示例#1
0
def arrays2raster(raster_filename, xy_raster_origin, dx, dy, array_list):
    nb_var = len(array_list)
    nb_rows, nb_cols = array_list[0][1].shape
    logger.info("Regular grid size : %i rows x %i columns" %
                (nb_rows, nb_cols))

    origin_x = xy_raster_origin[0]
    origin_y = xy_raster_origin[1]

    driver = gdal.GetDriverByName('GTiff')
    out_raster = driver.Create(raster_filename, nb_cols, nb_rows, nb_var,
                               gdal.GDT_Float64)

    # Set grid and EPSG if necessary
    out_raster.SetGeoTransform((origin_x, dx, 0, origin_y, 0, dy))
    if args.epsg is not None:  # EPSG attribution seems buggy
        out_raster_srs = osr.SpatialReference()
        out_raster_srs.ImportFromEPSG(args.epsg)
        out_raster.SetProjection(out_raster_srs.ExportToWkt())

    # Add one band per variable
    for i_var, (var_ID, array) in enumerate(array_list):
        if array.shape != (nb_rows, nb_cols):
            raise RuntimeError
        outband = out_raster.GetRasterBand(i_var + 1)
        outband.SetDescription(var_ID)
        outband.WriteArray(array)
        outband.FlushCache()
示例#2
0
def slf_base(args):
    with Serafin.Read(args.in_slf, args.lang) as resin:
        resin.read_header()
        logger.info(resin.header.summary())
        resin.get_time()

        output_header = resin.header.copy()
        # Shift mesh coordinates if necessary
        if args.shift:
            output_header.transform_mesh([Transformation(0, 1, 1, args.shift[0], args.shift[1], 0)])
        # Set mesh origin coordinates
        if args.set_mesh_origin:
            output_header.set_mesh_origin(args.set_mesh_origin[0], args.set_mesh_origin[1])

        # Toggle output file endianness if necessary
        if args.toggle_endianness:
            output_header.toggle_endianness()

        # Convert to single precision
        if args.to_single_precision:
            if resin.header.is_double_precision():
                output_header.to_single_precision()
            else:
                logger.warn('Input file is already single precision! Argument `--to_single_precision` is ignored')

        # Remove variables if necessary
        if args.var2del:
            output_header.empty_variables()
            for var_ID, var_name, var_unit in zip(resin.header.var_IDs, resin.header.var_names, resin.header.var_units):
                if var_ID not in args.var2del:
                    output_header.add_variable(var_ID, var_name, var_unit)

        # Add new derived variables
        if args.var2add is not None:
            for var_ID in args.var2add:
                if var_ID in output_header.var_IDs:
                    logger.warn('Variable %s is already present (or asked)' % var_ID)
                else:
                    output_header.add_variable_from_ID(var_ID)

        us_equation = get_US_equation(args.friction_law)
        necessary_equations = get_necessary_equations(resin.header.var_IDs, output_header.var_IDs,
                                                      is_2d=resin.header.is_2d, us_equation=us_equation)

        with Serafin.Write(args.out_slf, args.lang, overwrite=args.force) as resout:
            resout.write_header(output_header)

            for time_index, time in tqdm(resin.subset_time(args.start, args.end, args.ech), unit='frame'):
                values = do_calculations_in_frame(necessary_equations, resin, time_index, output_header.var_IDs,
                                                  output_header.np_float_type, is_2d=output_header.is_2d,
                                                  us_equation=us_equation, ori_values={})
                resout.write_entire_frame(output_header, time, values)
示例#3
0
def slf_to_raster(args):
    with Serafin.Read(args.in_slf, args.lang) as resin:
        resin.read_header()
        header = resin.header
        logger.info(header.summary())
        resin.get_time()

        if args.vars is None:
            var_names = [
                var_name.decode('utf-8') for var_name in header.var_names
            ]
            var_IDs = header.var_IDs
        else:
            var_names = []
            var_IDs = []
            for var_ID, var_name in zip(header.var_IDs, header.var_names):
                if var_ID in args.vars:
                    var_names.append(var_name.decode('utf-8'))
                    var_IDs.append(var_ID)

