示例#1
0
def test_switch_to_ad3():
    # smoketest only
    # test if switching between qpbo and ad3 works inside latent svm
    # use less perfect initialization

    if not get_installed(['qpbo']) or not get_installed(['ad3']):
        return
    X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]

    crf = LatentGridCRF(n_states_per_label=2,
                        inference_method='qpbo')
    crf.initialize(X, Y)
    H_init = crf.init_latent(X, Y)

    np.random.seed(0)
    mask = np.random.uniform(size=H_init.shape) > .7
    H_init[mask] = 2 * (H_init[mask] / 2)

    base_ssvm = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
                             inference_cache=50, max_iter=10000,
                             switch_to=('ad3', {'branch_and_bound': True}),
                             C=10. ** 3)
    clf = LatentSSVM(base_ssvm)

    clf.fit(X, Y, H_init=H_init)
    assert_equal(clf.model.inference_method[0], 'ad3')

    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
    # test that score is not always 1
    assert_true(.98 < clf.score(X_test, Y_test) < 1)
def test_with_crosses_bad_init():
    # use less perfect initialization
    rnd = np.random.RandomState(0)
    X, Y = toy.generate_crosses(n_samples=20, noise=5, n_crosses=1,
                                total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]
    n_labels = 2
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2)
    H_init = crf.init_latent(X, Y)

    mask = rnd.uniform(size=H_init.shape) > .7
    H_init[mask] = 2 * (H_init[mask] / 2)

    one_slack = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
                             inference_cache=50, max_iter=10000)
    n_slack = NSlackSSVM(crf)
    subgradient = SubgradientSSVM(crf, max_iter=150, learning_rate=.01,
                                  momentum=0)

    for base_ssvm in [one_slack, n_slack, subgradient]:
        base_ssvm.C = 10. ** 2
        clf = LatentSSVM(base_ssvm)

        clf.fit(X, Y, H_init=H_init)
        Y_pred = clf.predict(X)

        assert_array_equal(np.array(Y_pred), Y)
        # test that score is not always 1
        assert_true(.98 < clf.score(X_test, Y_test) < 1)
示例#3
0
def test_with_crosses_bad_init():
    # use less perfect initialization
    X, Y = toy.generate_crosses(n_samples=10, noise=5, n_crosses=1,
                                total_size=8)
    n_labels = 2
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2,
                        inference_method='lp')
    H_init = crf.init_latent(X, Y)

    mask = np.random.uniform(size=H_init.shape) > .7
    H_init[mask] = 2 * (H_init[mask] / 2)

    one_slack = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
                             inference_cache=50, max_iter=10000)
    n_slack = StructuredSVM(crf)
    subgradient = SubgradientSSVM(crf, max_iter=150, learning_rate=5)

    for base_ssvm in [one_slack, n_slack, subgradient]:
        base_ssvm.C = 10. ** 3
        base_ssvm.n_jobs = -1
        clf = LatentSSVM(base_ssvm)

        clf.fit(X, Y, H_init=H_init)
        Y_pred = clf.predict(X)

        assert_array_equal(np.array(Y_pred), Y)
示例#4
0
def main():
    # get some data
    X, Y = toy.generate_bars(n_samples=40,
                             noise=10,
                             total_size=10,
                             separate_labels=False)
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5)

    # train a latent grid crf
    n_labels = len(np.unique(Y_train))
    crf = LatentDirectionalGridCRF(n_labels=n_labels,
                                   n_states_per_label=[1, 6],
                                   inference_method='lp')
    clf = LatentSSVM(problem=crf,
                     max_iter=50,
                     C=10.,
                     verbose=2,
                     check_constraints=True,
                     n_jobs=-1,
                     break_on_bad=False,
                     tol=-10,
                     base_svm='1-slack')
    clf.fit(X_train, Y_train)

    # the rest is plotting
    for X_, Y_, H, name in [[X_train, Y_train, clf.H_init_, "train"],
                            [X_test, Y_test, [None] * len(X_test), "test"]]:
        Y_pred = clf.predict(X_)
        i = 0
        loss = 0
        for x, y, h_init, y_pred in zip(X_, Y_, H, Y_pred):
            loss += np.sum(y != y_pred)
            fig, ax = plt.subplots(3, 2)
            ax[0, 0].matshow(y, vmin=0, vmax=crf.n_labels - 1)
            ax[0, 0].set_title("ground truth")
            unary_pred = np.argmax(x, axis=-1)
            ax[0, 1].matshow(unary_pred, vmin=0, vmax=crf.n_labels - 1)
            ax[0, 1].set_title("unaries only")
            if h_init is None:
                ax[1, 0].set_visible(False)
            else:
                ax[1, 0].matshow(h_init, vmin=0, vmax=crf.n_states - 1)
                ax[1, 0].set_title("latent initial")
            ax[1, 1].matshow(crf.latent(x, y, clf.w),
                             vmin=0,
                             vmax=crf.n_states - 1)
            ax[1, 1].set_title("latent final")
            ax[2, 0].matshow(crf.inference(x, clf.w),
                             vmin=0,
                             vmax=crf.n_states - 1)
            ax[2, 0].set_title("prediction")
            ax[2, 1].matshow(y_pred, vmin=0, vmax=crf.n_labels - 1)
            ax[2, 1].set_title("prediction")
            for a in ax.ravel():
                a.set_xticks(())
                a.set_yticks(())
            fig.savefig("data_%s_%03d.png" % (name, i), bbox_inches="tight")
            i += 1
        print("loss %s set: %f" % (name, loss))
示例#5
0
def test_directional_bars():
    X, Y = generate_easy(n_samples=10, noise=5, box_size=2, total_size=6, seed=1)
    n_labels = 2
    crf = LatentDirectionalGridCRF(n_labels=n_labels, n_states_per_label=[1, 4])
    clf = LatentSSVM(OneSlackSSVM(model=crf, max_iter=500, C=10.0, inference_cache=50, tol=0.01))
    clf.fit(X, Y)
    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
def main():
    # get some data
    X, Y = toy.generate_bars(n_samples=40, noise=10, total_size=10, separate_labels=False)
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.5)

    # train a latent grid crf
    n_labels = len(np.unique(Y_train))
    crf = LatentDirectionalGridCRF(n_labels=n_labels, n_states_per_label=[1, 6], inference_method="lp")
    clf = LatentSSVM(
        problem=crf,
        max_iter=50,
        C=10.0,
        verbose=2,
        check_constraints=True,
        n_jobs=-1,
        break_on_bad=False,
        tol=-10,
        base_svm="1-slack",
    )
    clf.fit(X_train, Y_train)

