示例#1
0
def main():
    print("Please be patient. Will take 5-20 minutes.")
    snakes = load_snakes()
    X_train, Y_train = snakes['X_train'], snakes['Y_train']

    X_train = [one_hot_colors(x) for x in X_train]
    Y_train_flat = [y_.ravel() for y_ in Y_train]

    X_train_directions, X_train_edge_features = prepare_data(X_train)

    # first, train on X with directions only:
    crf = EdgeFeatureGraphCRF(inference_method='qpbo')
    ssvm = OneSlackSSVM(crf, inference_cache=50, C=.1, tol=.1, switch_to='ad3',
                        n_jobs=-1)
    ssvm.fit(X_train_directions, Y_train_flat)

    # Evaluate using confusion matrix.
    # Clearly the middel of the snake is the hardest part.
    X_test, Y_test = snakes['X_test'], snakes['Y_test']
    X_test = [one_hot_colors(x) for x in X_test]
    Y_test_flat = [y_.ravel() for y_ in Y_test]
    X_test_directions, X_test_edge_features = prepare_data(X_test)
    Y_pred = ssvm.predict(X_test_directions)
    print("Results using only directional features for edges")
    print("Test accuracy: %.3f"
          % accuracy_score(np.hstack(Y_test_flat), np.hstack(Y_pred)))
    print(confusion_matrix(np.hstack(Y_test_flat), np.hstack(Y_pred)))

    # now, use more informative edge features:
    crf = EdgeFeatureGraphCRF(inference_method='qpbo')
    ssvm = OneSlackSSVM(crf, inference_cache=50, C=.1, tol=.1, switch_to='ad3',
                        n_jobs=-1)
    ssvm.fit(X_train_edge_features, Y_train_flat)
    Y_pred2 = ssvm.predict(X_test_edge_features)
    print("Results using also input features for edges")
    print("Test accuracy: %.3f"
          % accuracy_score(np.hstack(Y_test_flat), np.hstack(Y_pred2)))
    print(confusion_matrix(np.hstack(Y_test_flat), np.hstack(Y_pred2)))

    # plot stuff
    fig, axes = plt.subplots(2, 2)
    axes[0, 0].imshow(snakes['X_test'][0], interpolation='nearest')
    axes[0, 0].set_title('Input')
    y = Y_test[0].astype(np.int)
    bg = 2 * (y != 0)  # enhance contrast
    axes[0, 1].matshow(y + bg, cmap=plt.cm.Greys)
    axes[0, 1].set_title("Ground Truth")
    axes[1, 0].matshow(Y_pred[0].reshape(y.shape) + bg, cmap=plt.cm.Greys)
    axes[1, 0].set_title("Prediction w/o edge features")
    axes[1, 1].matshow(Y_pred2[0].reshape(y.shape) + bg, cmap=plt.cm.Greys)
    axes[1, 1].set_title("Prediction with edge features")
    for a in axes.ravel():
        a.set_xticks(())
        a.set_yticks(())
    plt.show()
    from IPython.core.debugger import Tracer
    Tracer()()
from plot_snakes import one_hot_colors, prepare_data

def REPORT(l_Y_GT, lY_Pred, t=None):
    if t: print "\t( predict DONE IN %.1fs)"%t
        
    _flat_GT, _flat_P = (np.hstack([y.ravel() for y in l_Y_GT]),  
                         np.hstack([y.ravel() for y in lY_Pred]))
    confmat = confusion_matrix(_flat_GT, _flat_P)
    print confmat
    print "\ttrace   =", confmat.trace()
    print "\tAccuracy= %.3f"%accuracy_score(_flat_GT, _flat_P)    


print("Please be patient. Learning will take 5-20 minutes.")
snakes = load_snakes()
X_train, Y_train = snakes['X_train'], snakes['Y_train']
#X_train, Y_train = X_train[:5], Y_train[:5]

X_train = [one_hot_colors(x) for x in X_train]
Y_train_flat = [y_.ravel() for y_ in Y_train]

X_train_directions, X_train_edge_features = prepare_data(X_train)
print "%d picture for training"%len(X_train)

# Evaluate using confusion matrix.
# Clearly the middel of the snake is the hardest part.
X_test, Y_test = snakes['X_test'], snakes['Y_test']
X_test = [one_hot_colors(x) for x in X_test]
Y_test_flat = [y_.ravel() for y_ in Y_test]
X_test_directions, X_test_edge_features = prepare_data(X_test)
示例#3
0
def main():
    print("Please be patient. Will take 5-20 minutes.")
    snakes = load_snakes()
    X_train, Y_train = snakes['X_train'], snakes['Y_train']

