示例#1
0
    def split_linear(self, functions):
        """
        Applies linearity property of Diff: i.e.  'Diff(c*a+b)' is transformed to 'c * Diff(a) + Diff(b)'
        The parameter functions is a list of all symbols that are considered functions, not constants.
        For the example above: functions=[a, b]
        """
        constant, variable = 1, 1

        if self.arg.func != sp.Mul:
            constant, variable = 1, self.arg
        else:
            for factor in normalize_product(self.arg):
                if factor in functions or isinstance(factor, Diff):
                    variable *= factor
                else:
                    constant *= factor

        if isinstance(variable, sp.Symbol) and variable not in functions:
            return 0

        if isinstance(variable, int) or variable.is_number:
            return 0
        else:
            return constant * Diff(
                variable, target=self.target, superscript=self.superscript)
示例#2
0
def expand_diff_products(expr):
    """Fully expands all derivatives by applying product rule"""
    if isinstance(expr, Diff):
        arg = expand_diff_products(expr.args[0])
        if arg.func == sp.Add:
            new_args = [
                Diff(e, target=expr.target, superscript=expr.superscript)
                for e in arg.args
            ]
            return sp.Add(*new_args)
        if arg.func not in (sp.Mul, sp.Pow):
            return Diff(arg, target=expr.target, superscript=expr.superscript)
        else:
            prod_list = normalize_product(arg)
            result = 0
            for i in range(len(prod_list)):
                pre_factor = prod(prod_list[j] for j in range(len(prod_list))
                                  if i != j)
                result += pre_factor * Diff(prod_list[i],
                                            target=expr.target,
                                            superscript=expr.superscript)
            return result
    else:
        new_args = [expand_diff_products(e) for e in expr.args]
        return expr.func(*new_args) if new_args else expr
示例#3
0
    def handle_product(product_term):
        f_index = None
        derivative_term = None
        c_indices = []
        rest = 1
        for factor in normalize_product(product_term):
            if isinstance(factor, Diff):
                assert f_index is None
                f_index = determine_f_index(factor.get_arg_recursive())
                derivative_term = factor
            elif factor in velocity_terms:
                c_indices += [velocity_terms.index(factor)]
            else:
                new_f_index = determine_f_index(factor)
                if new_f_index is None:
                    rest *= factor
                else:
                    assert not (new_f_index and f_index)
                    f_index = new_f_index

        moment_tuple = [0] * len(velocity_terms)
        for c_idx in c_indices:
            moment_tuple[c_idx] += 1
        moment_tuple = tuple(moment_tuple)

        if use_one_neighborhood_aliasing:
            moment_tuple = non_aliased_moment(moment_tuple)
        result = CeMoment(f_index.moment_name, moment_tuple,
                          f_index.superscript)
        if derivative_term is not None:
            result = derivative_term.change_arg_recursive(result)
        result *= rest
        return result
示例#4
0
def count_vars(expr, variables):
    factor_list = normalize_product(expr)
    diffs_to_unpack = [e for e in factor_list if isinstance(e, Diff)]
    factor_list = [e for e in factor_list if not isinstance(e, Diff)]

    while diffs_to_unpack:
        d = diffs_to_unpack.pop()
        args = normalize_product(d.arg)
        for a in args:
            if isinstance(a, Diff):
                diffs_to_unpack.append(a)
            else:
                factor_list.append(a)

    result = 0
    for v in variables:
        result += factor_list.count(v)
    return result
示例#5
0
 def handle_mul(mul):
     args = normalize_product(mul)
     diffs = [a for a in args if isinstance(a, DiffOperator)]
     if len(diffs) == 0:
         return mul * argument if apply_to_constants else mul
     rest = [a for a in args if not isinstance(a, DiffOperator)]
     diffs.sort(key=_default_diff_sort_key)
     result = argument
     for d in reversed(diffs):
         result = Diff(result,
                       target=d.target,
                       superscript=d.superscript)
     return prod(rest) * result
示例#6
0
    def _compute_moments(self, recombined_eq, symbols_to_values):
        eq = recombined_eq.expand()
        assert eq.func is sp.Add

        new_products = []
        for product in eq.args:
            assert product.func is sp.Mul

            derivative = None

            new_prod = 1
            for arg in reversed(normalize_product(product)):
                if isinstance(arg, Diff):
                    assert derivative is None, "More than one derivative term in the product"
                    derivative = arg
                    arg = arg.get_arg_recursive(
                    )  # new argument is inner part of derivative

                if arg in symbols_to_values:
                    arg = symbols_to_values[arg]

                have_shape = hasattr(arg, 'shape') and hasattr(
                    new_prod, 'shape')
                if have_shape and arg.shape == new_prod.shape and arg.shape[
                        1] == 1:
                    # since sympy 1.9 sp.matrix_multiply_elementwise does not work anymore in this case
                    new_prod = sp.Matrix(np.multiply(new_prod, arg))
                else:
                    new_prod = arg * new_prod
                if new_prod == 0:
                    break