    # the rest is plotting
    for X_, Y_, H, name in [[X_train, Y_train, clf.H_init_, "train"], [X_test, Y_test, [None] * len(X_test), "test"]]:
        Y_pred = clf.predict(X_)
        i = 0
        loss = 0
        for x, y, h_init, y_pred in zip(X_, Y_, H, Y_pred):
            loss += np.sum(y != y_pred)
            fig, ax = plt.subplots(3, 2)
            ax[0, 0].matshow(y, vmin=0, vmax=crf.n_labels - 1)
            ax[0, 0].set_title("ground truth")
            unary_pred = np.argmax(x, axis=-1)
            ax[0, 1].matshow(unary_pred, vmin=0, vmax=crf.n_labels - 1)
            ax[0, 1].set_title("unaries only")
            if h_init is None:
                ax[1, 0].set_visible(False)
            else:
                ax[1, 0].matshow(h_init, vmin=0, vmax=crf.n_states - 1)
                ax[1, 0].set_title("latent initial")
            ax[1, 1].matshow(crf.latent(x, y, clf.w), vmin=0, vmax=crf.n_states - 1)
            ax[1, 1].set_title("latent final")
            ax[2, 0].matshow(crf.inference(x, clf.w), vmin=0, vmax=crf.n_states - 1)
            ax[2, 0].set_title("prediction")
            ax[2, 1].matshow(y_pred, vmin=0, vmax=crf.n_labels - 1)
            ax[2, 1].set_title("prediction")
            for a in ax.ravel():
                a.set_xticks(())
                a.set_yticks(())
            fig.savefig("data_%s_%03d.png" % (name, i), bbox_inches="tight")
            i += 1
        print("loss %s set: %f" % (name, loss))
示例#7
0
def main():
    X, Y = toy.generate_crosses(n_samples=40, noise=8, n_crosses=2,
                                total_size=10)
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5)
    n_labels = len(np.unique(Y_train))
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2,
                        inference_method='lp')
    clf = LatentSSVM(problem=crf, max_iter=50, C=1000., verbose=2,
                     check_constraints=True, n_jobs=-1, break_on_bad=True,
                     plot=True)
    clf.fit(X_train, Y_train)

    for X_, Y_, H, name in [[X_train, Y_train, clf.H_init_, "train"],
                            [X_test, Y_test, [None] * len(X_test), "test"]]:
        Y_pred = clf.predict(X_)
        i = 0
        loss = 0
        for x, y, h_init, y_pred in zip(X_, Y_, H, Y_pred):
            loss += np.sum(y != y_pred / crf.n_states_per_label)
            fig, ax = plt.subplots(3, 2)
            ax[0, 0].matshow(y * crf.n_states_per_label,
                             vmin=0, vmax=crf.n_states - 1)
            ax[0, 0].set_title("ground truth")
            unary_params = np.repeat(np.eye(2), 2, axis=1)
            pairwise_params = np.zeros(10)
            w_unaries_only = np.hstack([unary_params.ravel(),
                                        pairwise_params.ravel()])
            unary_pred = crf.inference(x, w_unaries_only)
            ax[0, 1].matshow(unary_pred, vmin=0, vmax=crf.n_states - 1)
            ax[0, 1].set_title("unaries only")
            if h_init is None:
                ax[1, 0].set_visible(False)
            else:
                ax[1, 0].matshow(h_init, vmin=0, vmax=crf.n_states - 1)
                ax[1, 0].set_title("latent initial")
            ax[1, 1].matshow(crf.latent(x, y, clf.w),
                             vmin=0, vmax=crf.n_states - 1)
            ax[1, 1].set_title("latent final")
            ax[2, 0].matshow(y_pred, vmin=0, vmax=crf.n_states - 1)
            ax[2, 0].set_title("prediction")
            ax[2, 1].matshow((y_pred // crf.n_states_per_label)
                             * crf.n_states_per_label,
                             vmin=0, vmax=crf.n_states - 1)
            ax[2, 1].set_title("prediction")
            for a in ax.ravel():
                a.set_xticks(())
                a.set_yticks(())
            fig.savefig("data_%s_%03d.png" % (name, i), bbox_inches="tight")
            i += 1
        print("loss %s set: %f" % (name, loss))
    print(clf.w)
示例#8
0
def test_with_crosses_base_svms():
    # very simple dataset. k-means init is perfect
    for base_svm in ['1-slack', 'n-slack', 'subgradient']:
        X, Y = toy.generate_crosses(n_samples=10, noise=5, n_crosses=1,
                                    total_size=8)
        n_labels = 2
        crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=[1, 2],
                            inference_method='lp')
        clf = LatentSSVM(problem=crf, max_iter=150, C=10. ** 5, verbose=2,
                         check_constraints=True, n_jobs=-1, break_on_bad=True,
                         base_svm=base_svm, learning_rate=5)
        clf.fit(X, Y)
        Y_pred = clf.predict(X)
        assert_array_equal(np.array(Y_pred), Y)
示例#9
0
def test_switch_to_ad3():
    # smoketest only
    # test if switching between qpbo and ad3 works inside latent svm
    # use less perfect initialization

    if not get_installed(["qpbo"]) or not get_installed(["ad3"]):
        return
    X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]

    crf = LatentGridCRF(n_states_per_label=2, inference_method="qpbo")
    crf.initialize(X, Y)
    H_init = crf.init_latent(X, Y)

    np.random.seed(0)
    mask = np.random.uniform(size=H_init.shape) > 0.7
    H_init[mask] = 2 * (H_init[mask] / 2)

    base_ssvm = OneSlackSSVM(
        crf,
        inactive_threshold=1e-8,
        cache_tol=0.0001,
        inference_cache=50,
        max_iter=10000,
        switch_to=("ad3", {"branch_and_bound": True}),
        C=10.0 ** 3,
    )
    clf = LatentSSVM(base_ssvm)

    # evil hackery to get rid of ad3 output
    try:
        devnull = open("/dev/null", "w")
        oldstdout_fno = os.dup(sys.stdout.fileno())
        os.dup2(devnull.fileno(), 1)
        replaced_stdout = True
    except:
        replaced_stdout = False

    clf.fit(X, Y, H_init=H_init)

    if replaced_stdout:
        os.dup2(oldstdout_fno, 1)
    assert_equal(clf.model.inference_method[0], "ad3")

    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
    # test that score is not always 1
    assert_true(0.98 < clf.score(X_test, Y_test) < 1)
示例#10
0
def test_states(states, x, y, x_t, y_t, i, jobs):
    latent_pbl = GraphLDCRF(n_states_per_label=states, inference_method="qpbo")

    base_ssvm = NSlackSSVM(latent_pbl, C=1, tol=0.01, inactive_threshold=1e-3, batch_size=10, verbose=0, n_jobs=jobs)
    latent_svm = LatentSSVM(base_ssvm=base_ssvm, latent_iter=3)
    latent_svm.fit(x, y)

    test = latent_svm.score(x_t, y_t)
    train = latent_svm.score(x, y)

    plot_cm(latent_svm, y_t, x_t, str(states), i)

    print states, "Test:", test, "Train:", train
    return test, train
示例#11
0
def test_with_crosses_perfect_init():
    # very simple dataset. k-means init is perfect
    for n_states_per_label in [2, [1, 2]]:
        # test with 2 states for both foreground and background,
        # as well as with single background state
        X, Y = generate_crosses(n_samples=10, noise=5, n_crosses=1, total_size=8)
        n_labels = 2
        crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=n_states_per_label)
        clf = LatentSSVM(
            OneSlackSSVM(model=crf, max_iter=500, C=10, check_constraints=False, break_on_bad=False, inference_cache=50)
        )
        clf.fit(X, Y)
        Y_pred = clf.predict(X)
        assert_array_equal(np.array(Y_pred), Y)
        assert_equal(clf.score(X, Y), 1)
示例#12
0
def test_directional_bars():
    for inference_method in ['lp']:
        X, Y = toy.generate_easy(n_samples=10, noise=5, box_size=2,
                                 total_size=6, seed=1)
        n_labels = 2
        crf = LatentDirectionalGridCRF(n_labels=n_labels,
                                       n_states_per_label=[1, 4],
                                       inference_method=inference_method)
        clf = LatentSSVM(problem=crf, max_iter=500, C=10. ** 5, verbose=2,
                         check_constraints=True, n_jobs=-1, break_on_bad=True,
                         base_svm='1-slack')
        clf.fit(X, Y)
        Y_pred = clf.predict(X)

