示例#1
0
def test_one_slack_constraint_caching():
    # testing cutting plane ssvm on easy multinomial dataset
    X, Y = generate_blocks_multinomial(n_samples=10, noise=0.5, seed=0,
                                       size_x=9)
    n_labels = len(np.unique(Y))
    exact_inference = get_installed([('ad3', {'branch_and_bound': True}), "lp"])[0]
    crf = GridCRF(n_states=n_labels, inference_method=exact_inference)
    clf = OneSlackSSVM(model=crf, max_iter=150, C=1,
                       check_constraints=True, break_on_bad=True,
                       inference_cache=50, inactive_window=0)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
    assert_equal(len(clf.inference_cache_), len(X))
    # there should be 13 constraints, which are less than the 94 iterations
    # that are done
    # check that we didn't change the behavior of how we construct the cache
    constraints_per_sample = [len(cache) for cache in clf.inference_cache_]
    if exact_inference == "lp":
        assert_equal(len(clf.inference_cache_[0]), 18)
        assert_equal(np.max(constraints_per_sample), 18)
        assert_equal(np.min(constraints_per_sample), 18)
    else:
        assert_equal(len(clf.inference_cache_[0]), 13)
        assert_equal(np.max(constraints_per_sample), 20)
        assert_equal(np.min(constraints_per_sample), 11)
def syntetic_test():
    # test model on different train set size & on different train sets
    results = np.zeros((18, 5))
    full_labeled = np.array([2, 4, 10, 25, 100])
    train_size = 400

    for dataset in range(1, 19):
        X, Y = load_syntetic(dataset)

        for j, nfull in enumerate(full_labeled):
            crf = EdgeCRF(n_states=10, n_features=10, n_edge_features=2,
                          inference_method='qpbo')
            clf = OneSlackSSVM(crf, max_iter=10000, C=0.01, verbose=0,
                               tol=0.1, n_jobs=4, inference_cache=100)

            x_train = X[:nfull]
            y_train = Y[:nfull]
            x_test = X[(train_size + 1):]
            y_test = Y[(train_size + 1):]

            try:
                clf.fit(x_train, y_train)
                y_pred = clf.predict(x_test)

                results[dataset - 1, j] = compute_error(y_test, y_pred)

                print('dataset=%d, nfull=%d, error=%f' % (dataset, nfull,
                                                          results[dataset - 1, j]))
            except ValueError:
                print('dataset=%d, nfull=%d: Failed' % (dataset, nfull))

    np.savetxt('results/syntetic/full_labeled.txt', results)
示例#3
0
def test_standard_svm_blobs_2d_class_weight():
    # no edges, reduce to crammer-singer svm
    X, Y = make_blobs(n_samples=210, centers=3, random_state=1, cluster_std=3,
                      shuffle=False)
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    X, Y = X[:170], Y[:170]

    X_graphs = [(x[np.newaxis, :], np.empty((0, 2), dtype=np.int)) for x in X]

    pbl = GraphCRF(n_features=3, n_states=3, inference_method='unary')
    svm = OneSlackSSVM(pbl, check_constraints=False, C=1000)

    svm.fit(X_graphs, Y[:, np.newaxis])

    weights = 1. / np.bincount(Y)
    weights *= len(weights) / np.sum(weights)

    pbl_class_weight = GraphCRF(n_features=3, n_states=3, class_weight=weights,
                                inference_method='unary')
    svm_class_weight = OneSlackSSVM(pbl_class_weight, C=10,
                                    check_constraints=False,
                                    break_on_bad=False)
    svm_class_weight.fit(X_graphs, Y[:, np.newaxis])

    assert_greater(f1_score(Y, np.hstack(svm_class_weight.predict(X_graphs))),
                   f1_score(Y, np.hstack(svm.predict(X_graphs))))
def test_class_weights_rescale_C():
    # check that our crammer-singer implementation with class weights and
    # rescale_C=True is the same as LinearSVC's c-s class_weight implementation
    from sklearn.svm import LinearSVC
    X, Y = make_blobs(n_samples=210, centers=3, random_state=1, cluster_std=3,
                      shuffle=False)
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    X, Y = X[:170], Y[:170]

    weights = 1. / np.bincount(Y)
    weights *= len(weights) / np.sum(weights)
    pbl_class_weight = MultiClassClf(n_features=3, n_classes=3,
                                     class_weight=weights, rescale_C=True)
    svm_class_weight = OneSlackSSVM(pbl_class_weight, C=10, tol=1e-5)
    svm_class_weight.fit(X, Y)

    try:
        linearsvm = LinearSVC(multi_class='crammer_singer',
                              fit_intercept=False, class_weight='auto', C=10)
        linearsvm.fit(X, Y)

        assert_array_almost_equal(svm_class_weight.w, linearsvm.coef_.ravel(),
                                  3)
    except TypeError:
        # travis has a really old sklearn version that doesn't support
        # class_weight in LinearSVC
        pass
示例#5
0
def test_constraint_removal():
    digits = load_digits()
    X, y = digits.data, digits.target
    y = 2 * (y % 2) - 1  # even vs odd as +1 vs -1
    X = X / 16.
    pbl = BinarySVMModel(n_features=X.shape[1])
    clf_no_removal = OneSlackSSVM(model=pbl, max_iter=500, verbose=1, C=10,
                                  inactive_window=0, tol=0.01)
    clf_no_removal.fit(X, y)
    clf = OneSlackSSVM(model=pbl, max_iter=500, verbose=1, C=10, tol=0.01,
                       inactive_threshold=1e-8)
    clf.fit(X, y)

    # results are mostly equal
    # if we decrease tol, they will get more similar
    assert_less(np.mean(clf.predict(X) != clf_no_removal.predict(X)), 0.02)

    # without removal, have as many constraints as iterations
    # +1 for true y constraint
    assert_equal(len(clf_no_removal.objective_curve_) + 1,
                 len(clf_no_removal.constraints_))

    # with removal, there are less constraints than iterations
    assert_less(len(clf.constraints_),
                len(clf.objective_curve_))
示例#6
0
def test_binary_blocks_one_slack_graph():
    #testing cutting plane ssvm on easy binary dataset
    # generate graphs explicitly for each example
    for inference_method in ["dai", "lp"]:
        print("testing %s" % inference_method)
        X, Y = toy.generate_blocks(n_samples=3)
        crf = GraphCRF(inference_method=inference_method)
        clf = OneSlackSSVM(problem=crf, max_iter=100, C=100, verbose=100,
                           check_constraints=True, break_on_bad=True,
                           n_jobs=1)
        x1, x2, x3 = X
        y1, y2, y3 = Y
        n_states = len(np.unique(Y))
        # delete some rows to make it more fun
        x1, y1 = x1[:, :-1], y1[:, :-1]
        x2, y2 = x2[:-1], y2[:-1]
        # generate graphs
        X_ = [x1, x2, x3]
        G = [make_grid_edges(x) for x in X_]

        # reshape / flatten x and y
        X_ = [x.reshape(-1, n_states) for x in X_]
        Y = [y.ravel() for y in [y1, y2, y3]]

        X = zip(X_, G)

        clf.fit(X, Y)
        Y_pred = clf.predict(X)
        for y, y_pred in zip(Y, Y_pred):
            assert_array_equal(y, y_pred)
def msrc():
    models_basedir = 'models/msrc/'
    crf = EdgeCRF(n_states=24, n_features=2028, n_edge_features=4,
                  inference_method='gco')
    clf = OneSlackSSVM(crf, max_iter=10000, C=0.01, verbose=2,
                       tol=0.1, n_jobs=4,
                       inference_cache=100)

    X, Y = load_msrc('train')
    Y = remove_areas(Y)

    start = time()
    clf.fit(X, Y)
    stop = time()

    np.savetxt(models_basedir + 'msrc_full.csv', clf.w)
    with open(models_basedir + 'msrc_full' + '.pickle', 'w') as f:
        pickle.dump(clf, f)

    X, Y = load_msrc('test')
    Y = remove_areas(Y)

    Y_pred = clf.predict(X)

    print('Error on test set: %f' % compute_error(Y, Y_pred))
    print('Score on test set: %f' % clf.score(X, Y))
    print('Norm of weight vector: |w|=%f' % np.linalg.norm(clf.w))
    print('Elapsed time: %f s' % (stop - start))

    return clf
示例#8
0
def syntetic():
    # train model on a single set
    models_basedir = 'models/syntetic/'
    crf = EdgeCRF(n_states=10, n_features=10, n_edge_features=2,
                  inference_method='gco')
    clf = OneSlackSSVM(crf, max_iter=10000, C=0.01, verbose=2,
                       tol=0.1, n_jobs=4, inference_cache=100)

    X, Y = load_syntetic(1)

    x_train, x_test, y_train, y_test = train_test_split(X, Y,
                                                        train_size=100,
                                                        random_state=179)

    start = time()
    clf.fit(x_train, y_train)
    stop = time()

    np.savetxt(models_basedir + 'syntetic_full.csv', clf.w)
    with open(models_basedir + 'syntetic_full' + '.pickle', 'w') as f:
        cPickle.dump(clf, f)

    y_pred = clf.predict(x_test)

    print 'Error on test set: %f' % compute_error(y_test, y_pred)
    print 'Score on test set: %f' % clf.score(x_test, y_test)
    print 'Score on train set: %f' % clf.score(x_train, y_train)
    print 'Norm of weight vector: |w|=%f' % np.linalg.norm(clf.w)
    print 'Elapsed time: %f s' % (stop - start)

    return clf
示例#9
0
def test(nfiles):
    X = []
    Y = []
    X_tst = []
    Y_tst = []
    ntrain = nfiles
    ntest = 5*nfiles
    print("Training/testing with %d/%d files." % (ntrain,ntest))
    start = time.clock()   
 
    filename = '../maps/MAPS_AkPnCGdD_2/AkPnCGdD/MUS'
    #filename = '../maps/MAPS_AkPnCGdD_1/AkPnCGdD/ISOL/NO'
    files = dirs.get_files_with_extension(filename, '.mid')
    train_files = files[:ntrain]
    print("\t" + str(train_files))
    #test_files = files[ntrain:ntest+ntrain]
    # for legit testing
    test_files = files[-ntest:]
    map(per_file, train_files,
      it.repeat(X, ntrain), it.repeat(Y, ntrain))
    map(per_file, test_files,
      it.repeat(X_tst, ntest), it.repeat(Y_tst, ntest))

    end = time.clock()
    print("\tRead time: %f" % (end - start))
    print("\tnWindows train: " + str([X[i].shape[0] for i in range(len(X))]))
    start = time.clock()   

    crf = ChainCRF(n_states=2)
    clf = OneSlackSSVM(model=crf, C=100, n_jobs=-1,
          inference_cache=100, tol=.1)
    clf.fit(np.array(X), np.array(Y))

    end = time.clock()
    print("\tTrain time: %f" % (end - start))
    start = time.clock()   

