def test_latent_node_boxes_edge_features():
    # learn the "easy" 2x2 boxes dataset.
    # smoketest using a single constant edge feature

    X, Y = make_simple_2x2(seed=1, n_samples=40)
    latent_crf = EdgeFeatureLatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
    base_svm = OneSlackSSVM(latent_crf)
    base_svm.C = 10
    latent_svm = LatentSSVM(base_svm,
                            latent_iter=10)

    G = [make_grid_edges(x) for x in X]

    # make edges for hidden states:
    edges = make_edges_2x2()

    G = [np.vstack([make_grid_edges(x), edges]) for x in X]

    # reshape / flatten x and y
    X_flat = [x.reshape(-1, 1) for x in X]
    Y_flat = [y.ravel() for y in Y]

    #X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
    # add edge features
    X_ = [(x, g, np.ones((len(g), 1)), 4) for x, g in zip(X_flat, G)]
    latent_svm.fit(X_[:20], Y_flat[:20])

    assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
    assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)

    # test that score is not always 1
    assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
def test_latent_node_boxes_standard_latent():
    # learn the "easy" 2x2 boxes dataset.
    # a 2x2 box is placed randomly in a 4x4 grid
    # we add a latent variable for each 2x2 patch
    # that should make the model fairly simple

    X, Y = make_simple_2x2(seed=1, n_samples=40)
    latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = NSlackSSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf, max_iter=100)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm,
                                latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = make_edges_2x2()

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        Y_flat = [y.ravel() for y in Y]

        X_ = list(zip(X_flat, G, [2 * 2 for x in X_flat]))
        latent_svm.fit(X_[:20], Y_flat[:20])

        assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
        assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)

        # test that score is not always 1
        assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
示例#3
0
def test_latent_node_boxes_standard_latent():
    # learn the "easy" 2x2 boxes dataset.
    # a 2x2 box is placed randomly in a 4x4 grid
    # we add a latent variable for each 2x2 patch
    # that should make the model fairly simple

    X, Y = make_simple_2x2(seed=1, n_samples=40)
    latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = NSlackSSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf, max_iter=100)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm, latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = make_edges_2x2()

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        Y_flat = [y.ravel() for y in Y]

        X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
        latent_svm.fit(X_[:20], Y_flat[:20])

        assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
        assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)

        # test that score is not always 1
        assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
示例#4
0
def test_latent_node_boxes_edge_features():
    # learn the "easy" 2x2 boxes dataset.
    # smoketest using a single constant edge feature

    X, Y = make_simple_2x2(seed=1, n_samples=40)
    latent_crf = EdgeFeatureLatentNodeCRF(n_labels=2,
                                          n_hidden_states=2,
                                          n_features=1)
    base_svm = OneSlackSSVM(latent_crf)
    base_svm.C = 10
    latent_svm = LatentSSVM(base_svm, latent_iter=10)

    G = [make_grid_edges(x) for x in X]

    # make edges for hidden states:
    edges = make_edges_2x2()

    G = [np.vstack([make_grid_edges(x), edges]) for x in X]

    # reshape / flatten x and y
    X_flat = [x.reshape(-1, 1) for x in X]
    Y_flat = [y.ravel() for y in Y]

    #X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
    # add edge features
    X_ = [(x, g, np.ones((len(g), 1)), 4) for x, g in zip(X_flat, G)]
    latent_svm.fit(X_[:20], Y_flat[:20])

    assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
    assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)

    # test that score is not always 1
    assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
def test_latent_node_boxes_standard_latent_features():
    # learn the "easy" 2x2 boxes dataset.
    # we make it even easier now by adding features that encode the correct
    # latent state. This basically tests that the features are actually used

    X, Y = make_simple_2x2(seed=1, n_samples=20, n_flips=6)
    latent_crf = LatentNodeCRF(n_labels=2,
                               n_hidden_states=2,
                               n_features=1,
                               latent_node_features=True)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = NSlackSSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf,
                                  max_iter=100,
                                  learning_rate=0.01,
                                  momentum=0)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm, latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = make_edges_2x2()

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        # augment X with the features for hidden units
        X_flat = [
            np.vstack([x, y[::2, ::2].reshape(-1, 1)])
            for x, y in zip(X_flat, Y)
        ]
        Y_flat = [y.ravel() for y in Y]

        X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
        latent_svm.fit(X_[:10], Y_flat[:10])

        assert_array_equal(latent_svm.predict(X_[:10]), Y_flat[:10])
        assert_equal(latent_svm.score(X_[:10], Y_flat[:10]), 1)

        # we actually become prefect ^^
        assert_true(.98 < latent_svm.score(X_[10:], Y_flat[10:]) <= 1)
def test_latent_node_boxes_latent_subgradient():
    # same as above, now with elementary subgradients

    X, Y = make_simple_2x2(seed=1)
    latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
    latent_svm = SubgradientLatentSSVM(model=latent_crf, max_iter=50, C=10)