        assert_array_equal(np.array(Y_pred), Y)
def test_binary_blocks_cutting_plane_latent_node():
    #testing cutting plane ssvm on easy binary dataset
    # we use the LatentNodeCRF without latent nodes and check that it does the
    # same as GraphCRF
    X, Y = generate_blocks(n_samples=3)
    crf = GraphCRF()
    clf = NSlackSSVM(model=crf,
                     max_iter=20,
                     C=100,
                     check_constraints=True,
                     break_on_bad=False,
                     n_jobs=1)
    x1, x2, x3 = X
    y1, y2, y3 = Y
    n_states = len(np.unique(Y))
    # delete some rows to make it more fun
    x1, y1 = x1[:, :-1], y1[:, :-1]
    x2, y2 = x2[:-1], y2[:-1]
    # generate graphs
    X_ = [x1, x2, x3]
    G = [make_grid_edges(x) for x in X_]

    # reshape / flatten x and y
    X_ = [x.reshape(-1, n_states) for x in X_]
    Y = [y.ravel() for y in [y1, y2, y3]]

    X = zip(X_, G)

    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    for y, y_pred in zip(Y, Y_pred):
        assert_array_equal(y, y_pred)

    latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=0)
    latent_svm = LatentSSVM(NSlackSSVM(model=latent_crf,
                                       max_iter=20,
                                       C=100,
                                       check_constraints=True,
                                       break_on_bad=False,
                                       n_jobs=1),
                            latent_iter=3)
    X_latent = zip(X_, G, np.zeros(len(X_)))
    latent_svm.fit(X_latent, Y, H_init=Y)
    Y_pred = latent_svm.predict(X_latent)
    for y, y_pred in zip(Y, Y_pred):
        assert_array_equal(y, y_pred)

    assert_array_almost_equal(latent_svm.w, clf.w)
示例#14
0
def test_with_crosses_base_svms():
    # very simple dataset. k-means init is perfect
    n_labels = 2
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=[1, 2])
    one_slack = OneSlackSSVM(crf, inference_cache=50)
    n_slack = NSlackSSVM(crf)
    subgradient = SubgradientSSVM(crf, max_iter=400, learning_rate=0.01, decay_exponent=0, decay_t0=10)

    X, Y = generate_crosses(n_samples=10, noise=5, n_crosses=1, total_size=8)

    for base_ssvm in [one_slack, n_slack, subgradient]:
        base_ssvm.C = 100.0
        clf = LatentSSVM(base_ssvm=base_ssvm)
        clf.fit(X, Y)
        Y_pred = clf.predict(X)
        assert_array_equal(np.array(Y_pred), Y)
        assert_equal(clf.score(X, Y), 1)
示例#15
0
def test_with_crosses_bad_init():
    # use less perfect initialization
    X, Y = toy.generate_crosses(n_samples=10, noise=5, n_crosses=1,
                                total_size=8)
    n_labels = 2
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2,
                        inference_method='lp')
    clf = LatentSSVM(problem=crf, max_iter=50, C=10. ** 3, verbose=2,
                     check_constraints=True, n_jobs=-1, break_on_bad=True)
    H_init = crf.init_latent(X, Y)

    mask = np.random.uniform(size=H_init.shape) > .7
    H_init[mask] = 2 * (H_init[mask] / 2)
    clf.fit(X, Y, H_init=H_init)
    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
示例#16
0
def test_latent_node_boxes_standard_latent():
    # learn the "easy" 2x2 boxes dataset.
    # a 2x2 box is placed randomly in a 4x4 grid
    # we add a latent variable for each 2x2 patch
    # that should make the model fairly simple

    X, Y = make_simple_2x2(seed=1, n_samples=40)
    latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = NSlackSSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf, max_iter=100)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm, latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = make_edges_2x2()

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        Y_flat = [y.ravel() for y in Y]

        X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
        latent_svm.fit(X_[:20], Y_flat[:20])

        assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
        assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)

        # test that score is not always 1
        assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
示例#17
0
def test_latent_node_boxes_edge_features():
    # learn the "easy" 2x2 boxes dataset.
    # smoketest using a single constant edge feature

    X, Y = make_simple_2x2(seed=1, n_samples=40)
    latent_crf = EdgeFeatureLatentNodeCRF(n_labels=2,
                                          n_hidden_states=2,
                                          n_features=1)
    base_svm = OneSlackSSVM(latent_crf)
    base_svm.C = 10
    latent_svm = LatentSSVM(base_svm, latent_iter=10)

    G = [make_grid_edges(x) for x in X]

    # make edges for hidden states:
    edges = make_edges_2x2()

    G = [np.vstack([make_grid_edges(x), edges]) for x in X]

    # reshape / flatten x and y
    X_flat = [x.reshape(-1, 1) for x in X]
    Y_flat = [y.ravel() for y in Y]

    #X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
    # add edge features
    X_ = [(x, g, np.ones((len(g), 1)), 4) for x, g in zip(X_flat, G)]
    latent_svm.fit(X_[:20], Y_flat[:20])

    assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
    assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)

    # test that score is not always 1
    assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
示例#18
0
def test_with_crosses_base_svms():
    # very simple dataset. k-means init is perfect
    n_labels = 2
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=[1, 2],
                        inference_method='lp')
    one_slack = OneSlackSSVM(crf)
    n_slack = StructuredSVM(crf)
    subgradient = SubgradientSSVM(crf, max_iter=150, learning_rate=5)

    for base_ssvm in [one_slack, n_slack, subgradient]:
        base_ssvm.C = 10. ** 5
        base_ssvm.n_jobs = -1
        X, Y = toy.generate_crosses(n_samples=10, noise=5, n_crosses=1,
                                    total_size=8)
        clf = LatentSSVM(base_ssvm=base_ssvm)
        clf.fit(X, Y)
        Y_pred = clf.predict(X)
        assert_array_equal(np.array(Y_pred), Y)
def test_binary_blocks_cutting_plane_latent_node():
    #testing cutting plane ssvm on easy binary dataset
    # we use the LatentNodeCRF without latent nodes and check that it does the
    # same as GraphCRF
    X, Y = toy.generate_blocks(n_samples=3)
    crf = GraphCRF(inference_method='lp')
    clf = StructuredSVM(model=crf, max_iter=20, C=100, verbose=0,
                        check_constraints=True, break_on_bad=False,
                        n_jobs=1)
    x1, x2, x3 = X
    y1, y2, y3 = Y
    n_states = len(np.unique(Y))
    # delete some rows to make it more fun
    x1, y1 = x1[:, :-1], y1[:, :-1]
    x2, y2 = x2[:-1], y2[:-1]
    # generate graphs
    X_ = [x1, x2, x3]
    G = [make_grid_edges(x) for x in X_]

    # reshape / flatten x and y
    X_ = [x.reshape(-1, n_states) for x in X_]
    Y = [y.ravel() for y in [y1, y2, y3]]

    X = zip(X_, G)