    Y_pred = clf.predict(X_tst)
    comp = []
    for i in range(len(Y_tst)):
      for j in range(len(Y_tst[i])):
        comp.append((Y_tst[i][j], Y_pred[i][j]))
        print Y_tst[i][j],
      print
      for j in range(len(Y_tst[i])):
        print Y_pred[i][j],
      print
      print

    print("\tTrue positives: %d" % comp.count((1,1)))
    print("\tTrue negatives: %d" % comp.count((0,0)))
    print("\tFalse positives: %d" % comp.count((0,1)))
    print("\tFalse negatives: %d" % comp.count((1,0)))
    

    end = time.clock()
    print("\tTest time: %f" % (end - start))
示例#10
0
def main():
    print("Please be patient. Will take 5-20 minutes.")
    snakes = load_snakes()
    X_train, Y_train = snakes['X_train'], snakes['Y_train']

    X_train = [one_hot_colors(x) for x in X_train]
    Y_train_flat = [y_.ravel() for y_ in Y_train]

    X_train_directions, X_train_edge_features = prepare_data(X_train)

    # first, train on X with directions only:
    crf = EdgeFeatureGraphCRF(inference_method='qpbo')
    ssvm = OneSlackSSVM(crf, inference_cache=50, C=.1, tol=.1, switch_to='ad3',
                        n_jobs=-1)
    ssvm.fit(X_train_directions, Y_train_flat)

    # Evaluate using confusion matrix.
    # Clearly the middel of the snake is the hardest part.
    X_test, Y_test = snakes['X_test'], snakes['Y_test']
    X_test = [one_hot_colors(x) for x in X_test]
    Y_test_flat = [y_.ravel() for y_ in Y_test]
    X_test_directions, X_test_edge_features = prepare_data(X_test)
    Y_pred = ssvm.predict(X_test_directions)
    print("Results using only directional features for edges")
    print("Test accuracy: %.3f"
          % accuracy_score(np.hstack(Y_test_flat), np.hstack(Y_pred)))
    print(confusion_matrix(np.hstack(Y_test_flat), np.hstack(Y_pred)))

    # now, use more informative edge features:
    crf = EdgeFeatureGraphCRF(inference_method='qpbo')
    ssvm = OneSlackSSVM(crf, inference_cache=50, C=.1, tol=.1, switch_to='ad3',
                        n_jobs=-1)
    ssvm.fit(X_train_edge_features, Y_train_flat)
    Y_pred2 = ssvm.predict(X_test_edge_features)
    print("Results using also input features for edges")
    print("Test accuracy: %.3f"
          % accuracy_score(np.hstack(Y_test_flat), np.hstack(Y_pred2)))
    print(confusion_matrix(np.hstack(Y_test_flat), np.hstack(Y_pred2)))

    # plot stuff
    fig, axes = plt.subplots(2, 2)
    axes[0, 0].imshow(snakes['X_test'][0], interpolation='nearest')
    axes[0, 0].set_title('Input')
    y = Y_test[0].astype(np.int)
    bg = 2 * (y != 0)  # enhance contrast
    axes[0, 1].matshow(y + bg, cmap=plt.cm.Greys)
    axes[0, 1].set_title("Ground Truth")
    axes[1, 0].matshow(Y_pred[0].reshape(y.shape) + bg, cmap=plt.cm.Greys)
    axes[1, 0].set_title("Prediction w/o edge features")
    axes[1, 1].matshow(Y_pred2[0].reshape(y.shape) + bg, cmap=plt.cm.Greys)
    axes[1, 1].set_title("Prediction with edge features")
    for a in axes.ravel():
        a.set_xticks(())
        a.set_yticks(())
    plt.show()
    from IPython.core.debugger import Tracer
    Tracer()()
示例#11
0
def test_one_slack_attractive_potentials():
    # test that submodular SSVM can learn the block dataset
    X, Y = generate_blocks(n_samples=10)
    crf = GridCRF(inference_method=inference_method)
    submodular_clf = OneSlackSSVM(
        model=crf, max_iter=200, C=1, check_constraints=True, negativity_constraint=[5], inference_cache=50
    )
    submodular_clf.fit(X, Y)
    Y_pred = submodular_clf.predict(X)
    assert_array_equal(Y, Y_pred)
    assert_true(submodular_clf.w[5] < 0)
示例#12
0
def test_multinomial_blocks_one_slack():
    #testing cutting plane ssvm on easy multinomial dataset
    X, Y = generate_blocks_multinomial(n_samples=10, noise=0.5, seed=0)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method=inference_method)
    clf = OneSlackSSVM(model=crf, max_iter=150, C=1,
                       check_constraints=True, break_on_bad=True, tol=.1,
                       inference_cache=50)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
示例#13
0
def test_one_slack_attractive_potentials():
    # test that submodular SSVM can learn the block dataset
    X, Y = toy.generate_blocks(n_samples=10)
    crf = GridCRF()
    submodular_clf = OneSlackSSVM(model=crf, max_iter=200, C=100, verbose=1,
                                  check_constraints=True,
                                  positive_constraint=[5], n_jobs=-1)
    submodular_clf.fit(X, Y)
    Y_pred = submodular_clf.predict(X)
    assert_array_equal(Y, Y_pred)
    assert_true(submodular_clf.w[5] < 0)  # don't ask me about signs
示例#14
0
def test_multinomial_blocks_one_slack():
    #testing cutting plane ssvm on easy multinomial dataset
    X, Y = toy.generate_blocks_multinomial(n_samples=10, noise=0.3,
                                           seed=0)
    n_labels = len(np.unique(Y))
    for inference_method in ['lp']:
        crf = GridCRF(n_states=n_labels, inference_method=inference_method)
        clf = OneSlackSSVM(problem=crf, max_iter=50, C=100, verbose=100,
                           check_constraints=True, break_on_bad=True)
        clf.fit(X, Y)
        Y_pred = clf.predict(X)
        assert_array_equal(Y, Y_pred)
示例#15
0
def test_multilabel_yeast_independent():
    yeast = fetch_mldata("yeast")
    X = yeast.data
    y = yeast.target.toarray().T.astype(np.int)
    # no edges for the moment
    edges = np.zeros((0, 2), dtype=np.int)
    pbl = MultiLabelProblem(n_features=X.shape[1], n_labels=y.shape[1],
                            edges=edges)
    ssvm = OneSlackSSVM(pbl, verbose=10)
    ssvm.fit(X, y)
    from IPython.core.debugger import Tracer
    Tracer()()
示例#16
0
def test_blobs_2d_one_slack():
    # make two gaussian blobs
    X, Y = make_blobs(n_samples=80, centers=2, random_state=1)
    Y = 2 * Y - 1
    # we have to add a constant 1 feature by hand :-/
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:]

    pbl = BinarySVMModel(n_features=3)
    svm = OneSlackSSVM(pbl, verbose=30, C=1000)

    svm.fit(X_train, Y_train)
    assert_array_equal(Y_test, np.hstack(svm.predict(X_test)))
def test_blobs_2d_one_slack():
    # make two gaussian blobs
    X, Y = make_blobs(n_samples=80, centers=3, random_state=42)
    # we have to add a constant 1 feature by hand :-/
    X = np.hstack([X, np.ones((X.shape[0], 1))])

    X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:]

    pbl = MultiClassClf(n_features=3, n_classes=3)
    svm = OneSlackSSVM(pbl, check_constraints=True, C=1000)

    svm.fit(X_train, Y_train)
    assert_array_equal(Y_test, np.hstack(svm.predict(X_test)))
示例#18
0
def test_standard_svm_blobs_2d():
    # no edges, reduce to crammer-singer svm
    X, Y = make_blobs(n_samples=80, centers=3, random_state=42)
    # we have to add a constant 1 feature by hand :-/
    X = np.hstack([X, np.ones((X.shape[0], 1))])

    X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:]
    X_train_graphs = [(x[np.newaxis, :], np.empty((0, 2), dtype=np.int)) for x in X_train]

    X_test_graphs = [(x[np.newaxis, :], np.empty((0, 2), dtype=np.int)) for x in X_test]

    pbl = GraphCRF(n_features=3, n_states=3)
    svm = OneSlackSSVM(pbl, verbose=10, check_constraints=True, C=1000)

    svm.fit(X_train_graphs, Y_train[:, np.newaxis])
    assert_array_equal(Y_test, np.hstack(svm.predict(X_test_graphs)))
示例#19
0
def test_svm_as_crf_pickling():
    iris = load_iris()
    X, y = iris.data, iris.target

    X_ = [(np.atleast_2d(x), np.empty((0, 2), dtype=np.int)) for x in X]
    Y = y.reshape(-1, 1)

