.e-12).all())
    def test_nonrv_derivatives_reduced_collocation(self):
        # This test checks the analytical derivative w.r.t complex step
        systemsize = 2
        n_parameters = 2
        mu = mean_2dim  # np.random.randn(systemsize)
        std_dev = std_dev_2dim  # abs(np.diag(np.random.randn(systemsize)))
        jdist = cp.MvNormal(mu, std_dev)
        QoI = examples.PolyRVDV(data_type=complex)
        # Create the Stochastic Collocation object
        deriv_dict = {
            'dv': {
                'dQoI_func': QoI.eval_QoIGradient_dv,
                'output_dimensions': n_parameters
            }
        }
        QoI_dict = {
            'PolyRVDV': {
                'QoI_func': QoI.eval_QoI,
                'output_dimensions': 1,
                'deriv_dict': deriv_dict
            }
        }
        dv = np.random.randn(systemsize) + 0j
        QoI.set_dv(dv)
        # Create dimension reduction object
        threshold_factor = 0.9
        dominant_space = DimensionReduction(threshold_factor=threshold_factor,
                                            exact_Hessian=True)
        # Get the eigenmodes of the Hessian product and the dominant indices
        dominant_space.getDominantDirections(QoI, jdist)
        dominant_dir = dominant_space.iso_eigenvecs[:, dominant_space.
                                                    dominant_indices]
        sc_obj = StochasticCollocation2(jdist,
                                        4,
                                        'MvNormal',
                                        QoI_dict,
                                        include_derivs=True,
                                        reduced_collocation=True,
                                        dominant_dir=dominant_dir,
                                        data_type=complex)
        sc_obj.evaluateQoIs(jdist, include_derivs=True)
        dmu_j = sc_obj.dmean(of=['PolyRVDV'], wrt=['dv'])
        dvar_j = sc_obj.dvariance(of=['PolyRVDV'], wrt=['dv'])
        dstd_dev = sc_obj.dStdDev(of=['PolyRVDV'], wrt=['dv'])

        # Lets do complex step
        pert = complex(0, 1e-30)
        dmu_j_complex = np.zeros(n_parameters, dtype=complex)
        dvar_j_complex = np.zeros(n_parameters, dtype=complex)
        dstd_dev_complex = np.zeros(n_parameters, dtype=complex)
        for i in range(0, n_parameters):
            dv[i] += pert
            QoI.set_dv(dv)
            sc_obj.evaluateQoIs(jdist, include_derivs=False)
            mu_j = sc_obj.mean(of=['PolyRVDV'])
            var_j = sc_obj.variance(of=['PolyRVDV'])
            std_dev_j = np.sqrt(var_j['PolyRVDV'][0, 0])
            dmu_j_complex[i] = mu_j['PolyRVDV'].imag / pert.imag
            dvar_j_complex[i] = var_j['PolyRVDV'].imag / pert.imag
            dstd_dev_complex[i] = std_dev_j.imag / pert.imag
            dv[i] -= pert

        err1 = dmu_j['PolyRVDV']['dv'] - dmu_j_complex
        self.assertTrue((err1 < 1.e-13).all())

        err2 = dvar_j['PolyRVDV']['dv'] - dvar_j_complex
        self.assertTrue((err2 < 1.e-10).all())

        err3 = dstd_dev['PolyRVDV']['dv'] - dstd_dev_complex
        self.assertTrue((err2 < 1.e-13).all())
示例#10
0
                                        sample_radius=1.e-2)
    dominant_space.getDominantDirections(UQObj.QoI,
                                         UQObj.jdist,
                                         max_eigenmodes=4)
    # # Full collocation
    # sc_obj = StochasticCollocation2(UQObj.jdist, 3, 'MvNormal', UQObj.QoI_dict,
    #                                 include_derivs=False)
    # sc_obj.evaluateQoIs(UQObj.jdist, include_derivs=False)