    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    for y, y_pred in zip(Y, Y_pred):
        assert_array_equal(y, y_pred)

    latent_crf = LatentNodeCRF(n_labels=2, inference_method='lp',
                               n_hidden_states=0)
    latent_svm = LatentSSVM(StructuredSVM(model=latent_crf, max_iter=20,
                                          C=100, verbose=0,
                                          check_constraints=True,
                                          break_on_bad=False, n_jobs=1),
                            latent_iter=3)
    X_latent = zip(X_, G, np.zeros(len(X_)))
    latent_svm.fit(X_latent, Y, H_init=Y)
    Y_pred = latent_svm.predict(X_latent)
    for y, y_pred in zip(Y, Y_pred):
        assert_array_equal(y, y_pred)

    assert_array_almost_equal(latent_svm.w, clf.w)
示例#20
0
def test_directional_bars():
    X, Y = generate_easy(n_samples=10,
                         noise=5,
                         box_size=2,
                         total_size=6,
                         seed=1)
    n_labels = 2
    crf = LatentDirectionalGridCRF(n_labels=n_labels,
                                   n_states_per_label=[1, 4])
    clf = LatentSSVM(
        OneSlackSSVM(model=crf,
                     max_iter=500,
                     C=10.,
                     inference_cache=50,
                     tol=.01))
    clf.fit(X, Y)
    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
示例#21
0
def test_with_crosses():
    # very simple dataset. k-means init is perfect
    for n_states_per_label in [2, [1, 2]]:
        # test with 2 states for both foreground and background,
        # as well as with single background state
        #for inference_method in ['ad3', 'qpbo', 'lp']:
        for inference_method in ['lp']:
            X, Y = toy.generate_crosses(n_samples=10, noise=5, n_crosses=1,
                                        total_size=8)
            n_labels = 2
            crf = LatentGridCRF(n_labels=n_labels,
                                n_states_per_label=n_states_per_label,
                                inference_method=inference_method)
            clf = LatentSSVM(problem=crf, max_iter=50, C=10. ** 5, verbose=2,
                             check_constraints=True, n_jobs=-1,
                             break_on_bad=True)
            clf.fit(X, Y)
            Y_pred = clf.predict(X)
            assert_array_equal(np.array(Y_pred), Y)
def test_latent_node_boxes_edge_features():
    # learn the "easy" 2x2 boxes dataset.
    # smoketest using a single constant edge feature

    X, Y = make_simple_2x2(seed=1, n_samples=40)
    latent_crf = EdgeFeatureLatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
    base_svm = OneSlackSSVM(latent_crf)
    base_svm.C = 10
    latent_svm = LatentSSVM(base_svm,
                            latent_iter=10)

    G = [make_grid_edges(x) for x in X]

    # make edges for hidden states:
    edges = make_edges_2x2()

    G = [np.vstack([make_grid_edges(x), edges]) for x in X]

    # reshape / flatten x and y
    X_flat = [x.reshape(-1, 1) for x in X]
    Y_flat = [y.ravel() for y in Y]

    #X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
    # add edge features
    X_ = [(x, g, np.ones((len(g), 1)), 4) for x, g in zip(X_flat, G)]
    latent_svm.fit(X_[:20], Y_flat[:20])

    assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
    assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)

    # test that score is not always 1
    assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
def test_latent_node_boxes_standard_latent():
    # learn the "easy" 2x2 boxes dataset.
    # a 2x2 box is placed randomly in a 4x4 grid
    # we add a latent variable for each 2x2 patch
    # that should make the model fairly simple

    X, Y = make_simple_2x2(seed=1, n_samples=40)
    latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = NSlackSSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf, max_iter=100)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm,
                                latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = make_edges_2x2()

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        Y_flat = [y.ravel() for y in Y]

        X_ = list(zip(X_flat, G, [2 * 2 for x in X_flat]))
        latent_svm.fit(X_[:20], Y_flat[:20])

        assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
        assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)

        # test that score is not always 1
        assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
示例#24
0
def test_with_crosses_bad_init():
    # use less perfect initialization
    rnd = np.random.RandomState(0)
    X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]
    crf = LatentGridCRF(n_states_per_label=2)
    crf.initialize(X, Y)
    H_init = crf.init_latent(X, Y)

    mask = rnd.uniform(size=H_init.shape) > .7
    H_init[mask] = 2 * (H_init[mask] / 2)

    one_slack_ssvm = OneSlackSSVM(crf,
                                  inactive_threshold=1e-8,
                                  cache_tol=.0001,
                                  inference_cache=50,
                                  C=100)
    clf = LatentSSVM(one_slack_ssvm)

    clf.fit(X, Y, H_init=H_init)
    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
    # test that score is not always 1
    assert_true(.98 < clf.score(X_test, Y_test) < 1)
示例#25
0
def test_with_crosses_bad_init():
    # use less perfect initialization
    rnd = np.random.RandomState(0)
    X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]
    crf = LatentGridCRF(n_states_per_label=2)
    crf.initialize(X, Y)
    H_init = crf.init_latent(X, Y)

    mask = rnd.uniform(size=H_init.shape) > 0.7
    H_init[mask] = 2 * (H_init[mask] / 2)

    one_slack_ssvm = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=0.0001, inference_cache=50, C=100)
    clf = LatentSSVM(one_slack_ssvm)

    clf.fit(X, Y, H_init=H_init)
    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
    # test that score is not always 1
    assert_true(0.98 < clf.score(X_test, Y_test) < 1)
def test_latent_node_boxes_standard_latent():
    # learn the "easy" 2x2 boxes dataset.
    # a 2x2 box is placed randomly in a 4x4 grid
    # we add a latent variable for each 2x2 patch
    # that should make the model fairly simple

    X, Y = toy.make_simple_2x2(seed=1)
    latent_crf = LatentNodeCRF(n_labels=2, inference_method='lp',
                               n_hidden_states=2, n_features=1)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = StructuredSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf, max_iter=100, learning_rate=0.01,
                                  momentum=0)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm,
                                latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = []
        node_indices = np.arange(4 * 4).reshape(4, 4)
        for i, (x, y) in enumerate(itertools.product([0, 2], repeat=2)):
            for j in xrange(x, x + 2):
                for k in xrange(y, y + 2):
                    edges.append([i + 4 * 4, node_indices[j, k]])

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        Y_flat = [y.ravel() for y in Y]

        X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
        latent_svm.fit(X_, Y_flat)

        assert_equal(latent_svm.score(X_, Y_flat), 1)
示例#27
0
def test_switch_to_ad3():
    # smoketest only
    # test if switching between qpbo and ad3 works inside latent svm
    # use less perfect initialization

    if not get_installed(['qpbo']) or not get_installed(['ad3']):
        return
    X, Y = toy.generate_crosses(n_samples=20, noise=5, n_crosses=1,
                                total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]
    n_labels = 2
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2,
                        inference_method='qpbo')
    H_init = crf.init_latent(X, Y)

    np.random.seed(0)
    mask = np.random.uniform(size=H_init.shape) > .7
    H_init[mask] = 2 * (H_init[mask] / 2)

    base_ssvm = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
                             inference_cache=50, max_iter=10000,
                             switch_to='ad3bb', C=10. ** 3)
    clf = LatentSSVM(base_ssvm)

    clf.fit(X, Y, H_init=H_init)
    # we actually switch back from ad3bb to the original
    assert_equal(clf.model.inference_method, "qpbo")