    X_train = [one_hot_colors(x) for x in X_train]
    Y_train_flat = [y_.ravel() for y_ in Y_train]

    X_train_directions, X_train_edge_features = prepare_data(X_train)

    if 'ogm' in get_installed():
        inference = ('ogm', {'alg': 'fm'})
    else:
        inference = 'qpbo'
    # first, train on X with directions only:
    crf = EdgeFeatureGraphCRF(inference_method=inference)
    ssvm = OneSlackSSVM(crf,
                        inference_cache=50,
                        C=.1,
                        tol=.1,
                        max_iter=100,
                        n_jobs=1)
    ssvm.fit(X_train_directions, Y_train_flat)

    # Evaluate using confusion matrix.
    # Clearly the middel of the snake is the hardest part.
    X_test, Y_test = snakes['X_test'], snakes['Y_test']
    X_test = [one_hot_colors(x) for x in X_test]
    Y_test_flat = [y_.ravel() for y_ in Y_test]
    X_test_directions, X_test_edge_features = prepare_data(X_test)
    Y_pred = ssvm.predict(X_test_directions)
    print("Results using only directional features for edges")
    print("Test accuracy: %.3f" %
          accuracy_score(np.hstack(Y_test_flat), np.hstack(Y_pred)))
    print(confusion_matrix(np.hstack(Y_test_flat), np.hstack(Y_pred)))

    # now, use more informative edge features:
    crf = EdgeFeatureGraphCRF(inference_method=inference)
    ssvm = OneSlackSSVM(crf,
                        inference_cache=50,
                        C=.1,
                        tol=.1,
                        switch_to='ad3',
                        n_jobs=1)
    ssvm.fit(X_train_edge_features, Y_train_flat)
    Y_pred2 = ssvm.predict(X_test_edge_features)
    print("Results using also input features for edges")
    print("Test accuracy: %.3f" %
          accuracy_score(np.hstack(Y_test_flat), np.hstack(Y_pred2)))
    print(confusion_matrix(np.hstack(Y_test_flat), np.hstack(Y_pred2)))

    # plot stuff
    fig, axes = plt.subplots(2, 2)
    axes[0, 0].imshow(snakes['X_test'][0], interpolation='nearest')
    axes[0, 0].set_title('Input')
    y = Y_test[0].astype(np.int)
    bg = 2 * (y != 0)  # enhance contrast
    axes[0, 1].matshow(y + bg, cmap=plt.cm.Greys)
    axes[0, 1].set_title("Ground Truth")
    axes[1, 0].matshow(Y_pred[0].reshape(y.shape) + bg, cmap=plt.cm.Greys)
    axes[1, 0].set_title("Prediction w/o edge features")
    axes[1, 1].matshow(Y_pred2[0].reshape(y.shape) + bg, cmap=plt.cm.Greys)
    axes[1, 1].set_title("Prediction with edge features")
    for a in axes.ravel():
        a.set_xticks(())
        a.set_yticks(())
    plt.show()
    from IPython.core.debugger import Tracer
    Tracer()()
示例#4
0
        # vertical
        edge_features_directions = edge_list_to_features([right, down])
        # edge feature that contains features from the nodes that the edge connects
        edge_features = np.zeros((edges.shape[0], features.shape[1], 4))
        edge_features[:len(right), :, 0] = features[right[:, 0]]
        edge_features[:len(right), :, 1] = features[right[:, 1]]
        edge_features[len(right):, :, 0] = features[down[:, 0]]
        edge_features[len(right):, :, 1] = features[down[:, 1]]
        edge_features = edge_features.reshape(edges.shape[0], -1)
        X_directions.append((features, edges, edge_features_directions))
        X_edge_features.append((features, edges, edge_features))
    return X_directions, X_edge_features


print("Please be patient. Will take 5-20 minutes.")
snakes = load_snakes()
X_train, Y_train = snakes['X_train'], snakes['Y_train']

X_train = [one_hot_colors(x) for x in X_train]
Y_train_flat = [y_.ravel() for y_ in Y_train]

X_train_directions, X_train_edge_features = prepare_data(X_train)

if 'ogm' in get_installed():
    inference = ('ogm', {'alg': 'fm'})
else:
    inference = 'qpbo'
# first, train on X with directions only:
crf = EdgeFeatureGraphCRF(inference_method=inference)
ssvm = OneSlackSSVM(crf,
                    inference_cache=50,
示例#5
0
def test_dataset_loading():
    # test that we can read the datasets.
    load_scene()
    load_letters()
    load_snakes()