示例#1
0
def test_visualization_motionfields_quiver(source, axis, step, quiver_kwargs,
                                           map_kwargs, upscale, pass_geodata):

    if source is not None:
        fields, geodata = get_precipitation_fields(0, 2, False, True, upscale,
                                                   source)
        if not pass_geodata:
            geodata = None
        ax = plot_precip_field(fields[-1], geodata=geodata)
        oflow_method = motion.get_method("LK")
        UV = oflow_method(fields)

    else:
        shape = (100, 100)
        geodata = None
        ax = None
        u = np.ones(shape[1]) * shape[0]
        v = np.arange(0, shape[0])
        U, V = np.meshgrid(u, v)
        UV = np.concatenate([U[None, :], V[None, :]])

    UV_orig = UV.copy()
    __ = quiver(UV,
                ax,
                geodata,
                axis,
                step,
                quiver_kwargs,
                map_kwargs=map_kwargs)

    # Check that quiver does not modify the input data
    assert np.array_equal(UV, UV_orig)
示例#2
0
def test_visualization_motionfields_quiver(
    source,
    map,
    drawlonlatlines,
    lw,
    axis,
    step,
    quiver_kwargs,
    upscale,
):

    if map == "cartopy":
        pytest.importorskip("cartopy")
    elif map == "basemap":
        pytest.importorskip("basemap")

    if source is not None:
        fields, geodata = get_precipitation_fields(0, 2, False, True, upscale,
                                                   source)
        ax = plot_precip_field(
            fields[-1],
            map=map,
            geodata=geodata,
        )
        oflow_method = motion.get_method("LK")
        UV = oflow_method(fields)

    else:
        shape = (100, 100)
        geodata = None
        ax = None
        u = np.ones(shape[1]) * shape[0]
        v = np.arange(0, shape[0])
        U, V = np.meshgrid(u, v)
        UV = np.concatenate([U[None, :], V[None, :]])

    __ = quiver(UV, ax, map, geodata, drawlonlatlines, lw, axis, step,
                quiver_kwargs)
def plot_optflow_method_convergence(input_precip,
                                    optflow_method_name,
                                    motion_type):
    """
    Test the convergence to the actual solution of the optical flow method used.

    Parameters
    ----------

    input_precip: numpy array (lat, lon)
        Input precipitation field.

    optflow_method_name: str
        Optical flow method name

    motion_type : str
        The supported motion fields are:

            - linear_x: (u=2, v=0)
            - linear_y: (u=0, v=2)
            - rotor: rotor field
    """

    if optflow_method_name.lower() != "darts":
        num_times = 2
    else:
        num_times = 9

    ideal_motion, precip_obs = create_observations(input_precip,
                                                   motion_type,
                                                   num_times=num_times)

    oflow_method = motion.get_method(optflow_method_name)

    computed_motion = oflow_method(precip_obs, verbose=False)

    precip_obs, _ = stp.utils.dB_transform(precip_obs, inverse=True)

    precip_data = precip_obs.max(axis=0)
    precip_data.data[precip_data.mask] = 0

    precip_mask = ((uniform_filter(precip_data, size=20) > 0.1)
                   & ~precip_obs.mask.any(axis=0))

    cmap = get_cmap('jet')
    cmap.set_under('grey', alpha=0.25)
    cmap.set_over('none')

    # Compare retrieved motion field with the ideal one
    plt.figure(figsize=(9, 4))
    plt.subplot(1, 2, 1)
    ax = plot_precip_field(precip_obs[0], title="Reference motion")
    quiver(ideal_motion, step=25, ax=ax)

    plt.subplot(1, 2, 2)
    ax = plot_precip_field(precip_obs[0], title="Retrieved motion")
    quiver(computed_motion, step=25, ax=ax)

    # To evaluate the accuracy of the computed_motion vectors, we will use
    # a relative RMSE measure.
    # Relative MSE = < (expected_motion - computed_motion)^2 > / <expected_motion^2 >
    # Relative RMSE = sqrt(Relative MSE)

    mse = ((ideal_motion - computed_motion)[:, precip_mask] ** 2).mean()

    rel_mse = mse / (ideal_motion[:, precip_mask] ** 2).mean()
    plt.suptitle(f"{optflow_method_name} "
                 f"Relative RMSE: {np.sqrt(rel_mse) * 100:.2f}%")
    plt.show()
# Estimate the motion field with Lucas-Kanade
oflow_method = motion.get_method("LK")
V = oflow_method(R[-3:, :, :])

# Extrapolate the last radar observation
extrapolate = nowcasts.get_method("extrapolation")
R[~np.isfinite(R)] = metadata["zerovalue"]
R_f = extrapolate(R[-1, :, :], V, n_leadtimes)

# Back-transform to rain rate
R_f = transformation.dB_transform(R_f, threshold=-10.0, inverse=True)[0]

# Plot the motion field
plot_precip_field(R_, geodata=metadata)
quiver(V, geodata=metadata, step=50)

###############################################################################
# Verify with FSS
# ---------------
#
# The fractions skill score (FSS) provides an intuitive assessment of the
# dependency of skill on spatial scale and intensity, which makes it an ideal
# skill score for high-resolution precipitation forecasts.

# Find observations in the data archive
fns = io.archive.find_by_date(
    date,
    root_path,
    path_fmt,
    fn_pattern,
示例#5
0
################################################################################
# Lucas-Kanade (LK)
# -----------------
#
# The Lucas-Kanade optical flow method implemented in pysteps is a local
# tracking approach that relies on the OpenCV package.
# Local features are tracked in a sequence of two or more radar images. The
# scheme includes a final interpolation step in order to produce a smooth
# field of motion vectors.

oflow_method = motion.get_method("LK")
V1 = oflow_method(R[-3:, :, :])

# Plot the motion field on top of the reference frame
plot_precip_field(R_, geodata=metadata, title="LK")
quiver(V1, geodata=metadata, step=25)
plt.show()

################################################################################
# Variational echo tracking (VET)
# -------------------------------
#
# This module implements the VET algorithm presented
# by Laroche and Zawadzki (1995) and used in the McGill Algorithm for
# Prediction by Lagrangian Extrapolation (MAPLE) described in
# Germann and Zawadzki (2002).
# The approach essentially consists of a global optimization routine that seeks
# at minimizing a cost function between the displaced and the reference image.

oflow_method = motion.get_method("VET")
V2 = oflow_method(R[-3:, :, :])