def test_Apriori(self):
     self.runAlgorithm(ps.Apriori(), "Apriori", self.result, self.qualities,
                       self.task)
示例#2
0
from pysubgroup.tests.DataSets import get_credit_data
data = get_credit_data()

np.random.seed(1111)
target_variables = np.random.randint(low=0, high=2, size=1000)
target_estimates = np.random.uniform(size=1000)
target = ps.PredictionTarget(target_variables, target_estimates, roc_auc_score)

searchSpace_Nominal = ps.create_nominal_selectors(data, ignore=['credit_amount'])
searchSpace_Numeric = [] #ps.create_numeric_selectors(data, ignore=['credit_amount'], nbins=10)
searchSpace = searchSpace_Nominal + searchSpace_Numeric

task = ps.SubgroupDiscoveryTask(data, target, searchSpace, result_set_size=10, depth=5, qf=ps.CountCallsInterestingMeasure(ps.PredictionQFNumeric(1, False)))

resultBS = ps.BeamSearch().execute(task)
resultA = ps.Apriori(use_numba=False).execute(task)
resultA_numba = ps.Apriori(use_numba=True).execute(task)
resultSimpleDFS = ps.SimpleDFS().execute(task)
resultDFS = ps.DFS(ps.BitSetRepresentation).execute(task)
resultDFS.to_dataframe()


############################################################
## Toy example using the default eval to generate answers ##
############################################################


np.random.seed(1111)

eval_dict = {"AUPRC(ish)":average_precision_score}
target_variables = np.random.randint(low=0, high=2, size=1000)
 def test_Apriori_with_numba(self):
     self.runAlgorithm(ps.Apriori(use_numba=True), "Apriori use_numba=True",
                       self.result, self.qualities, self.task)
 def test_Apriori_no_numba(self):
     self.runAlgorithm(ps.Apriori(use_numba=False),
                       "Apriori use_numba=False", self.result,
                       self.qualities, self.task)
 def test_GeneralisingApriori(self):
     algorithm = ps.Apriori(combination_name='Disjunction')
     algorithm.optimistic_estimate_name = 'optimistic_generalisation'
     self.runAlgorithm(algorithm, "GeneralisingApriori", self.result,
                       self.qualities, self.task)
示例#6
0
import cProfile
from timeit import default_timer as timer

data = pd.DataFrame(arff.loadarff("../data/credit-g.arff")[0])

target = ps.NominalTarget('class', b'bad')
searchSpace = ps.createNominalSelectors(data, ignore=['class'])
task = ps.SubgroupDiscoveryTask(data,
                                target,
                                searchSpace,
                                resultSetSize=10,
                                depth=5,
                                qf=ps.StandardQF(1.0))

start = timer()
result = ps.Apriori().execute(task)
end = timer()
print("Time elapsed: ", (end - start))

for (q, sg) in result:
    print(str(q) + ":\t" + str(sg.subgroupDescription))

print("******")

start = timer()
result = ps.SimpleDFS().execute(task)
end = timer()
print("Time elapsed: ", (end - start))
for (q, sg) in result:
    print(str(q) + ":\t" + str(sg.subgroupDescription))