    # unfortunately this test only works with ad3
    clf.base_ssvm.model.inference_method = 'ad3bb'
    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
    # test that score is not always 1
    assert_true(.98 < clf.score(X_test, Y_test) < 1)
示例#28
0
def test_switch_to_ad3():
    # smoketest only
    # test if switching between qpbo and ad3 works inside latent svm
    # use less perfect initialization

    if not get_installed(['qpbo']) or not get_installed(['ad3']):
        return
    X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]

    crf = LatentGridCRF(n_states_per_label=2, inference_method='qpbo')
    crf.initialize(X, Y)
    H_init = crf.init_latent(X, Y)

    np.random.seed(0)
    mask = np.random.uniform(size=H_init.shape) > .7
    H_init[mask] = 2 * (H_init[mask] / 2)

    base_ssvm = OneSlackSSVM(crf,
                             inactive_threshold=1e-8,
                             cache_tol=.0001,
                             inference_cache=50,
                             max_iter=10000,
                             switch_to=('ad3', {
                                 'branch_and_bound': True
                             }),
                             C=10.**3)
    clf = LatentSSVM(base_ssvm)

    # evil hackery to get rid of ad3 output
    try:
        devnull = open('/dev/null', 'w')
        oldstdout_fno = os.dup(sys.stdout.fileno())
        os.dup2(devnull.fileno(), 1)
        replaced_stdout = True
    except:
        replaced_stdout = False

    clf.fit(X, Y, H_init=H_init)

    if replaced_stdout:
        os.dup2(oldstdout_fno, 1)
    assert_equal(clf.model.inference_method[0], 'ad3')

    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
    # test that score is not always 1
    assert_true(.98 < clf.score(X_test, Y_test) < 1)
def test_latent_node_boxes_standard_latent_features():
    # learn the "easy" 2x2 boxes dataset.
    # we make it even easier now by adding features that encode the correct
    # latent state. This basically tests that the features are actually used

    X, Y = make_simple_2x2(seed=1, n_samples=20, n_flips=6)
    latent_crf = LatentNodeCRF(n_labels=2,
                               n_hidden_states=2,
                               n_features=1,
                               latent_node_features=True)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = NSlackSSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf,
                                  max_iter=100,
                                  learning_rate=0.01,
                                  momentum=0)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm, latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = make_edges_2x2()

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        # augment X with the features for hidden units
        X_flat = [
            np.vstack([x, y[::2, ::2].reshape(-1, 1)])
            for x, y in zip(X_flat, Y)
        ]
        Y_flat = [y.ravel() for y in Y]

        X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
        latent_svm.fit(X_[:10], Y_flat[:10])

        assert_array_equal(latent_svm.predict(X_[:10]), Y_flat[:10])
        assert_equal(latent_svm.score(X_[:10], Y_flat[:10]), 1)

        # we actually become prefect ^^
        assert_true(.98 < latent_svm.score(X_[10:], Y_flat[10:]) <= 1)
示例#30
0
def test_states(states, x, y, x_t, y_t, jobs):
    latent_pbl = GraphLDCRF(n_states_per_label=states, inference_method='qpbo')

    base_ssvm = NSlackSSVM(latent_pbl,
                           C=1,
                           tol=.01,
                           inactive_threshold=1e-3,
                           batch_size=10,
                           verbose=0,
                           n_jobs=jobs)
    latent_svm = LatentSSVM(base_ssvm=base_ssvm, latent_iter=3)
    latent_svm.fit(x, y)

    test = latent_svm.score(x_t, y_t)
    train = latent_svm.score(x, y)

    print states, 'Test:', test, 'Train:', train
    return test, train
示例#31
0
def main():
    X, Y = toy.generate_crosses(n_samples=20, noise=5, n_crosses=1,
                                total_size=8)
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5)
    n_labels = len(np.unique(Y_train))
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=[1, 2],
                        inference_method='lp')
    clf = LatentSSVM(problem=crf, max_iter=50, C=1000., verbose=2,
                     check_constraints=True, n_jobs=-1, break_on_bad=True)
    clf.fit(X_train, Y_train)

    i = 0
    for X_, Y_, H, name in [[X_train, Y_train, clf.H_init_, "train"],
                            [X_test, Y_test, [None] * len(X_test), "test"]]:
        Y_pred = clf.predict(X_)
        score = clf.score(X_, Y_)
        for x, y, h_init, y_pred in zip(X_, Y_, H, Y_pred):
            fig, ax = plt.subplots(4, 1)
            ax[0].matshow(y, vmin=0, vmax=crf.n_labels - 1)
            ax[0].set_title("Ground truth")
            ax[1].matshow(np.argmax(x, axis=-1), vmin=0, vmax=crf.n_labels - 1)
            ax[1].set_title("Unaries only")
            #if h_init is None:
                #ax[1, 0].set_visible(False)
            #else:
                #ax[1, 0].matshow(h_init, vmin=0, vmax=crf.n_states - 1)
                #ax[1, 0].set_title("latent initial")
            #ax[2].matshow(crf.latent(x, y, clf.w),
                          #vmin=0, vmax=crf.n_states - 1)
            #ax[2].set_title("latent final")
            ax[2].matshow(crf.inference(x, clf.w), vmin=0, vmax=crf.n_states
                          - 1)
            ax[2].set_title("Prediction for h")
            ax[3].matshow(y_pred, vmin=0, vmax=crf.n_labels - 1)
            ax[3].set_title("Prediction for y")
            for a in ax.ravel():
                a.set_xticks(())
                a.set_yticks(())
            plt.subplots_adjust(hspace=.5)
            fig.savefig("data_%s_%03d.png" % (name, i), bbox_inches="tight",
                        dpi=400)
            i += 1
        print("score %s set: %f" % (name, score))
    print(clf.w)
示例#32
0
def test_with_crosses_base_svms():
    # very simple dataset. k-means init is perfect
    n_labels = 2
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=[1, 2])
    one_slack = OneSlackSSVM(crf, inference_cache=50)
    n_slack = NSlackSSVM(crf)
    subgradient = SubgradientSSVM(crf,
                                  max_iter=400,
                                  learning_rate=.01,
                                  decay_exponent=0,
                                  decay_t0=10)

    X, Y = generate_crosses(n_samples=10, noise=5, n_crosses=1, total_size=8)

    for base_ssvm in [one_slack, n_slack, subgradient]:
        base_ssvm.C = 100.
        clf = LatentSSVM(base_ssvm=base_ssvm)
        clf.fit(X, Y)
        Y_pred = clf.predict(X)
        assert_array_equal(np.array(Y_pred), Y)
        assert_equal(clf.score(X, Y), 1)
def test_latent_node_boxes_standard_latent_features():
    # learn the "easy" 2x2 boxes dataset.
    # we make it even easier now by adding features that encode the correct
    # latent state. This basically tests that the features are actually used

    X, Y = make_simple_2x2(seed=1, n_samples=20, n_flips=6)
    latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1,
                               latent_node_features=True)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = NSlackSSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf, max_iter=100, learning_rate=0.01,
                                  momentum=0)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm,
                                latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = make_edges_2x2()

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        # augment X with the features for hidden units
        X_flat = [np.vstack([x, y[::2, ::2].reshape(-1, 1)])
                  for x, y in zip(X_flat, Y)]
        Y_flat = [y.ravel() for y in Y]