    # REduced collocation
    dominant_dir = dominant_space.iso_eigenvecs[:, dominant_space.
                                                dominant_indices]
    sc_obj = StochasticCollocation2(UQObj.jdist,
                                    3,
                                    'MvNormal',
                                    UQObj.QoI_dict,
                                    include_derivs=False,
                                    reduced_collocation=True,
                                    dominant_dir=dominant_dir)
    sc_obj.evaluateQoIs(UQObj.jdist, include_derivs=False)
    # print('fvals = ')
    # print(sc_obj.QoI_dict['fuelburn']['fvals'])
    # Print initial value
    init_mu_j = sc_obj.mean(of=['fuelburn'])
    init_var_j = sc_obj.variance(of=['fuelburn'])
    # print("Mean fuelburn = ", init_mu_j['fuelburn'][0])
    # print("Variance fuelburn = ", init_var_j['fuelburn'][0])
    # print()

    mfmc_sol = {
        'twist_cp': np.array([-1.59, 0.34, 4.50]),
def run_hadamard(systemsize, eigen_decayrate, std_dev, n_eigenmodes):
    n_collocation_pts = 3

    # Create Hadmard Quadratic object
    QoI = examples.HadamardQuadratic(systemsize, eigen_decayrate)

    # Initialize chaospy distribution
    x = np.random.rand(QoI.systemsize)
    jdist = cp.MvNormal(x, np.diag(std_dev))

    threshold_factor = 1.0
    use_exact_Hessian = False
    if use_exact_Hessian:
        dominant_space = DimensionReduction(threshold_factor=threshold_factor,
                                            exact_Hessian=True)
        dominant_space.getDominantDirections(QoI, jdist)
        dominant_dir = dominant_space.iso_eigenvecs[:, 0:n_eigenmodes]
    else:
        dominant_space = DimensionReduction(threshold_factor=threshold_factor,
                                            exact_Hessian=False,
                                            n_arnoldi_sample=71,
                                            min_eigen_accuracy=1.e-2)
        dominant_space.getDominantDirections(QoI,
                                             jdist,
                                             max_eigenmodes=n_eigenmodes)
        dominant_dir = dominant_space.dominant_dir
    # print "dominant_indices = ", dominant_space.dominant_indices

    # Create stochastic collocation object
    # collocation = StochasticCollocation(n_collocation_pts, "Normal")
    QoI_dict = {
        'Hadamard': {
            'QoI_func': QoI.eval_QoI,
            'output_dimensions': 1,
        },
    }
    sc_obj = StochasticCollocation2(jdist,
                                    n_collocation_pts,
                                    'MvNormal',
                                    QoI_dict,
                                    include_derivs=False,
                                    reduced_collocation=True,
                                    dominant_dir=dominant_dir)
    sc_obj.evaluateQoIs(jdist)

    # Collocate
    # mu_j = collocation.normal.reduced_mean(QoI, jdist, dominant_space)
    mu_j = sc_obj.mean(of=['Hadamard'])
    var_j = sc_obj.variance(of=['Hadamard'])
    std_dev_j = np.sqrt(var_j['Hadamard'])
    # print "mu_j = ", mu_j

    # Evaluate the analytical value of the Hadamard Quadratic
    covariance = cp.Cov(jdist)
    mu_analytic = QoI.eval_analytical_QoI_mean(x, covariance)
    var_analytic = QoI.eval_analytical_QoI_variance(x, covariance)
    std_dev_analytic = np.sqrt(var_analytic)
    # print "mu_analytic = ", mu_analytic

    relative_error_mu = np.linalg.norm(
        (mu_j['Hadamard'] - mu_analytic) / mu_analytic)
    relative_err_var = np.linalg.norm(
        (var_j['Hadamard'] - var_analytic) / var_analytic)
    relative_err_std_dev = np.linalg.norm(
        (std_dev_j - std_dev_analytic) / std_dev_analytic)
    # print "relative_error = ", relative_error