    X_train, X_test, y_train, y_test = train_test_split(X_, Y, random_state=1)
    _, file_name = mkstemp()

    pbl = GraphCRF(n_features=4, n_states=3, inference_method="unary")
    logger = SaveLogger(file_name)
    svm = OneSlackSSVM(pbl, check_constraints=True, C=1, n_jobs=1, logger=logger)
    svm.fit(X_train, y_train)

    assert_less(0.97, svm.score(X_test, y_test))
    assert_less(0.97, logger.load().score(X_test, y_test))
示例#20
0
def synteticTrain(peer):
    # train model on a single set
    clf = OneSlackSSVM(peer, max_iter=10000, C=0.01, verbose=2,
                       tol=0.1, n_jobs=4, inference_cache=100)

    start = time()
    clf.fit()
    stop = time()

    models_basedir = peer.config.get("models.basedir")
    
    np.savetxt(models_basedir + 'syntetic_full.csv', clf.w[None], delimiter=' ')
    #with open(models_basedir + 'syntetic_full' + '.pickle', 'w') as f:
    #    pickle.dump(clf, f)

    peer.log('Elapsed time: %f s' % (stop - start))
    return clf
示例#21
0
def test_switch_to_ad3():
    # test if switching between qpbo and ad3 works

    if not get_installed(["qpbo"]) or not get_installed(["ad3"]):
        return
    X, Y = generate_blocks_multinomial(n_samples=5, noise=1.5, seed=0)
    crf = GridCRF(n_states=3, inference_method="qpbo")

    ssvm = OneSlackSSVM(crf, inference_cache=50, max_iter=10000)

    ssvm_with_switch = OneSlackSSVM(crf, inference_cache=50, max_iter=10000, switch_to=("ad3"))
    ssvm.fit(X, Y)
    ssvm_with_switch.fit(X, Y)
    assert_equal(ssvm_with_switch.model.inference_method, "ad3")
    # we check that the dual is higher with ad3 inference
    # as it might use the relaxation, that is pretty much guraranteed
    assert_greater(ssvm_with_switch.objective_curve_[-1], ssvm.objective_curve_[-1])
示例#22
0
def msrc_test():
    # test model on different train set sizes
    basedir = '../data/msrc/trainmasks/'
    models_basedir = 'models/msrc/'
    quality = []

    Xtest, Ytest = load_msrc('test')
    Ytest = remove_areas(Ytest)
    Xtrain, Ytrain = load_msrc('train')
    Ytrain = remove_areas(Ytrain)

    for n_train in [20, 40, 80, 160, 276]:
        crf = EdgeCRF(n_states=24, n_features=2028, n_edge_features=4,
                      inference_method='gco')
        clf = OneSlackSSVM(crf, max_iter=1000, C=0.01, verbose=0,
                           tol=0.1, n_jobs=4, inference_cache=100)

        if n_train != 276:
            train_mask = np.genfromtxt(basedir + 'trainMaskX%d.txt' % n_train)
            train_mask = train_mask[:277].astype(np.bool)
        else:
            train_mask = np.ones(276).astype(np.bool)

        curX = []
        curY = []
        for (s, x, y) in zip(train_mask, Xtrain, Ytrain):
            if s:
                curX.append(x)
                curY.append(y)

        start = time()
        clf.fit(curX, curY)
        stop = time()

        np.savetxt(models_basedir + 'test_model_%d.csv' % n_train, clf.w)
        with open(models_basedir + 'test_model_%d' % n_train + '.pickle', 'w') as f:
            pickle.dump(clf, f)

        Ypred = clf.predict(Xtest)

        q = 1 - compute_error(Ytest, Ypred)

        print('n_train=%d, quality=%f, time=%f' % (n_train, q, stop - start))
        quality.append(q)

    np.savetxt('results/msrc/msrc_full.txt', quality)
示例#23
0
def conditional_random_fields(X, y):
	"""
	"""

	X_ = [(np.atleast_2d(x), np.empty((0, 2), dtype=np.int)) for x in X]
	Y = y.reshape(-1, 1)

	X_train, X_test, y_train, y_test = train_test_split(X_, Y)

	pbl = GraphCRF()
	svm = OneSlackSSVM(pbl)

	svm.fit(X_train, y_train)
	y_pred = np.vstack(svm.predict(X_test))
	print("Score with pystruct crf svm: %f "
	      % (np.mean(y_pred == y_test)))
	print classification_report(y_test, y_pred)
	plot_confusion_matrix(y_test, y_pred)
def test_class_weights():
    X, Y = make_blobs(n_samples=210, centers=3, random_state=1, cluster_std=3,
                      shuffle=False)
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    X, Y = X[:170], Y[:170]

    pbl = MultiClassClf(n_features=3, n_classes=3)
    svm = OneSlackSSVM(pbl, C=10)

    svm.fit(X, Y)

    weights = 1. / np.bincount(Y)
    weights *= len(weights) / np.sum(weights)
    pbl_class_weight = MultiClassClf(n_features=3, n_classes=3,
                                     class_weight=weights)
    svm_class_weight = OneSlackSSVM(pbl_class_weight, C=10)
    svm_class_weight.fit(X, Y)

    assert_greater(f1_score(Y, svm_class_weight.predict(X)),
                   f1_score(Y, svm.predict(X)))
def test_equal_class_weights():
    # test that equal class weight is the same as no class weight
    X, Y = make_blobs(n_samples=80, centers=3, random_state=42)
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:]

    pbl = MultiClassClf(n_features=3, n_classes=3)
    svm = OneSlackSSVM(pbl, C=10)

    svm.fit(X_train, Y_train)
    predict_no_class_weight = svm.predict(X_test)

    pbl_class_weight = MultiClassClf(n_features=3, n_classes=3,
                                     class_weight=np.ones(3))
    svm_class_weight = OneSlackSSVM(pbl_class_weight, C=10)
    svm_class_weight.fit(X_train, Y_train)
    predict_class_weight = svm_class_weight.predict(X_test)

    assert_array_equal(predict_no_class_weight, predict_class_weight)
    assert_array_almost_equal(svm.w, svm_class_weight.w)
示例#26
0
def test_one_slack_constraint_caching():
    #testing cutting plane ssvm on easy multinomial dataset
    X, Y = toy.generate_blocks_multinomial(n_samples=10, noise=0.3,
                                           seed=0)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method='lp')
    clf = OneSlackSSVM(problem=crf, max_iter=50, C=100, verbose=100,
                       check_constraints=True, break_on_bad=True,
                       inference_cache=50)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
    assert_equal(len(clf.inference_cache_), len(X))
    # there should be 9 constraints, which are less than the 16 iterations
    # that are done
    assert_equal(len(clf.inference_cache_[0]), 9)
    # check that we didn't change the behavior of how we construct the cache
    constraints_per_sample = [len(cache) for cache in clf.inference_cache_]
    assert_equal(np.max(constraints_per_sample), 10)
    assert_equal(np.min(constraints_per_sample), 8)
示例#27
0
def test_one_slack_constraint_caching():
    #testing cutting plane ssvm on easy multinomial dataset
    X, Y = toy.generate_blocks_multinomial(n_samples=10, noise=0.5,
                                           seed=0, size_x=9)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels)
    clf = OneSlackSSVM(model=crf, max_iter=150, C=1,
                       check_constraints=True, break_on_bad=True,
                       inference_cache=50, inactive_window=0)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
    assert_equal(len(clf.inference_cache_), len(X))
    # there should be 21 constraints, which are less than the 94 iterations
    # that are done
    assert_equal(len(clf.inference_cache_[0]), 21)
    # check that we didn't change the behavior of how we construct the cache
    constraints_per_sample = [len(cache) for cache in clf.inference_cache_]
    assert_equal(np.max(constraints_per_sample), 21)
    assert_equal(np.min(constraints_per_sample), 21)
def test_equal_class_weights():
    # test that equal class weight is the same as no class weight
    X, Y = make_blobs(n_samples=80, centers=3, random_state=42)
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:]

    pbl = MultiClassClf(n_features=3, n_classes=3)
    svm = OneSlackSSVM(pbl, C=10)

    svm.fit(X_train, Y_train)
    predict_no_class_weight = svm.predict(X_test)

    pbl_class_weight = MultiClassClf(n_features=3,
                                     n_classes=3,
                                     class_weight=np.ones(3))
    svm_class_weight = OneSlackSSVM(pbl_class_weight, C=10)
    svm_class_weight.fit(X_train, Y_train)
    predict_class_weight = svm_class_weight.predict(X_test)

    assert_array_equal(predict_no_class_weight, predict_class_weight)
    assert_array_almost_equal(svm.w, svm_class_weight.w)
示例#29
0
def test_class_weights():
    # test that equal class weight is the same as no class weight
    X, Y = make_blobs(n_samples=210, centers=3, random_state=1, cluster_std=3,
                      shuffle=False)
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    X, Y = X[:170], Y[:170]

    pbl = CrammerSingerSVMModel(n_features=3, n_classes=3)
    svm = OneSlackSSVM(pbl, verbose=10, C=10)

    svm.fit(X, Y)

    weights = 1. / np.bincount(Y)
    weights *= len(weights) / np.sum(weights)
    pbl_class_weight = CrammerSingerSVMModel(n_features=3, n_classes=3,
                                             class_weight=weights)
    svm_class_weight = OneSlackSSVM(pbl_class_weight, verbose=10, C=10)
    svm_class_weight.fit(X, Y)

    assert_greater(f1_score(Y, svm_class_weight.predict(X)),
                   f1_score(Y, svm.predict(X)))
示例#30
0
def test_svm_as_crf_pickling():
    iris = load_iris()
    X, y = iris.data, iris.target

    X_ = [(np.atleast_2d(x), np.empty((0, 2), dtype=np.int)) for x in X]
    Y = y.reshape(-1, 1)