        X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
        latent_svm.fit(X_[:10], Y_flat[:10])

        assert_array_equal(latent_svm.predict(X_[:10]), Y_flat[:10])
        assert_equal(latent_svm.score(X_[:10], Y_flat[:10]), 1)

        # we actually become prefect ^^
        assert_true(.98 < latent_svm.score(X_[10:], Y_flat[10:]) <= 1)
示例#34
0
def test_with_crosses_perfect_init():
    # very simple dataset. k-means init is perfect
    for n_states_per_label in [2, [1, 2]]:
        # test with 2 states for both foreground and background,
        # as well as with single background state
        X, Y = generate_crosses(n_samples=10,
                                noise=5,
                                n_crosses=1,
                                total_size=8)
        n_labels = 2
        crf = LatentGridCRF(n_labels=n_labels,
                            n_states_per_label=n_states_per_label)
        clf = LatentSSVM(
            OneSlackSSVM(model=crf,
                         max_iter=500,
                         C=10,
                         check_constraints=False,
                         break_on_bad=False,
                         inference_cache=50))
        clf.fit(X, Y)
        Y_pred = clf.predict(X)
        assert_array_equal(np.array(Y_pred), Y)
        assert_equal(clf.score(X, Y), 1)
示例#35
0
def main():
    X, Y = toy.generate_crosses(n_samples=40,
                                noise=8,
                                n_crosses=2,
                                total_size=10)
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5)
    n_labels = len(np.unique(Y_train))
    crf = LatentGridCRF(n_labels=n_labels,
                        n_states_per_label=2,
                        inference_method='lp')
    clf = LatentSSVM(problem=crf,
                     max_iter=50,
                     C=1000.,
                     verbose=2,
                     check_constraints=True,
                     n_jobs=-1,
                     break_on_bad=True,
                     plot=True)
    clf.fit(X_train, Y_train)

    for X_, Y_, H, name in [[X_train, Y_train, clf.H_init_, "train"],
                            [X_test, Y_test, [None] * len(X_test), "test"]]:
        Y_pred = clf.predict(X_)
        i = 0
        loss = 0
        for x, y, h_init, y_pred in zip(X_, Y_, H, Y_pred):
            loss += np.sum(y != y_pred / crf.n_states_per_label)
            fig, ax = plt.subplots(3, 2)
            ax[0, 0].matshow(y * crf.n_states_per_label,
                             vmin=0,
                             vmax=crf.n_states - 1)
            ax[0, 0].set_title("ground truth")
            unary_params = np.repeat(np.eye(2), 2, axis=1)
            pairwise_params = np.zeros(10)
            w_unaries_only = np.hstack(
                [unary_params.ravel(),
                 pairwise_params.ravel()])
            unary_pred = crf.inference(x, w_unaries_only)
            ax[0, 1].matshow(unary_pred, vmin=0, vmax=crf.n_states - 1)
            ax[0, 1].set_title("unaries only")
            if h_init is None:
                ax[1, 0].set_visible(False)
            else:
                ax[1, 0].matshow(h_init, vmin=0, vmax=crf.n_states - 1)
                ax[1, 0].set_title("latent initial")
            ax[1, 1].matshow(crf.latent(x, y, clf.w),
                             vmin=0,
                             vmax=crf.n_states - 1)
            ax[1, 1].set_title("latent final")
            ax[2, 0].matshow(y_pred, vmin=0, vmax=crf.n_states - 1)
            ax[2, 0].set_title("prediction")
            ax[2, 1].matshow(
                (y_pred // crf.n_states_per_label) * crf.n_states_per_label,
                vmin=0,
                vmax=crf.n_states - 1)
            ax[2, 1].set_title("prediction")
            for a in ax.ravel():
                a.set_xticks(())
                a.set_yticks(())
            fig.savefig("data_%s_%03d.png" % (name, i), bbox_inches="tight")
            i += 1
        print("loss %s set: %f" % (name, loss))
    print(clf.w)
示例#36
0
# a CRF problem with no edges.

pbl = GraphCRF(inference_method='unary')
# We use batch_size=-1 as a binary problem can be solved in one go.
svm = NSlackSSVM(pbl, C=1, batch_size=-1)

svm.fit(X_train_, y_train)

# Now, use a latent-variabile CRF model with SVM training.
# 5 states per label is enough capacity to encode the 5 digit classes.

latent_pbl = LatentGraphCRF(n_states_per_label=5,
                            inference_method='unary')
base_ssvm = NSlackSSVM(latent_pbl, C=1, tol=.01,
                       inactive_threshold=1e-3, batch_size=10)
latent_svm = LatentSSVM(base_ssvm=base_ssvm, latent_iter=2)
latent_svm.fit(X_train_, y_train)

print("Score with binary SVM:")
print("Train: {:2.2f}".format(svm.score(X_train_, y_train)))
print("Test: {:2.2f}".format(svm.score(X_test_, y_test)))

print("Score with latent SVM:")
print("Train: {:2.2f}".format(latent_svm.score(X_train_, y_train)))
print("Test: {:2.2f}".format(latent_svm.score(X_test_, y_test)))

h_pred = np.hstack(latent_svm.predict_latent(X_test_))
print("Latent class counts: %s" % repr(np.bincount(h_pred)))

# plot first few digits from each latent class
示例#37
0
print("Training score binary grid CRF: %f" % svm.score(asdf, Y_flat))

# using one latent variable for each 2x2 rectangle
latent_crf = LatentNodeCRF(n_labels=2,
                           n_features=1,
                           n_hidden_states=2,
                           inference_method='lp')

ssvm = OneSlackSSVM(model=latent_crf,
                    max_iter=200,
                    C=100,
                    verbose=1,
                    n_jobs=-1,
                    show_loss_every=10,
                    inference_cache=50)
latent_svm = LatentSSVM(ssvm)

# make edges for hidden states:
edges = []
node_indices = np.arange(4 * 4).reshape(4, 4)
for i, (x, y) in enumerate(itertools.product([0, 2], repeat=2)):
    for j in xrange(x, x + 2):
        for k in xrange(y, y + 2):
            edges.append([i + 4 * 4, node_indices[j, k]])

G = [np.vstack([make_grid_edges(x), edges]) for x in X]

# Random initialization
H_init = [
    np.hstack([y.ravel(), np.random.randint(2, 4, size=2 * 2)]) for y in Y
]
示例#38
0
pbl = GraphCRF(inference_method='unary')
# We use batch_size=-1 as a binary problem can be solved in one go.
svm = NSlackSSVM(pbl, C=1, batch_size=-1)

svm.fit(X_train_, y_train)

# Now, use a latent-variabile CRF model with SVM training.
# 5 states per label is enough capacity to encode the 5 digit classes.

latent_pbl = LatentGraphCRF(n_states_per_label=5, inference_method='unary')
base_ssvm = NSlackSSVM(latent_pbl,
                       C=1,
                       tol=.01,
                       inactive_threshold=1e-3,
                       batch_size=10)
latent_svm = LatentSSVM(base_ssvm=base_ssvm, latent_iter=2)
latent_svm.fit(X_train_, y_train)

print("Score with binary SVM:")
print("Train: {:2.2f}".format(svm.score(X_train_, y_train)))
print("Test: {:2.2f}".format(svm.score(X_test_, y_test)))

print("Score with latent SVM:")
print("Train: {:2.2f}".format(latent_svm.score(X_train_, y_train)))
print("Test: {:2.2f}".format(latent_svm.score(X_test_, y_test)))

h_pred = np.hstack(latent_svm.predict_latent(X_test_))
print("Latent class counts: %s" % repr(np.bincount(h_pred)))