    return relative_error_mu, relative_err_var, relative_err_std_dev
    n_dominant_dir = int(sys.argv[2])  # 11
    dominant_dir = eigenvecs[:, 0:n_dominant_dir]

use_surrogate_qoi_obj = False
if use_surrogate_qoi_obj:
    surrogate_QoI_dict = {
        'time_duration': {
            'QoI_func': surrogate_QoI.eval_QoI,
            'output_dimensions': 1,
        }
    }
    # Create the stochastic collocation object
    sc_obj = StochasticCollocation2(jdist,
                                    3,
                                    'MvNormal',
                                    surrogate_QoI_dict,
                                    reduced_collocation=True,
                                    dominant_dir=dominant_dir,
                                    include_derivs=False)
    sc_obj.evaluateQoIs(jdist)

else:
    # Create the stochastic collocation object
    sc_obj = StochasticCollocation2(jdist,
                                    2,
                                    'MvNormal',
                                    QoI_dict,
                                    reduced_collocation=True,
                                    dominant_dir=dominant_dir,
                                    include_derivs=False)
    sc_obj.evaluateQoIs(jdist)
    },
}

# Check if plugging back value also yields the expected results
QoI.p['oas_scaneagle.wing.thickness_cp'] = np.array([0.008, 0.008, 0.008])
QoI.p['oas_scaneagle.wing.twist_cp'] = np.array([2.5, 2.5, 5.])
QoI.p['oas_scaneagle.wing.sweep'] = 20.0
QoI.p['oas_scaneagle.alpha'] = 5.0

sample_radii = [1.e-1, 1.e-2, 1.e-3, 1.e-4, 1.e-5, 1.e-6]

if sys.argv[1] == 'full':
    # Create the stochastic collocation object
    sc_obj_full = StochasticCollocation2(jdist,
                                         3,
                                         'MvNormal',
                                         QoI_dict,
                                         include_derivs=False,
                                         reduced_collocation=False)
    start_time = time.time()
    sc_obj_full.evaluateQoIs(jdist, include_derivs=False)
    t_sampling = time.time()

    mu_j_full = sc_obj_full.mean(of=['fuelburn'])
    time_elapsed_mu = time.time() - t_sampling

    t_before_var = time.time()
    var_j_full = sc_obj_full.variance(of=['fuelburn'])
    time_elapsed_var = time.time() - t_before_var

    print('mu_j_full = ', mu_j_full['fuelburn'][0])
    print('var_j_full = ', var_j_full['fuelburn'][0, 0])
示例#14
0
    n_thickness_intersects = UQObj.QoI.p[
        'oas_scaneagle.AS_point_0.wing_perf.thickness_intersects'].size
    n_CM = 3

    print("eigenvals = ", UQObj.dominant_space.iso_eigenvals)
    print('eigenvecs = \n', UQObj.dominant_space.iso_eigenvecs)
    print('dominant_dir = \n', UQObj.dominant_space.dominant_dir)
    print('\n#-----------------------------------------------------------#')

    # Full collocation
    use_stochastic_collocation = False
    use_monte_carlo = True
    if use_stochastic_collocation:
        colloc_obj = StochasticCollocation2(UQObj.jdist,
                                            3,
                                            'MvNormal',
                                            UQObj.QoI_dict,
                                            include_derivs=False)
        red_colloc_obj = StochasticCollocation2(
            UQObj.jdist,
            3,
            'MvNormal',
            UQObj.QoI_dict,
            include_derivs=False,
            reduced_collocation=True,
            # dominant_dir=custom_eigenvec[:,0:int(sys.argv[1])])
            dominant_dir=UQObj.dominant_space.dominant_dir)
    elif use_monte_carlo:
        nsample = 100
        colloc_obj = MonteCarlo(nsample,
                                UQObj.jdist,