def __repr__(self): """ Representing the class object """ if self.structure is None: super(NonLinearCoxPHModel, self).__repr__() return self.name else: S = len(self.structure) self.name = self.__class__.__name__ empty = len(self.name) self.name += '( ' for i, s in enumerate(self.structure): n = 'Layer({}): '.format(i + 1) activation = nn.activation_function(s['activation'], return_text=True) n += 'activation = {}, '.format(s['activation']) n += 'num_units = {} '.format(s['num_units']) if i != S - 1: self.name += n + '; \n' self.name += empty * ' ' + ' ' else: self.name += n self.name += ')' return self.name
def __repr__(self): """ Representing the class object """ if self.structure is None: super(NeuralMultiTaskModel, self).__repr__() return self.name else: S = len(self.structure) self.name = self.__class__.__name__ empty = len(self.name) self.name += '( ' for i, s in enumerate(self.structure): if isinstance(s, list): for s_ in s: n = 'Layer({}): '.format(i + 1) activation = nn.activation_function(s_['activation'], return_text=True) n += 'activation = {}, '.format(s_['activation']) if 'num_units' in s_.keys(): n += 'units = {} '.format(s_['num_units']) if i != S - 1: self.name += n + '; \n' self.name += empty * ' ' + ' ' else: self.name += n self.name = self.name + ')' else: n = 'Layer({}): '.format(i + 1) activation = nn.activation_function(s['activation'], return_text=True) n += 'activation = {}, '.format(s['activation']) if 'num_units' in s.keys(): n += 'units = {} '.format(s['num_units']) if i != S - 1: self.name += n + '; \n' self.name += empty * ' ' + ' ' else: self.name += n self.name = self.name + ')' return self.name