    X_train, X_test, y_train, y_test = train_test_split(X_, Y, random_state=1)
    _, file_name = mkstemp()

    pbl = GraphCRF(n_features=4, n_states=3, inference_method='unary')
    logger = SaveLogger(file_name)
    svm = OneSlackSSVM(pbl,
                       check_constraints=True,
                       C=1,
                       n_jobs=1,
                       logger=logger)
    svm.fit(X_train, y_train)

    assert_less(.97, svm.score(X_test, y_test))
    assert_less(.97, logger.load().score(X_test, y_test))
示例#31
0
def test_one_slack_repellent_potentials():
    # test non-submodular problem with and without submodularity constraint
    # dataset is checkerboard
    X, Y = generate_checker()
    crf = GridCRF(inference_method=inference_method)
    clf = OneSlackSSVM(model=crf, max_iter=10, C=0.01, check_constraints=True)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    # standard crf can predict perfectly
    assert_array_equal(Y, Y_pred)

    submodular_clf = OneSlackSSVM(
        model=crf, max_iter=10, C=0.01, check_constraints=True, negativity_constraint=[4, 5, 6]
    )
    submodular_clf.fit(X, Y)
    Y_pred = submodular_clf.predict(X)
    assert_less(submodular_clf.score(X, Y), 0.99)
    # submodular crf can not do better than unaries
    for i, x in enumerate(X):
        y_pred_unaries = crf.inference(x, np.array([1, 0, 0, 1, 0, 0, 0]))
        assert_array_equal(y_pred_unaries, Y_pred[i])
示例#32
0
def test_one_slack_repellent_potentials():
    # test non-submodular problem with and without submodularity constraint
    # dataset is checkerboard
    X, Y = generate_checker()
    crf = GridCRF(inference_method=inference_method)
    clf = OneSlackSSVM(model=crf, max_iter=10, C=.01,
                       check_constraints=True)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    # standard crf can predict perfectly
    assert_array_equal(Y, Y_pred)

    submodular_clf = OneSlackSSVM(model=crf, max_iter=10, C=.01,
                                  check_constraints=True,
                                  negativity_constraint=[4, 5, 6])
    submodular_clf.fit(X, Y)
    Y_pred = submodular_clf.predict(X)
    assert_less(submodular_clf.score(X, Y), .99)
    # submodular crf can not do better than unaries
    for i, x in enumerate(X):
        y_pred_unaries = crf.inference(x, np.array([1, 0, 0, 1, 0, 0, 0]))
        assert_array_equal(y_pred_unaries, Y_pred[i])
示例#33
0
def test_switch_to_ad3():
    # test if switching between qpbo and ad3 works

    if not get_installed(['qpbo']) or not get_installed(['ad3']):
        return
    X, Y = generate_blocks_multinomial(n_samples=5, noise=1.5, seed=0)
    crf = GridCRF(n_states=3, inference_method='qpbo')

    ssvm = OneSlackSSVM(crf, inference_cache=50, max_iter=10000)

    ssvm_with_switch = OneSlackSSVM(crf,
                                    inference_cache=50,
                                    max_iter=10000,
                                    switch_to=('ad3'))
    ssvm.fit(X, Y)
    ssvm_with_switch.fit(X, Y)
    assert_equal(ssvm_with_switch.model.inference_method, 'ad3')
    # we check that the dual is higher with ad3 inference
    # as it might use the relaxation, that is pretty much guraranteed
    assert_greater(ssvm_with_switch.objective_curve_[-1],
                   ssvm.objective_curve_[-1])
    print(ssvm_with_switch.objective_curve_[-1], ssvm.objective_curve_[-1])
示例#34
0
def train_structured_svm(observations, targets):
    """

    :param observations: our train dataset
    :param targets: multiple target variables.
    :return: the structured svm model
    """

    # ideally you can say the edges that are connected. For now, we use full.
    n_labels = len(targets[0])

    full = np.vstack([x for x in itertools.combinations(range(n_labels), 2)])
    #tree = chow_liu_tree(targets)

    # Choose the best model...
    full_model = MultiLabelClf(edges=full, inference_method='lp')

    #tree_model = MultiLabelClf(edges=tree, inference_method="max-product")
    full_ssvm = OneSlackSSVM(full_model, inference_cache=50, C=.1, tol=0.01)
    full_ssvm.fit(np.array(observations), np.array(targets))

    return full_ssvm
示例#35
0
def train_structured_svm(observations,targets):
    """

    :param observations: our train dataset
    :param targets: multiple target variables.
    :return: the structured svm model
    """

    # ideally you can say the edges that are connected. For now, we use full.
    n_labels = len(targets[0])

    full = np.vstack([x for x in itertools.combinations(range(n_labels), 2)])
    #tree = chow_liu_tree(targets)

    # Choose the best model...
    full_model = MultiLabelClf(edges=full, inference_method='lp')

    #tree_model = MultiLabelClf(edges=tree, inference_method="max-product")
    full_ssvm = OneSlackSSVM(full_model, inference_cache=50, C=.1, tol=0.01)
    full_ssvm.fit(np.array(observations), np.array(targets))

    return full_ssvm
示例#36
0
def CRF_pred_prepro(xtrain,
                    y,
                    xtest,
                    C=0.9,
                    weight_shift=0,
                    max_iter=1000,
                    fs=128):

    y_train = y.values

    # CRF Model Preprocessing
    xtrain_ = xtrain
    ytrain_classes = np.reshape(y_train, (y_train.shape[0], ))
    ytrain_ = y_train
    xtest_ = xtest
    xtrain_crf = np.reshape(
        xtrain_,
        (3, -1, xtrain_.shape[1]))  # Reshape so that it works with CRF
    ytrain_crf = np.reshape(ytrain_,
                            (3, -1)) - 1  # Reshape so that it works with CRF

    # CRF Model fitting:
    classes = np.unique(ytrain_)
    weights_crf = compute_class_weight("balanced", list(classes),
                                       list(ytrain_classes))
    weights_crf[0] = weights_crf[0] + (2.5 * weight_shift)
    weights_crf[1] = weights_crf[1] + (1.5 * weight_shift)

    model = ChainCRF(class_weight=weights_crf)
    ssvm = OneSlackSSVM(model=model, C=C, max_iter=max_iter)
    ssvm.fit(xtrain_crf, ytrain_crf)

    # Test on the third guy
    xtest_crf = np.reshape(xtest_, (2, -1, xtest_.shape[1]))
    y_pred_crf = ssvm.predict(xtest_crf)
    y_pred_crf = np.asarray(y_pred_crf).reshape(-1) + 1
    return y_pred_crf
示例#37
0
def test_class_weights():
    X, Y = make_blobs(n_samples=210,
                      centers=3,
                      random_state=1,
                      cluster_std=3,
                      shuffle=False)
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    X, Y = X[:170], Y[:170]

    pbl = MultiClassClf(n_features=3, n_classes=3)
    svm = OneSlackSSVM(pbl, C=10)

    svm.fit(X, Y)

    weights = 1. / np.bincount(Y)
    weights *= len(weights) / np.sum(weights)
    pbl_class_weight = MultiClassClf(n_features=3,
                                     n_classes=3,
                                     class_weight=weights)
    svm_class_weight = OneSlackSSVM(pbl_class_weight, C=10)
    svm_class_weight.fit(X, Y)

    assert_greater(f1_score(Y, svm_class_weight.predict(X), average='macro'),
                   f1_score(Y, svm.predict(X), average='macro'))
示例#38
0
    def fit_crf(self):
        for C in self.C_range:
            print("Testing C value: {}".format(C))
            model = EdgeFeatureGraphCRF(inference_method="ad3")
            ssvm = OneSlackSSVM(model,
                                inference_cache=50,
                                C=C,
                                tol=self.tol,
                                max_iter=self.max_iter,
                                n_jobs=4,
                                verbose=False)
            ssvm.fit(self.X_train, self.y_train)
            predictions = [x for x in ssvm.predict(self.X_dev)]
            self.evaluate_predictions(predictions, self.y_dev)

        # Fit against the whole dataset except test
        # Is this approach correct?
        model = EdgeFeatureGraphCRF(inference_method="ad3")
        ssvm = OneSlackSSVM(model,
                            inference_cache=50,
                            C=0.03,
                            tol=self.tol,
                            max_iter=self.max_iter,
                            n_jobs=4,
                            verbose=False)
        X_train_dev = np.concatenate([self.X_train, self.X_dev])
        y_train_dev = np.concatenate([self.y_train, self.y_dev])
        ssvm.fit(X_train_dev, y_train_dev)

        if self.eval_against_test:
            predictions = [x for x in ssvm.predict(self.X_test)]
            print("Test set evaluation")
            self.evaluate_predictions(predictions, self.y_test)

        self.model = ssvm
        return ssvm
示例#39
0
def losocv_CRF(eeg1, eeg2, emg, y, C=0.5, weight_shift=0, fs=128):
    """Leave one subject out cross validation for the CRF model becasuse it requires
    special datahandling. Input should be a Pandas Dataframe."""

    epochs = 21600
    num_sub = 3
    # Indices of the subjects
    sub_indices = [
        np.arange(0, epochs),
        np.arange(epochs, epochs * 2),
        np.arange(epochs * 2, epochs * 3)
    ]
    res = []

    for i in range(len(sub_indices)):

        # For the ith iteration, select as trainin the sub_indices other than those at index i for train_index
        train_index = np.concatenate(
            [sub_indices[(i + 1) % num_sub], sub_indices[(i + 2) % num_sub]])
        eeg1_train = eeg1.values[train_index]
        eeg2_train = eeg2.values[train_index]
        emg_train = emg.values[train_index]
        y_train = y.values[train_index]

        # The test subject is the one at index i
        test_index = sub_indices[i]
        eeg1_test = eeg1.values[test_index]
        eeg2_test = eeg2.values[test_index]
        emg_test = emg.values[test_index]
        y_test = y.values[test_index]

        # CRF Model Preprocessing
        eeg1_ = process_EEG(eeg1_train)
        eeg2_ = process_EEG(eeg2_train)
        emg_ = process_EMG(emg_train)
        xtrain_ = np.concatenate((eeg1_, eeg2_, emg_), axis=1)
        ytrain_classes = np.reshape(y_train, (y_train.shape[0], ))
        ytrain_ = y_train

        eeg1_t = process_EEG(eeg1_test)
        eeg2_t = process_EEG(eeg2_test)
        emg_t = process_EMG(emg_test)
        xtest_ = np.concatenate((eeg1_t, eeg2_t, emg_t), axis=1)
        ytest_ = y_test

        xtrain_crf = np.reshape(
            xtrain_,
            (2, -1, xtrain_.shape[1]))  # Reshape so that it works with CRF
        ytrain_crf = np.reshape(
            ytrain_, (2, -1)) - 1  # Reshape so that it works with CRF

        # CRF Model fitting:
        classes = np.unique(ytrain_)
        weights_crf = compute_class_weight("balanced", list(classes),
                                           list(ytrain_classes))
        weights_crf[0] = weights_crf[0] + (2.5 * weight_shift)
        weights_crf[1] = weights_crf[1] + (1.5 * weight_shift)

        model = ChainCRF(class_weight=weights_crf)
        ssvm = OneSlackSSVM(model=model, C=C, max_iter=2000)
        ssvm.fit(xtrain_crf, ytrain_crf)