# plot first few digits from each latent class
示例#39
0
svm = NSlackSSVM(model=crf, max_iter=200, C=1, n_jobs=1)

G = [make_grid_edges(x) for x in X]

X_grid_edges = list(zip(X_flat, G))
svm.fit(X_grid_edges, Y_flat)
plot_boxes(svm.predict(X_grid_edges), title="Non-latent SSVM predictions")
print("Training score binary grid CRF: %f" % svm.score(X_grid_edges, Y_flat))

# using one latent variable for each 2x2 rectangle
latent_crf = LatentNodeCRF(n_labels=2, n_features=1, n_hidden_states=2,
                           inference_method='lp')

ssvm = OneSlackSSVM(model=latent_crf, max_iter=200, C=100,
                    n_jobs=-1, show_loss_every=10, inference_cache=50)
latent_svm = LatentSSVM(ssvm)

# make edges for hidden states:
edges = []
node_indices = np.arange(4 * 4).reshape(4, 4)
for i, (x, y) in enumerate(itertools.product([0, 2], repeat=2)):
    for j in range(x, x + 2):
        for k in range(y, y + 2):
            edges.append([i + 4 * 4, node_indices[j, k]])

G = [np.vstack([make_grid_edges(x), edges]) for x in X]

# Random initialization
H_init = [np.hstack([y.ravel(), np.random.randint(2, 4, size=2 * 2)])
          for y in Y]
plot_boxes(H_init, title="Top: Random initial hidden states. Bottom: Ground"
示例#40
0
X_train_, X_test_, X_train, X_test, y_train, y_test = \
    train_test_split(X_, X, Y, test_size=.5)

# first, do it with a standard CRF / SVM
pbl = GraphCRF(n_features=2, n_states=2, inference_method='lp')
svm = StructuredSVM(pbl, verbose=1, check_constraints=True, C=100, n_jobs=1)

svm.fit(X_train_, y_train)
y_pred = np.vstack(svm.predict(X_test_))
print("Score with pystruct crf svm: %f" % np.mean(y_pred == y_test))

# now with latent CRF SVM
latent_pbl = LatentGraphCRF(n_features=2, n_labels=2, n_states_per_label=2,
                            inference_method='lp')
latent_svm = LatentSSVM(latent_pbl, verbose=1, check_constraints=True, C=100,
                        n_jobs=1)
# we explicitly initialize randomly to make it a bit more interesting
latent_svm.fit(X_train_, y_train,
               H_init=np.random.randint(2, size=y_train.shape) + 2 * y_train)
y_pred_latent = np.vstack(latent_svm.predict(X_test_))

# plot the results
fig, axes = plt.subplots(1, 5, figsize=(12, 4))
cm = plt.cm.Paired
axes[0].set_title("Ground truth")
axes[0].scatter(X_test[:, 0], X_test[:, 1], c=y_test, s=50, cmap=cm)
axes[1].set_title("SVM prediction")
axes[1].scatter(X_test[:, 0], X_test[:, 1], c=y_pred, s=50, cmap=cm)
axes[2].set_title("Latent SVM prediction")
axes[2].scatter(X_test[:, 0], X_test[:, 1], c=y_pred_latent // 2, s=50,
                cmap=cm)
def trainModel_Latent(num_iter=5,
                      latent_iter=3,
                      inference="qpbo",
                      trainer="NSlack",
                      num_train=2,
                      num_test=1,
                      C=0.1,
                      edges="180x180_dist1_diag0",
                      inputs=[1, 1, 1, 1, 1, 1],
                      features="all",
                      directed=False,
                      savePred=False):

    padding = (30, 30, 30, 30)

    if directed == True:
        features += '+directed'

    resultsDir = os.getcwd() + '/CRFResults'
    nameLen = len(os.listdir(resultsDir))
    edgeFeature = edges
    filename = str(nameLen) + '_CRF_iter_' + str(
        num_iter
    ) + "_" + inference + "_" + trainer + "_" + features + "_" + str(
        num_train) + "_" + str(num_test) + "_" + edgeFeature

    print "Loading training slices"

    start = time.clock()
    train = extractSlices2(train_path, num_train, padding, inputs=inputs)
    end = time.clock()
    train_load_time = (end - start) / 60.0

    [trainLayers, trainTruth, sliceShape] = train
    print "Training slices loaded in %f" % (train_load_time)

    n_features = len(trainLayers[0][0, 0])
    print "Layer shape is : "
    print trainLayers[0].shape

    print "Training the model"
    edges = np.load("/home/bmi/CRF/edges/" + edges + ".npy")

    G = [edges for x in trainLayers]

    print trainLayers[0].shape

    trainLayers = np.array([
        x.reshape((sliceShape[0] * sliceShape[1], n_features))
        for x in trainLayers
    ])
    trainTruth = np.array([
        x.reshape((sliceShape[0] * sliceShape[1], )).astype(int)
        for x in trainTruth
    ])

    if inference == 'ogm':
        crf = GraphCRF(inference_method=('ogm', {
            'alg': 'fm'
        }),
                       directed=directed)
    else:
        crf = LatentGraphCRF(n_states_per_label=2, inference_method=inference)

    if trainer == "Frank":
        base_svm = FrankWolfeSSVM(model=crf,
                                  max_iter=num_iter,
                                  C=C,
                                  n_jobs=-1,
                                  verbose=1)
        svm = LatentSSVM(base_ssvm=base_svm)
    elif trainer == "NSlack":
        base_svm = NSlackSSVM(model=crf,
                              max_iter=num_iter,
                              C=C,
                              n_jobs=-1,
                              verbose=1)
        svm = LatentSSVM(base_ssvm=base_svm, latent_iter=latent_iter)
    else:
        svm = OneSlackSSVM(model=crf,
                           max_iter=num_iter,
                           C=C,
                           n_jobs=-1,
                           verbose=1)

    start = time.clock()
    asdf = zip(trainLayers, G)
    svm.fit(asdf, trainTruth)
    end = time.clock()
    train_time = (end - start) / 60.0
    print "The training took %f" % (train_time)
    print "Model parameter size :"
    print svm.w.shape

    print "making predictions on train data"
    predTrain = svm.predict(asdf)
    trainDice = []
    for i in range(len(trainLayers)):
        diceScore = accuracy(predTrain[i], trainTruth[i])
        trainDice.append(diceScore)
    meanTrainDice = sum(trainDice) / len(trainLayers)

    del trainLayers, trainTruth

    ################################################################################################
    overallDicePerPatient = []  # For overall test Dice
    extDicePerPatient = []
    PatientTruthLayers = []
    PatientPredLayers = []
    PREC = []
    RECALL = []
    F1 = []
    LayerwiseDiceTotal = []

    testResultFile = open(os.getcwd() + "/CRFResults/" + filename + ".csv",
                          'a')
    testResultFile.write(
        "folderName,numLayers, Overall Dice, precision , recall, F1" + "\n")

    counter = 0
    print "Loading the test slices"
    for folder in os.listdir(test_path):
        path = test_path + "/" + folder
        layerDiceScores = ''
        #        print path

        data = extractTestSlices2(path, padding, inputs=inputs)
        if data != 0:
            [testLayers, testTruth, sliceShape, startSlice, endSlice] = data