    G = [make_grid_edges(x) for x in X]

    edges = make_edges_2x2()
    G = [np.vstack([make_grid_edges(x), edges]) for x in X]

    # reshape / flatten x and y
    X_flat = [x.reshape(-1, 1) for x in X]
    Y_flat = [y.ravel() for y in Y]

    X_ = list(zip(X_flat, G, [4 * 4 for x in X_flat]))
    latent_svm.fit(X_, Y_flat)

    assert_equal(latent_svm.score(X_, Y_flat), 1)
示例#7
0
def test_latent_node_boxes_latent_subgradient():
    # same as above, now with elementary subgradients

    X, Y = make_simple_2x2(seed=1)
    latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
    latent_svm = SubgradientLatentSSVM(model=latent_crf, max_iter=50, C=10)

    G = [make_grid_edges(x) for x in X]

    edges = make_edges_2x2()
    G = [np.vstack([make_grid_edges(x), edges]) for x in X]

    # reshape / flatten x and y
    X_flat = [x.reshape(-1, 1) for x in X]
    Y_flat = [y.ravel() for y in Y]

    X_ = zip(X_flat, G, [4 * 4 for x in X_flat])
    latent_svm.fit(X_, Y_flat)

    assert_equal(latent_svm.score(X_, Y_flat), 1)
def test_latent_node_boxes_standard_latent_features():
    # learn the "easy" 2x2 boxes dataset.
    # we make it even easier now by adding features that encode the correct
    # latent state. This basically tests that the features are actually used

    X, Y = make_simple_2x2(seed=1, n_samples=20, n_flips=6)
    latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1,
                               latent_node_features=True)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = NSlackSSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf, max_iter=100, learning_rate=0.01,
                                  momentum=0)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm,
                                latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = make_edges_2x2()

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        # augment X with the features for hidden units
        X_flat = [np.vstack([x, y[::2, ::2].reshape(-1, 1)])
                  for x, y in zip(X_flat, Y)]
        Y_flat = [y.ravel() for y in Y]

        X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
        latent_svm.fit(X_[:10], Y_flat[:10])

        assert_array_equal(latent_svm.predict(X_[:10]), Y_flat[:10])
        assert_equal(latent_svm.score(X_[:10], Y_flat[:10]), 1)

        # we actually become prefect ^^
        assert_true(.98 < latent_svm.score(X_[10:], Y_flat[10:]) <= 1)
        for a, x in zip(ax[0], boxes):
            plot_grid(x[size * size:].reshape(size / 2, size / 2), cmap=cmap,
                      axes=a, border_color="green")
        for a, x in zip(ax[1], boxes):
            plot_grid(x[:size * size].reshape(size, size), cmap=cmap, axes=a,
                      border_color="green")
    fig.subplots_adjust(.01, .03, .98, .75, .2, .05)
    fig.suptitle(title)


# learn the "easy" 2x2 boxes dataset.
# a 2x2 box is placed randomly in a 4x4 grid
# we add a latent variable for each 2x2 patch
# that should make the model fairly simple

X, Y = make_simple_2x2(seed=1)

# flatten X and Y
X_flat = [x.reshape(-1, 1).astype(np.float) for x in X]
Y_flat = [y.ravel() for y in Y]


# first, use standard graph CRF. Can't do much, high loss.
crf = GraphCRF()
svm = NSlackSSVM(model=crf, max_iter=200, C=1, n_jobs=1)

G = [make_grid_edges(x) for x in X]

X_grid_edges = list(zip(X_flat, G))
svm.fit(X_grid_edges, Y_flat)
plot_boxes(svm.predict(X_grid_edges), title="Non-latent SSVM predictions")
示例#10
0
                      border_color="green")
        for a, x in zip(ax[1], boxes):
            plot_grid(x[:size * size].reshape(size, size),
                      cmap=cmap,
                      axes=a,
                      border_color="green")
    fig.subplots_adjust(.01, .03, .98, .75, .2, .05)
    fig.suptitle(title)


# learn the "easy" 2x2 boxes dataset.
# a 2x2 box is placed randomly in a 4x4 grid
# we add a latent variable for each 2x2 patch
# that should make the model fairly simple

X, Y = make_simple_2x2(seed=1)

# flatten X and Y
X_flat = [x.reshape(-1, 1).astype(np.float) for x in X]
Y_flat = [y.ravel() for y in Y]

# first, use standard graph CRF. Can't do much, high loss.
crf = GraphCRF()
svm = NSlackSSVM(model=crf, max_iter=200, C=1, n_jobs=1)

G = [make_grid_edges(x) for x in X]

asdf = zip(X_flat, G)
svm.fit(asdf, Y_flat)
plot_boxes(svm.predict(asdf), title="Non-latent SSVM predictions")
print("Training score binary grid CRF: %f" % svm.score(asdf, Y_flat))