        # Test on the third guy
        xtest_crf = np.reshape(xtest_, (1, -1, xtest_.shape[1]))
        ytest_crf = np.reshape(ytest_, (1, -1)) - 1
        y_pred_crf = ssvm.predict(xtest_crf)
        y_pred_crf = np.asarray(y_pred_crf).reshape(-1) + 1

        resy = sklearn.metrics.balanced_accuracy_score(ytest_, y_pred_crf)
        print("Iteration, result:", i, resy)
        res.append(resy)
    return res
示例#40
0
print("Training SSVM")
inference = 'qpbo'
# first, train on X with directions only:
crf = EdgeFeatureGraphCRF(inference_method=inference)
ssvm = OneSlackSSVM(crf,
                    inference_cache=50,
                    C=1.,
                    tol=.1,
                    max_iter=500,
                    n_jobs=4)

Y_flat = [y_.ravel() for y_ in Y]
Y_flat = np.asarray(
    [Y_flat[i][j] for i in range(len(Y_flat)) for j in range(len(Y_flat[i]))])
ssvm.fit(X, Y)
Z_bin = ssvm.predict(X)
Z_flat = np.asarray(
    [Z_bin[i][j] for i in range(len(Z_bin)) for j in range(len(Z_bin[i]))])
f1_score = metrics.f1_score(Y_flat, Z_flat, average='weighted')
conf_mat = metrics.confusion_matrix(Y_flat, Z_flat)
TPR = conf_mat[0][0] / (conf_mat[0][0] + conf_mat[0][1])
FPR = conf_mat[1][0] / (conf_mat[1][0] + conf_mat[1][1])
print('Results with classifier: ' + ssvm.__class__.__name__)
print('TPR/FPR = ' + str(TPR) + '/' + str(FPR))
print('F1-score = ' + str(f1_score))

my_classifier = ssvm
# Run prediction on the img_idx-th image
img_idx = 0
the_img = imgs[img_idx]
示例#41
0
def main():
    print("Please be patient. Will take 5-20 minutes.")
    snakes = load_snakes()
    X_train, Y_train = snakes['X_train'], snakes['Y_train']

    X_train = [one_hot_colors(x) for x in X_train]
    Y_train_flat = [y_.ravel() for y_ in Y_train]

    X_train_directions, X_train_edge_features = prepare_data(X_train)

    if 'ogm' in get_installed():
        inference = ('ogm', {'alg': 'fm'})
    else:
        inference = 'qpbo'
    # first, train on X with directions only:
    crf = EdgeFeatureGraphCRF(inference_method=inference)
    ssvm = OneSlackSSVM(crf,
                        inference_cache=50,
                        C=.1,
                        tol=.1,
                        max_iter=100,
                        n_jobs=1)
    ssvm.fit(X_train_directions, Y_train_flat)

    # Evaluate using confusion matrix.
    # Clearly the middel of the snake is the hardest part.
    X_test, Y_test = snakes['X_test'], snakes['Y_test']
    X_test = [one_hot_colors(x) for x in X_test]
    Y_test_flat = [y_.ravel() for y_ in Y_test]
    X_test_directions, X_test_edge_features = prepare_data(X_test)
    Y_pred = ssvm.predict(X_test_directions)
    print("Results using only directional features for edges")
    print("Test accuracy: %.3f" %
          accuracy_score(np.hstack(Y_test_flat), np.hstack(Y_pred)))
    print(confusion_matrix(np.hstack(Y_test_flat), np.hstack(Y_pred)))

    # now, use more informative edge features:
    crf = EdgeFeatureGraphCRF(inference_method=inference)
    ssvm = OneSlackSSVM(crf,
                        inference_cache=50,
                        C=.1,
                        tol=.1,
                        switch_to='ad3',
                        n_jobs=1)
    ssvm.fit(X_train_edge_features, Y_train_flat)
    Y_pred2 = ssvm.predict(X_test_edge_features)
    print("Results using also input features for edges")
    print("Test accuracy: %.3f" %
          accuracy_score(np.hstack(Y_test_flat), np.hstack(Y_pred2)))
    print(confusion_matrix(np.hstack(Y_test_flat), np.hstack(Y_pred2)))

    # plot stuff
    fig, axes = plt.subplots(2, 2)
    axes[0, 0].imshow(snakes['X_test'][0], interpolation='nearest')
    axes[0, 0].set_title('Input')
    y = Y_test[0].astype(np.int)
    bg = 2 * (y != 0)  # enhance contrast
    axes[0, 1].matshow(y + bg, cmap=plt.cm.Greys)
    axes[0, 1].set_title("Ground Truth")
    axes[1, 0].matshow(Y_pred[0].reshape(y.shape) + bg, cmap=plt.cm.Greys)
    axes[1, 0].set_title("Prediction w/o edge features")
    axes[1, 1].matshow(Y_pred2[0].reshape(y.shape) + bg, cmap=plt.cm.Greys)
    axes[1, 1].set_title("Prediction with edge features")
    for a in axes.ravel():
        a.set_xticks(())
        a.set_yticks(())
    plt.show()
    from IPython.core.debugger import Tracer
    Tracer()()
示例#42
0
X_train_directions, X_train_edge_features = prepare_data(X_train)

if 'ogm' in get_installed():
    inference = ('ogm', {'alg': 'fm'})
else:
    inference = 'qpbo'
# first, train on X with directions only:
crf = EdgeFeatureGraphCRF(inference_method=inference)
ssvm = OneSlackSSVM(crf,
                    inference_cache=50,
                    C=.1,
                    tol=.1,
                    max_iter=100,
                    n_jobs=1)
ssvm.fit(X_train_directions, Y_train_flat)

# Evaluate using confusion matrix.
# Clearly the middel of the snake is the hardest part.
X_test, Y_test = snakes['X_test'], snakes['Y_test']
X_test = [one_hot_colors(x) for x in X_test]
Y_test_flat = [y_.ravel() for y_ in Y_test]
X_test_directions, X_test_edge_features = prepare_data(X_test)
Y_pred = ssvm.predict(X_test_directions)
print("Results using only directional features for edges")
print("Test accuracy: %.3f" %
      accuracy_score(np.hstack(Y_test_flat), np.hstack(Y_pred)))
print(confusion_matrix(np.hstack(Y_test_flat), np.hstack(Y_pred)))

# now, use more informative edge features:
crf = EdgeFeatureGraphCRF(inference_method=inference)
示例#43
0
def Strukturni(x_train, y_train, x_test, y_test):

    import itertools
    import time

    import numpy as np
    from scipy import sparse

    from sklearn.metrics import hamming_loss
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import mutual_info_score
    from scipy.sparse.csgraph import minimum_spanning_tree

    from pystruct.learners import OneSlackSSVM
    from pystruct.models import MultiLabelClf
    #    from pystruct.models import GraphCRF
    from sklearn.neural_network import MLPClassifier
    from sklearn.tree import DecisionTreeClassifier

    x_train = x_train.values
    y_train = y_train.values
    y_test = y_test.values
    x_test = x_test.values
    """ CRF chain """
    """ SSVM, MLP - pystruct """
    """CREATE DATASET FOR GNN """
    def chow_liu_tree(y_):
        n_labels = y_.shape[1]
        mi = np.zeros((n_labels, n_labels))
        for i in range(n_labels):
            for j in range(n_labels):
                mi[i, j] = mutual_info_score(y_[:, i], y_[:, j])
        mst = minimum_spanning_tree(sparse.csr_matrix(-mi))
        edges = np.vstack(mst.nonzero()).T
        edges.sort(axis=1)
        return edges

    n_labels = y_train.shape[1]
    full = np.vstack([x for x in itertools.combinations(range(n_labels), 2)])
    tree = chow_liu_tree(y_train)
    """ Define models """
    full_model = MultiLabelClf(edges=full)
    independent_model = MultiLabelClf()
    tree_model = MultiLabelClf(edges=tree, inference_method='max-product')
    """ Define learn algorithm """
    full_ssvm = OneSlackSSVM(full_model,
                             inference_cache=50,
                             C=.1,
                             tol=0.01,
                             max_iter=150)
    tree_ssvm = OneSlackSSVM(tree_model,
                             inference_cache=50,
                             C=.1,
                             tol=0.01,
                             max_iter=150)
    independent_ssvm = OneSlackSSVM(independent_model,
                                    C=.1,
                                    tol=0.01,
                                    max_iter=150)

    MLP = MLPClassifier()
    DT = DecisionTreeClassifier()
    """ Fit models """

    time_ST = np.zeros(5)

    start_time = time.time()
    DT.fit(x_train, y_train)
    y_DT = DT.predict(x_test)
    time_ST[4] = time.time() - start_time

    start_time = time.time()
    MLP.fit(x_train, y_train)
    y_MLP = MLP.predict(x_test)
    time_ST[3] = time.time() - start_time

    start_time = time.time()
    independent_ssvm.fit(x_train, y_train)
    y_ind = independent_ssvm.predict(x_test)
    time_ST[0] = time.time() - start_time

    start_time = time.time()
    full_ssvm.fit(x_train, y_train)
    y_full = full_ssvm.predict(x_test)
    time_ST[1] = time.time() - start_time

    start_time = time.time()
    tree_ssvm.fit(x_train, y_train)
    y_tree = tree_ssvm.predict(x_test)
    time_ST[2] = time.time() - start_time
    """ EVALUATE models """
    HL = np.zeros(5)
    ACC = np.zeros(5)

    y_full = np.asarray(y_full)
    y_ind = np.asarray(y_ind)
    y_tree = np.asarray(y_tree)

    HL[0] = hamming_loss(y_test, y_ind)
    HL[1] = hamming_loss(y_test, y_full)
    HL[2] = hamming_loss(y_test, y_tree)
    HL[3] = hamming_loss(y_test, y_MLP)
    HL[4] = hamming_loss(y_test, y_DT)

    y_ind = y_ind.reshape([y_ind.shape[0] * y_ind.shape[1]])
    y_full = y_full.reshape([y_full.shape[0] * y_full.shape[1]])
    y_tree = y_tree.reshape([y_tree.shape[0] * y_tree.shape[1]])
    y_MLP = y_MLP.reshape([y_MLP.shape[0] * y_MLP.shape[1]])
    y_DT = y_DT.reshape([y_DT.shape[0] * y_DT.shape[1]])
    y_test = y_test.reshape([y_test.shape[0] * y_test.shape[1]])