#        trueTestLayers=testLayers
        GTest = [edges for x in testLayers]
        testLayers = np.array([
            x.reshape((sliceShape[0] * sliceShape[1], n_features))
            for x in testLayers
        ])
        testTruth = np.array([
            x.reshape((sliceShape[0] * sliceShape[1], )).astype(int)
            for x in testTruth
        ])

        asdfTest = zip(testLayers, GTest)
        predTest = svm.predict(asdfTest)

        LayerwiseDice = []

        for i in range(len(testLayers)):
            diceScore = accuracy(predTest[i], testTruth[i])
            layerDiceScores += "," + str(diceScore)
            if math.isnan(diceScore):
                if sum(predTest[i]) == 0 and sum(testTruth[i]) == 0:
                    LayerwiseDice.append(1.0)
                continue
            LayerwiseDice.append(diceScore)

        LayerwiseDiceTotal.append(LayerwiseDice)

        overallTestDice = accuracy(np.hstack(predTest), np.hstack(testTruth))
        extDice = np.mean(
            np.array(LayerwiseDice)
            [range(10) + range(len(LayerwiseDice) - 10, len(LayerwiseDice))])
        prec, recall, f1 = precision_score(np.hstack(testTruth),
                                           np.hstack(predTest)), recall_score(
                                               np.hstack(testTruth),
                                               np.hstack(predTest)), f1_score(
                                                   np.hstack(testTruth),
                                                   np.hstack(predTest))
        print "Patient %d : Overall test DICE for %s is : %f and extDice is %f" % (
            counter, folder, overallTestDice, extDice)
        print "Precision : %f  Recall : %f  F1 : %f " % (prec, recall, f1)
        print "__________________________________________"

        #        testResultFile.write(folder+","+str(len(testLayers))+","+str(meanTestDice)+","+str(overallTestDice) ","+str(np.max(testDice)) +","+ str(np.min(testDice))+"\n" )
        testResultFile.write(folder + "," + str(len(testLayers)) + "," +
                             str(overallTestDice) + "," + str(prec) + "," +
                             str(recall) + "," + str(extDice) +
                             layerDiceScores + "\n")
        overallDicePerPatient.append(overallTestDice)
        extDicePerPatient.append(extDice)
        PREC.append(prec), RECALL.append(recall), F1.append(f1)

        PatientTruthLayers.append(testTruth)
        PatientPredLayers.append(predTest)

        counter += 1
        if counter == num_test and num_test != -1:
            break
######################################################################################################
    print "Done testing slices"
    overallDice = sum(overallDicePerPatient) / len(PatientTruthLayers)
    overallPrec = sum(PREC) / len(PatientTruthLayers)
    overallRecall = sum(RECALL) / len(PatientTruthLayers)
    overallExtDice = np.mean(extDicePerPatient)
    print "Overall DICE : %f Precision : %f Recall : %f extDice : %f  " % (
        overallDice, overallPrec, overallRecall, overallExtDice)
    print "############################################"

    #    testOutput=np.array([PatientPredLayers,PatientTruthLayers,trueTestLayers])
    testOutput = np.array([PatientPredLayers, PatientTruthLayers])

    ########### Saving the models ######################################################################

    #    print "Saving the model"
    #    modelDir = os.getcwd()+"/CRFModel/"
    #    svmModel = open(modelDir+filename+"_model"+".pkl",'wb')
    #    cPickle.dump(svm,svmModel,protocol=cPickle.HIGHEST_PROTOCOL)
    #    svmModel.close()
    #
    #    print "saving the predictions"
    #    predFileTest = open(os.getcwd()+"/CRFPred/"+filename+"_pred.pkl",'wb')
    #    cPickle.dump(testOutput,predFileTest,protocol=cPickle.HIGHEST_PROTOCOL)
    #    predFileTest.close()

    layerDataLog = open(os.getcwd() + "/CRFModel/" + filename + "_layer.pkl",
                        'wb')
    cPickle.dump(LayerwiseDiceTotal,
                 layerDataLog,
                 protocol=cPickle.HIGHEST_PROTOCOL)
    layerDataLog.close()

    resultLog = os.getcwd() + "/CRFResults/TestResultFinal.csv"
    resultFile = open(resultLog, 'a')
    resultFile.write(time.ctime() + "," + str(num_iter) + "," +
                     str(num_train) + "," + str(num_test) + "," + inference +
                     "," + trainer + "," + str(C) + "," + str(train_time) +
                     "," + str(meanTrainDice) + "," + str(overallDice) + "," +
                     str(np.std(overallDicePerPatient)) + "," + edgeFeature +
                     "," + "None" + "," + features + "," + filename + "," +
                     str(overallPrec) + "," + str(overallRecall) + "," +
                     str(overallExtDice) + "," +
                     "Flair+T2Latent with 2 states" + "\n")

    resultFile.close()
    testResultFile.close()

    return
from pystruct.models import LatentGridCRF
from pystruct.learners import LatentSSVM, OneSlackSSVM

from pystruct.datasets import generate_crosses

X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5)

crf = LatentGridCRF(n_states_per_label=[1, 2])
base_ssvm = OneSlackSSVM(model=crf,
                         C=10.,
                         n_jobs=-1,
                         inference_cache=20,
                         tol=.1)
clf = LatentSSVM(base_ssvm=base_ssvm)
clf.fit(X_train, Y_train)
print("Score training set: %f" % clf.score(X_train, Y_train))
print("Score test set: %f" % clf.score(X_test, Y_test))

Y_pred = clf.predict(X_test)

x, y, y_pred = X_test[1], Y_test[1], Y_pred[1]
fig, ax = plt.subplots(3, 2)
ax[0, 0].matshow(y, vmin=0, vmax=crf.n_labels - 1)
ax[0, 0].set_title("ground truth")
ax[0, 1].matshow(np.argmax(x, axis=-1), vmin=0, vmax=crf.n_labels - 1)
ax[0, 1].set_title("unaries only")
ax[1, 0].set_visible(False)
ax[1, 1].matshow(crf.latent(x, y, clf.w), vmin=0, vmax=crf.n_states - 1)
ax[1, 1].set_title("latent final")
from sklearn.cross_validation import train_test_split

from pystruct.models import LatentGridCRF
from pystruct.learners import LatentSSVM, OneSlackSSVM

from pystruct.datasets import generate_crosses


X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5,
                                                    allow_nd=True)

crf = LatentGridCRF(n_states_per_label=[1, 2])
base_ssvm = OneSlackSSVM(model=crf, C=10., n_jobs=-1, inference_cache=20,
                         tol=.1)
clf = LatentSSVM(base_ssvm=base_ssvm)
clf.fit(X_train, Y_train)
print("loss training set: %f" % clf.score(X_train, Y_train))
print("loss test set: %f" % clf.score(X_test, Y_test))

Y_pred = clf.predict(X_test)

x, y, y_pred = X_test[1], Y_test[1], Y_pred[1]
fig, ax = plt.subplots(3, 2)
ax[0, 0].matshow(y, vmin=0, vmax=crf.n_labels - 1)
ax[0, 0].set_title("ground truth")
ax[0, 1].matshow(np.argmax(x, axis=-1),
                 vmin=0, vmax=crf.n_labels - 1)
ax[0, 1].set_title("unaries only")
ax[1, 0].set_visible(False)
ax[1, 1].matshow(crf.latent(x, y, clf.w),