            if new_prod == 0:
                continue

            new_prod = sp.expand(sum(new_prod))

            if derivative is not None:
                new_prod = derivative.change_arg_recursive(new_prod)

            new_products.append(new_prod)

        return normalize_diff_order(
            expand_diff_linear(sp.Add(*new_products),
                               functions=self.physical_variables))
示例#7
0
文件: analytical.py 项目: mabau/lbmpy
def extract_gamma(free_energy, order_parameters):
    """Extracts parameters before the gradient terms"""
    result = defaultdict(lambda: 0)
    free_energy = free_energy.expand()
    assert free_energy.func == sp.Add
    for product in free_energy.args:
        product = normalize_product(product)
        diff_factors = [e for e in product if e.func == Diff]
        if len(diff_factors) == 0:
            continue

        if len(diff_factors) != 2:
            raise ValueError(f"Could not determine Λ because of term {str(product)}")

        indices = sorted([order_parameters.index(d.args[0]) for d in diff_factors])
        increment = prod(e for e in product if e.func != Diff)
        if diff_factors[0] == diff_factors[1]:
            increment *= 2
        result[tuple(indices)] += increment
    return result
示例#8
0
    def expr_to_diff_decomposition(expression):
        """Decomposes a sp.Add node containing CeDiffs into:
        diff_dict: maps (target, superscript) -> [ (pre_factor, argument), ... ]
        i.e.  a partial(b) ( a is pre-factor, b is argument)
            in case of partial(a) partial(b) two entries are created  (0.5 partial(a), b), (0.5 partial(b), a)
        """
        DiffInfo = namedtuple("DiffInfo", ["target", "superscript"])

        class DiffSplit:
            def __init__(self, fac, argument):
                self.pre_factor = fac
                self.argument = argument

            def __repr__(self):
                return str((self.pre_factor, self.argument))

        assert isinstance(expression, sp.Add)
        diff_dict = defaultdict(list)
        rest = 0
        for term in expression.args:
            if isinstance(term, Diff):
                diff_dict[DiffInfo(term.target, term.superscript)].append(
                    DiffSplit(1, term.arg))
            else:
                mul_args = normalize_product(term)
                diffs = [d for d in mul_args if isinstance(d, Diff)]
                factor = prod(d for d in mul_args if not isinstance(d, Diff))
                if len(diffs) == 0:
                    rest += factor
                else:
                    for i, diff in enumerate(diffs):
                        all_but_current = [
                            d for j, d in enumerate(diffs) if i != j
                        ]
                        pre_factor = factor * prod(
                            all_but_current) * sp.Rational(1, len(diffs))
                        diff_dict[DiffInfo(diff.target,
                                           diff.superscript)].append(
                                               DiffSplit(pre_factor, diff.arg))

        return diff_dict, rest
示例#9
0
    def visit(e):
        if not isinstance(e, sp.Tuple):
            e = e.expand()

        if e.func == Diff:
            result = 0
            diff_args = {'target': e.target, 'superscript': e.superscript}
            diff_inner = e.args[0]
            diff_inner = visit(diff_inner)
            if diff_inner.func not in (sp.Add, sp.Mul):
                return e
            for term in diff_inner.args if diff_inner.func == sp.Add else [
                    diff_inner
            ]:
                independent_terms = 1
                dependent_terms = []
                for factor in normalize_product(term):
                    if factor in functions or isinstance(factor, Diff):
                        dependent_terms.append(factor)
                    else:
                        independent_terms *= factor
                for i in range(len(dependent_terms)):
                    dependent_term = dependent_terms[i]
                    other_dependent_terms = dependent_terms[:
                                                            i] + dependent_terms[
                                                                i + 1:]
                    processed_diff = normalize_diff_order(
                        Diff(dependent_term, **diff_args))
                    result += independent_terms * prod(
                        other_dependent_terms) * processed_diff
            return result
        elif isinstance(e, sp.Piecewise):
            return sp.Piecewise(*((expand_diff_full(a, functions, constants),
                                   b) for a, b in e.args))
        elif isinstance(expr, sp.Tuple):
            new_args = [visit(arg) for arg in e.args]
            return sp.Tuple(*new_args)
        else:
            new_args = [visit(arg) for arg in e.args]
            return e.func(*new_args) if new_args else e
示例#10
0
        def handle_postcollision_values(expr):
            expr = expr.expand()
            assert isinstance(expr, sp.Add)
            result = 0
            for summand in expr.args:

                moment = summand.atoms(CeMoment)
                moment = moment.pop()
                collision_operator_exponent = normalize_product(summand).count(
                    collision_operator)
                if collision_operator_exponent == 0:
                    result += summand
                else:
                    substitutions = {
                        collision_operator:
                        1,
                        moment:
                        -moment_computation.get_post_collision_moment(
                            moment, -collision_operator_exponent),
                    }
                    result += summand.subs(substitutions)

            return result