    ACC[0] = accuracy_score(y_test, y_ind)
    ACC[1] = accuracy_score(y_test, y_full)
    ACC[2] = accuracy_score(y_test, y_tree)
    ACC[3] = accuracy_score(y_test, y_MLP)
    ACC[4] = accuracy_score(y_test, y_DT)

    return ACC, HL, time_ST
示例#44
0
                                  max_iter=1000, verbose=0)

fw_bc_svm = FrankWolfeSSVM(model, C=.1, max_iter=50)
fw_batch_svm = FrankWolfeSSVM(model, C=.1, max_iter=50, batch_mode=True)

# n-slack cutting plane ssvm
start = time()
n_slack_svm.fit(X_train_bias, y_train)
time_n_slack_svm = time() - start
y_pred = np.hstack(n_slack_svm.predict(X_test_bias))
print("Score with pystruct n-slack ssvm: %f (took %f seconds)"
      % (np.mean(y_pred == y_test), time_n_slack_svm))

## 1-slack cutting plane ssvm
start = time()
one_slack_svm.fit(X_train_bias, y_train)
time_one_slack_svm = time() - start
y_pred = np.hstack(one_slack_svm.predict(X_test_bias))
print("Score with pystruct 1-slack ssvm: %f (took %f seconds)"
      % (np.mean(y_pred == y_test), time_one_slack_svm))

#online subgradient ssvm
start = time()
subgradient_svm.fit(X_train_bias, y_train)
time_subgradient_svm = time() - start
y_pred = np.hstack(subgradient_svm.predict(X_test_bias))

print("Score with pystruct subgradient ssvm: %f (took %f seconds)"
      % (np.mean(y_pred == y_test), time_subgradient_svm))

# the standard one-vs-rest multi-class would probably be as good and faster
示例#45
0
    yeast = fetch_mldata("yeast")

    X = yeast.data
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    y = yeast.target.toarray().astype(np.int).T

    X_train, X_test = X[:1500], X[1500:]
    y_train, y_test = y[:1500], y[1500:]

else:
    scene = load_scene()
    X_train, X_test = scene['X_train'], scene['X_test']
    y_train, y_test = scene['y_train'], scene['y_test']

n_labels = y_train.shape[1]
full = np.vstack([x for x in itertools.combinations(range(n_labels), 2)])
tree = chow_liu_tree(y_train)

#tree_model = MultiLabelClf(edges=tree, inference_method=('ogm', {'alg': 'dyn'}))
tree_model = MultiLabelClf(edges=tree, inference_method='max-product')

tree_ssvm = OneSlackSSVM(tree_model, inference_cache=50, C=.1, tol=0.01)

print("fitting tree model...")
tree_ssvm.fit(X_train, y_train)

print("Training loss tree model: %f" %
      hamming_loss(y_train, np.vstack(tree_ssvm.predict(X_train))))
print("Test loss tree model: %f" %
      hamming_loss(y_test, np.vstack(tree_ssvm.predict(X_test))))
kf = KFold(num_jackets, n_folds=n_folds)
fold = 0
for train_index, test_index in kf:
    print(' ')
    print('train index {}'.format(train_index))
    print('test index {}'.format(test_index))
    print('{} jackets for training, {} for testing'. \
          format(len(train_index), len(test_index)))
    X_train = X[train_index]
    Y_train = Y[train_index]
    X_test = X[test_index]
    Y_test = Y[test_index]

    start = time.time()
    """ YOUR S-SVM TRAINING CODE HERE """
    ssvm.fit(X_train, Y_train)
    end = time.time()
    print('CRF learning of 1 fold has taken {} seconds'.format(
        (end - start) / 1000.0))

    scores_crf[fold] = ssvm.score(X_test, Y_test)
    print(np.round(end - start), 'elapsed seconds to train the model')
    print("Test score with chain CRF: %f" % scores_crf[fold])
    """ Label the testing set and print results """
    Y_pred = ssvm.predict(X_test)
    wrong_fold_crf = np.sum(np.ravel(Y_test) - np.ravel(Y_pred) != 0)
    wrong_segments_crf.append(wrong_fold_crf)
    print('{} wrong segments out of {}'. \
          format(wrong_fold_crf, len(test_index) * num_segments_per_jacket))
    """ figure showing the result of classification of segments for
    each jacket in the testing part of present fold """
示例#47
0
def Strukturni(x_train, y_train, x_test, y_test):

    import itertools
    import time

    import numpy as np
    from scipy import sparse

    from sklearn.metrics import hamming_loss
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import mutual_info_score
    from scipy.sparse.csgraph import minimum_spanning_tree

    from pystruct.learners import OneSlackSSVM
    #    from pystruct.learners import FrankWolfeSSVM
    from pystruct.models import MultiLabelClf
    from pystruct.models import GraphCRF

    from sklearn.neural_network import MLPClassifier
    from sklearn.tree import DecisionTreeClassifier

    def chow_liu_tree(y_):
        n_labels = y_.shape[1]
        mi = np.zeros((n_labels, n_labels))
        for i in range(n_labels):
            for j in range(n_labels):
                mi[i, j] = mutual_info_score(y_[:, i], y_[:, j])
        mst = minimum_spanning_tree(sparse.csr_matrix(-mi))
        edges = np.vstack(mst.nonzero()).T
        edges.sort(axis=1)
        return edges

    x_train = x_train.values
    y_train = y_train.values
    y_train = y_train.astype(int)
    y_test = y_test.values
    y_test = y_test.astype(int)
    x_test = x_test.values

    time_ST = np.zeros(7)
    HL = np.zeros(7)
    ACC = np.zeros(7)

    n_labels = y_train.shape[1]

    full = np.vstack([x for x in itertools.combinations(range(n_labels), 2)])
    tree = chow_liu_tree(y_train)
    """ CRF chain """
    train_tree = []
    train_full = []
    test_tree = []
    test_full = []
    for k in range(y_train.shape[0]):
        X_train_CRF = np.zeros([y_train.shape[1], 18])
        for i in range(y_train.shape[1]):
            kolone = np.array([x for x in range(i * 18, 18 * (i + 1))])
            X_train_CRF[i, :] = x_train[k, kolone]
        train_tree.append((X_train_CRF.copy(), tree.T))
        train_full.append((X_train_CRF.copy(), full.T))

    for k in range(y_test.shape[0]):
        X_test_CRF = np.zeros([y_test.shape[1], 18])
        for i in range(y_test.shape[1]):
            kolone = np.array([x for x in range(i * 18, 18 * (i + 1))])
            X_test_CRF[i, :] = x_test[k, kolone]
        test_tree.append((X_test_CRF.copy(), tree))
        test_full.append((X_test_CRF.copy(), full))
    """ SSVM, MLP, CRF-graph, DT - pystruct """
    """CREATE DATASET FOR GNN """
    """ Define models """
    full_model = MultiLabelClf(edges=full)
    independent_model = MultiLabelClf()
    tree_model = MultiLabelClf(edges=tree, inference_method='max-product')

    modelCRF_tree = GraphCRF(directed=False, inference_method="max-product")
    modelCRF_full = GraphCRF(directed=False, inference_method="max-product")
    """ Define learn algorithm """
    full_ssvm = OneSlackSSVM(full_model,
                             inference_cache=50,
                             C=.1,
                             tol=0.01,
                             max_iter=150)
    tree_ssvm = OneSlackSSVM(tree_model,
                             inference_cache=50,
                             C=.1,
                             tol=0.01,
                             max_iter=150)
    independent_ssvm = OneSlackSSVM(independent_model,
                                    C=.1,
                                    tol=0.01,
                                    max_iter=150)
    MLP = MLPClassifier()
    DT = DecisionTreeClassifier()
    CRF_tree = OneSlackSSVM(model=modelCRF_tree, C=.1, max_iter=250)
    CRF_full = OneSlackSSVM(model=modelCRF_full, C=.1, max_iter=250)
    """ Fit models """

    start_time = time.time()
    independent_ssvm.fit(x_train, y_train)
    y_ind = independent_ssvm.predict(x_test)
    time_ST[0] = time.time() - start_time

    start_time = time.time()
    full_ssvm.fit(x_train, y_train)
    y_full = full_ssvm.predict(x_test)
    time_ST[1] = time.time() - start_time

    start_time = time.time()
    tree_ssvm.fit(x_train, y_train)
    y_tree = tree_ssvm.predict(x_test)
    time_ST[2] = time.time() - start_time

    start_time = time.time()
    MLP.fit(x_train, y_train)
    y_MLP = MLP.predict(x_test)
    time_ST[3] = time.time() - start_time

    start_time = time.time()
    DT.fit(x_train, y_train)
    y_DT = DT.predict(x_test)
    time_ST[4] = time.time() - start_time

    start_time = time.time()
    CRF_tree.fit(train_tree, y_train)
    yCRF_tree = np.asarray(CRF_tree.predict(test_tree))
    time_ST[5] = time.time() - start_time

    start_time = time.time()
    CRF_full.fit(train_full, y_train)
    yCRF_full = np.asarray(CRF_full.predict(test_full))
    time_ST[6] = time.time() - start_time
    """ EVALUATE models """
    y_full = np.asarray(y_full)
    y_ind = np.asarray(y_ind)
    y_tree = np.asarray(y_tree)

    HL[0] = hamming_loss(y_test, y_ind)
    HL[1] = hamming_loss(y_test, y_full)
    HL[2] = hamming_loss(y_test, y_tree)
    HL[3] = hamming_loss(y_test, y_MLP)
    HL[4] = hamming_loss(y_test, y_DT)
    HL[5] = hamming_loss(y_test, yCRF_tree)
    HL[6] = hamming_loss(y_test, yCRF_full)

    y_ind = y_ind.reshape([y_ind.shape[0] * y_ind.shape[1]])
    y_full = y_full.reshape([y_full.shape[0] * y_full.shape[1]])
    y_tree = y_tree.reshape([y_tree.shape[0] * y_tree.shape[1]])
    y_MLP = y_MLP.reshape([y_MLP.shape[0] * y_MLP.shape[1]])
    y_DT = y_DT.reshape([y_DT.shape[0] * y_DT.shape[1]])
    yCRF_tree = yCRF_tree.reshape([yCRF_tree.shape[0] * yCRF_tree.shape[1]])
    yCRF_full = yCRF_full.reshape([yCRF_full.shape[0] * yCRF_full.shape[1]])
    y_test = y_test.reshape([y_test.shape[0] * y_test.shape[1]])

    ACC[0] = accuracy_score(y_test, y_ind)
    ACC[1] = accuracy_score(y_test, y_full)
    ACC[2] = accuracy_score(y_test, y_tree)
    ACC[3] = accuracy_score(y_test, y_MLP)
    ACC[4] = accuracy_score(y_test, y_DT)
    ACC[5] = accuracy_score(y_test, y_MLP)
    ACC[6] = accuracy_score(y_test, y_DT)

    return ACC, HL, time_ST
示例#48
0
# [Note: if you get an error on the below line, it may be because you need to upgrade scikit-learn]
encoder = OneHotEncoder(n_values=[1, 2, 2, 201, 201],
                        sparse=False).fit(np.vstack(X))
# Represent features using one-of-K scheme: If a feature can take value in
X_encoded = [
    encoder.transform(x) for x in X
]  # {0,...,K}, then introduce K binary features such that the value of only
# the i^th binary feature is non-zero when the feature takes value 'i'.
# n_values specifies the number of states each feature can take.

