def __init__(self, config): setup = SubfolderHandle(config['folder'], config['subfolder']) counter = 0 for file in setup.fileiter(config['dbfiles']): if counter == 0: copied = False if not exists_and_isfile(config['mother_db']): copy(file, config['mother_db']) copied = True info = PySurfDB.info_database(config['mother_db']) if 'natoms' not in info['dimensions']: model = True else: model = False mother_db = PySurfDB.load_database( config['mother_db'], data=info['variables'], dimensions=info['dimensions'], model=model, sp=False) counter += 1 if copied is True: continue CombineDBs(mother_db, file, start=config['start_value']) print(f"Added file {file} to DB")
def _get_db_info(self, database): db = PySurfDB.load_database(database, read_only=True) rep = db.dbrep natoms = rep.dimensions.get('natoms', None) if natoms is None: natoms = rep.dimensions['nmodes'] nstates = rep.dimensions['nstates'] return natoms, nstates, db.saved_properties
def __init__(self, main_db, added_db, start=0): if not isinstance(main_db, PySurfDB): info = PySurfDB.info_database(main_db) if 'natoms' in info['dimensions']: model = False else: model = True main_db = PySurfDB.load_database(main_db, dimensions=info['dimensions'], data=info['variables'], model=model) if not isinstance(added_db, PySurfDB): added_db = PySurfDB.load_database(added_db, read_only=True) keys_raw = main_db.get_keys() keys = [] for key in keys_raw: if main_db.get_dimension(key)[0].isunlimited() is True: keys += [key] #check whether dbs fit together check = True for key in keys: if key in added_db.get_keys(): for dim1, dim2 in zip( main_db.get_dimension(key)[1:], added_db.get_dimension(key)[1:]): if dim1.size != dim2.size: check = False else: check = False if check is False: print('Error DBs do not fit together by dimensions') exit() # nn = NextNeighbor(db1) for i in range(start, len(added_db)): # min_dist = nn.get(crd) # if min_dist[0] > 0.25: for key in keys: main_db.append(key, added_db[key][i]) main_db.increase
def save_pes(self, filename, database): db = PySurfDB.load_database(database, read_only=True) results, _ = self._compute(db, ['energy']) def str_join(values): return ' '.join(str(val) for val in values) with open(filename, 'w') as f: f.write("\n".join(f"{i} {str_join(fitted)} {str_join(exact)}" for i, (fitted, exact) in enumerate(results['energy'])))
def __init__(self, config): db = PySurfDB.load_database(config['infile'], read_only=True) if config['property'] == 'len': print("Number of entries in database: ", len(db)) return for idx, entry in enumerate(db[config['property']]): print('\nEntry: {}'.format(idx)) print(entry)
def save_graddiff(self, filename, database): db = PySurfDB.load_database(database, read_only=True) results, _ = self._compute(db, ['gradient']) def str_join(values): return ' '.join(str(val) for val in values) with open(filename, 'w') as f: graddiff = [np.sqrt(np.mean((fitted-exact)**2)) for (fitted, exact) in results['gradient']] f.write("\n".join(f"{i} {diff}" for i, diff in enumerate(graddiff)))
def __init__(self, config): dbin = PySurfDB.load_database(config['db_in'], read_only=True) info = PySurfDB.info_database(config['db_in']) self.thresh = config['energy_threshold'] self.trust_radius_general = config['trust_radius_general'] self.trust_radius_ci = config['trust_radius_ci'] self.crd_mode = config['crd_mode'] if 'natoms' in info['dimensions']: model = False else: model = True dbout = PySurfDB.generate_database(config['db_out'], data=info['variables'], dimensions=info['dimensions'], model=model) self.crds = None for i, crd in enumerate(dbin['crd']): if self.crd_mode == 'internal': crd = internal(np.copy(crd)) else: crd = np.copy(crd) if i % 1000 == 0: print(f"Processing point {i}") crd_shape = crd.shape crd.resize((1, crd.size)) if self.crds is None: self.crds = crd.reshape((1, crd.size)) else: diff = np.diff(dbin.get('energy', i)) _, (trust_general, trust_ci) = within_trust_radius( crd, self.crds, radius=self.trust_radius_general, radius_ci=self.trust_radius_ci, metric='euclidean') if np.min(diff) < self.thresh: if trust_ci is True: continue else: if trust_general is True: continue self.crds = np.concatenate((self.crds, crd)) crd.resize(crd_shape) for prop in info['variables']: dbout.append(prop, dbin.get(prop, i)) dbout.increase
def optimize(self, filename, properties): db = PySurfDB.load_database(filename, read_only=True) def _function(epsilon): print('opt cycle', epsilon) self.interpolator.epsilon = epsilon[0] self.interpolator.train() _, error = self._compute(db, properties) print(error) return error['rmsd'] res = minimize(_function, self.interpolator.epsilon, method='nelder-mead', tol=1e-4, options={ 'maxiter': 25, 'disp': True, 'xatol': 0.0001}) print(res) self.interpolator.epsilon = res.x[0] self.interpolator.train(self.weightsfile)
def calc_2d_spec(files: "list", energy_start: "float", energy_end: "float", en_points: "int", timesteps: "int") -> "meshplotdata": result = np.zeros((en_points, timesteps)) for file in files: db = PySurfDB.load_database(file, read_only=True) energy = np.copy(db['energy']) fosc = np.copy(db['fosc']) currstate = np.copy(db['currstate']).flatten() for idx, en in enumerate(energy): state = int(currstate[idx]) en_diff = en[state] - en[0] en_pos = (en_diff - energy_start) / (energy_end - energy_start) * en_points en_pos = int(en_pos) if en_pos >= 0 and en_pos < en_points: #units are arbitrary, therefor not full Einstain A coefficient ist used, but just f*v**2 result[en_pos, idx] += fosc[idx][state] * en_diff**2 X = np.arange(timesteps) * 0.5 Y = np.linspace(energy_start, energy_end, en_points) * 27.2114 return (X, Y, result)
def validate(self, filename, properties): db = PySurfDB.load_database(filename, read_only=True) self._compute(db, properties)
for r in x: db.append('crd', r) y += [ model.get(Request(r, ['energy'], [i for i in range(nstates)]))['energy'] ] db.append( 'energy', model.get(Request(r, ['energy'], [i for i in range(nstates)]))['energy']) db.increase return db #db1 = fill_db('db1.dat', 5000) db1 = PySurfDB.load_database('db.dat', read_only=True) #db2 = fill_db('db2.dat', 1000) db2 = PySurfDB.load_database('prop.db', read_only=True) nstates = 4 nmodes = 9 logger = get_logger('test.log', 'test') config = { 'energy_threshold': 0.02, 'trust_radius_ci': 0.5, 'trust_radius_general': 1.0, 'inverse_distance': False } rbf = RbfInterpolator(config, db1, ['energy'], nstates, nmodes, logger=logger) counter = 0