X_small, y_small = X_encoded[:
                             100], y[:
                                     100]  # Pick the first 100 samples from the encoded training set.

# See: http://pystruct.github.io/generated/pystruct.learners.OneSlackSSVM.html
# See: http://pystruct.github.io/generated/pystruct.models.ChainCRF.html
# Rest of documentation can be found here: http://pystruct.github.io/references.html
ssvm = OneSlackSSVM(ChainCRF(n_states=10,
                             inference_method='max-product',
                             directed=True),
                    max_iter=200,
                    C=1)
# Construct a directed ChainCRF with 10 states for each variable,
# and pass this CRF to OneSlackSSVM constructor to create an object 'ssvm'
ssvm.fit(X_small, y_small)  # Learn Structured SVM using X_small and y_small
weights = ssvm.w  # Store learnt weights in 'weights'
print ssvm.score(X_small,
                 y_small)  # Evaluate training accuracy on X_small, y_small
print ssvm.predict(
    X_small)  # Get predicted labels on X_small using the learnt model
                             check_constraints=False,
                             max_iter=100,
                             tol=0.001,
                             inference_cache=50)
subgradient_svm = SubgradientSSVM(crf,
                                  learning_rate=0.001,
                                  max_iter=20,
                                  decay_exponent=0,
                                  momentum=0)
bcfw_svm = FrankWolfeSSVM(crf, max_iter=50, check_dual_every=4)

#n-slack cutting plane ssvm
n_slack_svm.fit(X, Y)

# 1-slack cutting plane ssvm
one_slack_svm.fit(X, Y)

# online subgradient ssvm
subgradient_svm.fit(X, Y)

# Block coordinate Frank-Wolfe
bcfw_svm.fit(X, Y)

# don't plot objective from chached inference for 1-slack
inference_run = ~np.array(one_slack_svm.cached_constraint_)
time_one = np.array(one_slack_svm.timestamps_[1:])[inference_run]

# plot stuff
plt.plot(n_slack_svm.timestamps_[1:],
         n_slack_svm.objective_curve_,
         label="n-slack cutting plane")
示例#50
0
    encoder = OneHotEncoder(n_values=[1, 2, 2, 201, 201],
                            sparse=False).fit(np.vstack(X))
    # FROM SAMPLE #Represent features using one-of-K scheme: If a feature can take value in
    X_encoded = [
        encoder.transform(x) for x in X
    ]  # FROM SAMPLE #{0,...,K}, then introduce K binary features such that the value of only
    return X_encoded, y, sentences  # FROM SAMPLE #the i^th binary feature is non-zero when the feature takes value 'i'.


X_train, Y_train, TrainSent = ReadData("train")

best_C = 0.1

crf = ChainCRF(n_states=10, inference_method="max-product", directed=True)
ssvm = OneSlackSSVM(crf, max_iter=200, C=best_C)
ssvm.fit(X_train[:4500], Y_train[:4500])
error = 1 - ssvm.score(X_train[-500:], Y_train[-500:])

tag = np.array([
    'verb', 'noun', 'adjective', 'adverb', 'preposition', 'pronoun',
    'determiner', 'number', 'punctuation', 'other'
])
cl = random.sample(range(10), 3)
print('Chosen classes: ', tag[cl])

trans_matrix = np.reshape(ssvm.w[-10 * 10:], (10, 10))
pairs = list(itertools.combinations(cl, 2))
for pair in pairs:
    print(tag[pair[0]], "->", tag[pair[1]], trans_matrix[pair[0]][pair[1]])
    print(tag[pair[1]], "->", tag[pair[0]], trans_matrix[pair[1]][pair[0]])
示例#51
0
# model = GraphCRF(directed=True, inference_method="ad3")

print(datetime.datetime.now())

model = GraphCRF(directed=True, inference_method = ('lp', {'relaxed' : True}))

# Use a n-slack SSVM learner
# ssvm = FrankWolfeSSVM(model=model, C=.1, max_iter=50)
# predict_result = ssvm.predict(test_set)
# ssvm.fit(train_set, train_label)
# score = ssvm.score(test_set, test_label)

from pystruct.learners import OneSlackSSVM
learner = OneSlackSSVM(model=model, C=.02, max_iter=10)
 
learner.fit(train_set, train_label)

lp_probs = learner.predict(test_set)

# print(lp_probs[0][0][:,1])
print(datetime.datetime.now())

# pickle trained crf
if pickle_overwrite:
    fileObject = open(file_model,'wb') 
    pickle.dump(learner,fileObject)
    fileObject.close()



from sklearn.datasets import load_iris
from sklearn.svm import LinearSVC

from pystruct.models import CrammerSingerSVMModel
from pystruct.learners import OneSlackSSVM

# Load three class iris data.
iris = load_iris()
X, y = iris.data, iris.target

# PyStruct interface
model = CrammerSingerSVMModel()
one_slack_svm = OneSlackSSVM(model)
one_slack_svm.fit(X, y)

# scikit-learn interface for liblinear
libsvm = LinearSVC(multi_class='crammer_singer')
libsvm.fit(X, y)
示例#53
0
                    crf,
                    inference_cache=50,
                    C=.1,
                    tol=.1,
                    #                                     max_iter=MAXITER,
                    n_jobs=N_JOBS
                    #,verbose=1
                    ,
                    switch_to='ad3')

                Y_train_flat = [y_.ravel() for y_ in Y_train]
                print "\ttrain label histogram : ", np.histogram(
                    np.hstack(Y_train_flat), bins=range(NCELL + 2))

                t0 = time.time()
                ssvm.fit(X_train_edge_features, Y_train_flat)
                print "FIT DONE IN %.1fs" % (time.time() - t0)
                sys.stdout.flush()

                t0 = time.time()
                _Y_pred = ssvm.predict(X_test_edge_features)
                REPORT(Y_test, _Y_pred,
                       time.time() - t0, NCELL,
                       "gen_singletype_%d.csv" % nbSample, True,
                       "singletype_%d" % nbSample)
                _Y_pred = ssvm.predict(X_test_gen_edge_features)
                REPORT(Y_test_gen, _Y_pred, None, NCELL,
                       "gen_singletype_gentest_%d.csv" % nbSample, True,
                       "singletype_%d_gentest" % nbSample)

            #--------------------------------------------------------------------------------------------------
示例#54
0
    running_sum = 0

    for index in index_list:
        running_sum += index
        new_index_list.append(running_sum)
    new_index_list = pair(new_index_list, 2)
    new_index_list.insert(0, (0, new_index_list[0][0]))

    Xtest_scale = []
    for num in new_index_list:
        new_array = Xtest_scaler[num[0]:num[1], :]
        Xtest_scale.append(new_array)
    Xtest_scale = np.array(Xtest_scale)
    print Xtest_scale.shape
    print 'Test set scaled'
    ssvm.fit(Xtrain_scale, y_train)
    print 'Model fit'

    # Storing model weights for plot of transition probabilities
    if type(transition_states) == str:
        transition_states = ssvm.w[-49:].reshape(7, 7)
    else:
        transition_states = transition_states + ssvm.w[-49:].reshape(7, 7)

    predicted = ssvm.predict(Xtest_scale)
    print 'Predictions made'
    # Metrics
    fold_cm = confusion_matrix(np.hstack(y_test), np.hstack(predicted))
    if type(total_confusion_matrix) == str:
        total_confusion_matrix = fold_cm
    else:
示例#55
0
    X_train = [one_hot_colors(x) for x in X_train]
    Y_train_flat = [y_.ravel() for y_ in Y_train]

    X_train_directions, X_train_edge_features = prepare_data(X_train)

    inference = 'ad3+'
    # first, train on X with directions only:
    crf = NodeTypeEdgeFeatureGraphCRF(1, [11], [45], [[2]],
                                      inference_method=inference)
    ssvm = OneSlackSSVM(crf,
                        inference_cache=50,
                        C=.1,
                        tol=.1,
                        max_iter=100,
                        n_jobs=1)
    ssvm.fit(convertToSingleTypeX(X_train_directions), Y_train_flat)

    # Evaluate using confusion matrix.
    # Clearly the middel of the snake is the hardest part.
    X_test, Y_test = snakes['X_test'], snakes['Y_test']
    X_test = [one_hot_colors(x) for x in X_test]
    Y_test_flat = [y_.ravel() for y_ in Y_test]
    X_test_directions, X_test_edge_features = prepare_data(X_test)
    Y_pred = ssvm.predict(convertToSingleTypeX(X_test_directions))
    print("Results using only directional features for edges")
    print("Test accuracy: %.3f" %
          accuracy_score(np.hstack(Y_test_flat), np.hstack(Y_pred)))
    print(confusion_matrix(np.hstack(Y_test_flat), np.hstack(Y_pred)))

    # now, use more informative edge features:
    crf = NodeTypeEdgeFeatureGraphCRF(1, [11], [45], [[180]],
示例#56
0
from sklearn.utils import shuffle

from pystruct.problems import CrammerSingerSVMProblem
#from pystruct.learners import SubgradientStructuredSVM
#from pystruct.learners import StructuredSVM
from pystruct.learners import OneSlackSSVM

mnist = fetch_mldata("MNIST original")

X, y = mnist.data, mnist.target
X = X / 255.

X_train, y_train = X[:60000], y[:60000]
X_test, y_test = X[60000:], y[60000:]

X_train, y_train = shuffle(X_train, y_train)

pblm = CrammerSingerSVMProblem(n_classes=10, n_features=28**2)
#svm = SubgradientStructuredSVM(pblm, verbose=10, n_jobs=1, plot=True,
#max_iter=10, batch=False, learning_rate=0.0001,
#momentum=0)
#svm = SubgradientStructuredSVM(pblm, verbose=10, n_jobs=1, plot=True,
#max_iter=2, batch=False, momentum=.9,
#learning_rate=0.001, show_loss='true', C=1000)
svm = OneSlackSSVM(pblm, verbose=2, n_jobs=1, plot=True, max_iter=2, C=1000)
#svm = StructuredSVM(pblm, verbose=50, n_jobs=1, plot=True, max_iter=10,
#C=1000)
svm.fit(X_train, y_train)
print(svm.score(X_train, y_train))
print(svm.score(X_test, y_test))
示例#57
0
文件: ssvm_nf.py 项目: aman9v/digbeta
class SSVM:
    """Structured SVM wrapper"""
    def __init__(self,
                 inference_train,
                 inference_pred,
                 dat_obj,
                 C=1.0,
                 share_params=True,
                 multi_label=True,
                 poi_info=None,
                 debug=False):
        assert (C > 0)
        self.C = C
        self.inference_train = inference_train
        self.inference_pred = inference_pred
        self.share_params = share_params
        self.multi_label = multi_label
        self.dat_obj = dat_obj
        self.debug = debug
        self.trained = False

        if poi_info is None:
            self.poi_info = None
        else:
            self.poi_info = poi_info

        self.scaler_node = MinMaxScaler(feature_range=(-1, 1), copy=False)
        self.scaler_edge = MinMaxScaler(feature_range=(-1, 1), copy=False)

    def train(self, trajid_list, n_jobs=4):
        if self.poi_info is None:
            self.poi_info = self.dat_obj.calc_poi_info(trajid_list)

        # build POI_ID <--> POI__INDEX mapping for POIs used to train CRF
        # which means only POIs in traj such that len(traj) >= 2 are included
        poi_set = {
            p
            for tid in trajid_list for p in self.dat_obj.traj_dict[tid]
            if len(self.dat_obj.traj_dict[tid]) >= 2
        }
        self.poi_list = sorted(poi_set)
        self.poi_id_dict, self.poi_id_rdict = dict(), dict()
        for idx, poi in enumerate(self.poi_list):
            self.poi_id_dict[poi] = idx
            self.poi_id_rdict[idx] = poi

        # generate training data
        train_traj_list = [
            self.dat_obj.traj_dict[k] for k in trajid_list
            if len(self.dat_obj.traj_dict[k]) >= 2
        ]
        node_features_list = Parallel(n_jobs=n_jobs)(
            delayed(calc_node_features)(tr[0], len(tr), self.poi_list,
                                        self.poi_info, self.dat_obj)
            for tr in train_traj_list)
        edge_features = calc_edge_features(trajid_list, self.poi_list,
                                           self.poi_info, self.dat_obj)

        # feature scaling: node features
        # should each example be flattened to one vector before scaling?
        self.fdim_node = node_features_list[0].shape
        X_node_all = np.vstack(node_features_list)
        X_node_all = self.scaler_node.fit_transform(X_node_all)
        X_node_all = X_node_all.reshape(-1, self.fdim_node[0],
                                        self.fdim_node[1])

        # feature scaling: edge features
        fdim_edge = edge_features.shape
        edge_features = self.scaler_edge.fit_transform(
            edge_features.reshape(fdim_edge[0] * fdim_edge[1], -1))
        self.edge_features = edge_features.reshape(fdim_edge)

        assert (len(train_traj_list) == X_node_all.shape[0])
        X_train = [(X_node_all[k, :, :], self.edge_features.copy(),
                    (self.poi_id_dict[train_traj_list[k][0]],
                     len(train_traj_list[k])))
                   for k in range(len(train_traj_list))]
        y_train = [
            np.array([self.poi_id_dict[k] for k in tr])
            for tr in train_traj_list
        ]
        assert (len(X_train) == len(y_train))

        # train
        sm = MyModel(inference_train=self.inference_train,
                     inference_pred=self.inference_pred,
                     share_params=self.share_params,
                     multi_label=self.multi_label)
        if self.debug is True:
            print('C:', self.C)
        verbose = 1 if self.debug is True else 0
        self.osssvm = OneSlackSSVM(model=sm,
                                   C=self.C,
                                   n_jobs=n_jobs,
                                   verbose=verbose)
        try:
            self.osssvm.fit(X_train, y_train, initialize=True)
            self.trained = True
            print('SSVM training finished.')
        # except ValueError:
        except:
            self.trained = False
            sys.stderr.write('SSVM training FAILED.\n')
            # raise
        return self.trained

    def predict(self, startPOI, nPOI):
        assert (self.trained is True)
        if startPOI not in self.poi_list:
            return None
        X_node_test = calc_node_features(startPOI, nPOI, self.poi_list,
                                         self.poi_info, self.dat_obj)

        # feature scaling
        # should each example be flattened to one vector before scaling?
        # X_node_test = X_node_test.reshape(1, -1) # flatten test example to a vector
        X_node_test = self.scaler_node.transform(X_node_test)
        # X_node_test = X_node_test.reshape(self.fdim)

        X_test = [(X_node_test, self.edge_features,
                   (self.poi_id_dict[startPOI], nPOI))]
        y_hat_list = self.osssvm.predict(X_test)[0]
        # print(y_hat_list)

        return [
            np.array([self.poi_id_rdict[x] for x in y_hat])
            for y_hat in y_hat_list
        ]
示例#58
0
X_train = X_train[:4500]
Y_train = Y_train[:4500]

crf = ChainCRF(n_states=10, inference_method='max-product', directed=True)
l1 = [10**i for i in range(-4, 3, 1)]
l1.extend([5 * l for l in l1])
Cs = sorted(l1)
error = {}
best_C = {}

Train_Sizes = [100, 200, 500, 1000, 4500]
for b in Train_Sizes:
    score = {}
    for C in Cs:
        ssvm = OneSlackSSVM(crf, max_iter=200, C=C)
        ssvm.fit(X_train[:b], Y_train[:b])
        score[C] = ssvm.score(X_val, Y_val)
        print('b = ', b, 'C = ', C, ' : ', score[C])
    best_C[b] = max(score, key=score.get)
    error['train', b] = 1. - score[best_C[b]]

for b in Train_Sizes:
    ssvm = OneSlackSSVM(crf, max_iter=200, C=best_C[b])
    ssvm.fit(X_train[:b], Y_train[:b])
    error['test', b] = 1. - ssvm.score(X_test, Y_test)

plt.xlabel('Size of the training set')
plt.ylabel('Error')
plt.plot(Train_Sizes, [error['train', b] for b in Train_Sizes], label='train')
plt.plot(Train_Sizes, [error['test', b] for b in Train_Sizes], label='test')
plt.legend()
示例#59
0
vfnumpypath = "../vflabelnumpy/"

Xval = np.loadtxt(vfnumpypath + "Xval.txt")
Yval = np.loadtxt(vfnumpypath + "Yval.txt", dtype="int")
print("val end export")
Xtrain = np.loadtxt(vfnumpypath + "Xtrain.txt")
Ytrain = np.loadtxt(vfnumpypath + "Ytrain.txt", dtype="int")
print("train end export")

#independent Model
independent_model = MultiLabelClf(inference_method='unary')
independent_ssvm = OneSlackSSVM(independent_model, C=.1, tol=0.01)

print("fitting independent model...")
independent_ssvm.fit(Xtrain, Ytrain)

#print np.vstack(independent_ssvm.predict(Xval))[1,:]

print("Test exact matching ratio: %f" % check_exactmatchratio(
    Yval, np.vstack(independent_ssvm.predict(Xval)), datatotest))

print(
    f1_score(Yval[3, :],
             np.vstack(independent_ssvm.predict(Xtrain))[3, :],
             average='macro'))
'''
print("Training loss independent model: %f"
      % hamming_loss(Ytrain, np.vstack(independent_ssvm.predict(Xtrain))))
print("Test loss independent model: %f"
      % hamming_loss(Yval, np.vstack(independent_ssvm.predict(Xval))))
示例#60
0
n_labels = y_train.shape[1]
full = np.vstack([x for x in itertools.combinations(range(n_labels), 2)])
tree = chow_liu_tree(y_train)

full_model = MultiLabelClf(edges=full, inference_method='qpbo')
independent_model = MultiLabelClf(inference_method='unary')
tree_model = MultiLabelClf(edges=tree, inference_method="max-product")

full_ssvm = OneSlackSSVM(full_model, inference_cache=50, C=.1, tol=0.01)

tree_ssvm = OneSlackSSVM(tree_model, inference_cache=50, C=.1, tol=0.01)

independent_ssvm = OneSlackSSVM(independent_model, C=.1, tol=0.01)

print("fitting independent model...")
independent_ssvm.fit(X_train, y_train)
print("fitting full model...")
full_ssvm.fit(X_train, y_train)
print("fitting tree model...")
tree_ssvm.fit(X_train, y_train)

print("Training loss independent model: %f" %
      hamming_loss(y_train, np.vstack(independent_ssvm.predict(X_train))))
print("Test loss independent model: %f" %
      hamming_loss(y_test, np.vstack(independent_ssvm.predict(X_test))))

print("Training loss tree model: %f" %
      hamming_loss(y_train, np.vstack(tree_ssvm.predict(X_train))))
print("Test loss tree model: %f" %
      hamming_loss(y_test, np.vstack(tree_ssvm.predict(X_test))))