        # Shift mesh coordinates if necessary
        if args.shift:
            header.transform_mesh(
                [Transformation(0, 1, 1, args.shift[0], args.shift[1], 0)])

        # Build output regular grid and matplotlib triangulation of the mesh
        m_xi, m_yi = np.meshgrid(
            np.arange(header.x.min(), header.x.max(), args.resolution),
            np.arange(header.y.min(), header.y.max(), args.resolution))
        triang = mtri.Triangulation(header.x,
                                    header.y,
                                    triangles=header.ikle_2d - 1)

        # Build list containing all interpolated variables on the regular grid
        array_list = []
        for i, (var_ID, var_name) in enumerate(zip(var_IDs, var_names)):
            values = resin.read_var_in_frame(args.frame_index, var_ID)
            interp = mtri.LinearTriInterpolator(triang, values)
            data = interp(
                m_xi,
                m_yi)[::-1]  # reverse array so the tif looks like the array
            array_list.append((var_name, data))
            logger.info(
                "Min and max values for interpolated %s variable: [%f, %f]" %
                (var_name, data.min(), data.max()))

        # Write data in the raster output file
        arrays2raster(args.out_tif, (header.x.min(), header.y.max()),
                      args.resolution, -args.resolution, array_list)
示例#4
0
def slf_last(args):
    with Serafin.Read(args.in_slf, args.lang) as resin:
        resin.read_header()
        logger.info(resin.header.summary())
        resin.get_time()

        output_header = resin.header.copy()
        # Shift mesh coordinates if necessary
        if args.shift:
            output_header.transform_mesh(
                [Transformation(0, 1, 1, args.shift[0], args.shift[1], 0)])

        # Toggle output file endianness if necessary
        if args.toggle_endianness:
            output_header.toggle_endianness()

        # Convert to single precision
        if args.to_single_precision:
            if resin.header.is_double_precision():
                output_header.to_single_precision()
            else:
                logger.warn(
                    'Input file is already single precision! Argument `--to_single_precision` is ignored'
                )

        values = np.empty((output_header.nb_var, output_header.nb_nodes),
                          dtype=output_header.np_float_type)
        with Serafin.Write(args.out_slf, args.lang,
                           overwrite=args.force) as resout:
            resout.write_header(output_header)

            time_index = len(resin.time) - 1
            time = resin.time[-1] if args.time is None else args.time

            for i, var_ID in enumerate(output_header.var_IDs):
                values[i, :] = resin.read_var_in_frame(time_index, var_ID)

            resout.write_entire_frame(output_header, time, values)
示例#5
0
def slf_int2d(args):
    # Read set of points file
    fields, indices = Shapefile.get_attribute_names(args.in_points)
    points = []
    attributes = []
    for point, attribute in Shapefile.get_points(args.in_points, indices):
        points.append(point)
        attributes.append(attribute)

    if not points:
        logger.critical('The Shapefile does not contain any point.')
        sys.exit(1)

    # Read Serafin file
    with Serafin.Read(args.in_slf, args.lang) as resin:
        resin.read_header()
        logger.info(resin.header.summary())

        if not resin.header.is_2d:
            logger.critical('The file has to be a 2D Serafin!')
            sys.exit(3)

        resin.get_time()

        output_header = resin.header.copy()

        mesh = MeshInterpolator(output_header, True)
        is_inside, point_interpolators = mesh.get_point_interpolators(points)
        nb_inside = sum(map(int, is_inside))

        if nb_inside == 0:
            logger.critical('No point inside the mesh.')
            sys.exit(3)
        logger.debug(
            'The file contains {} point{}. {} point{} inside the mesh'.format(
                len(points), 's' if len(points) > 1 else '', nb_inside,
                's are' if nb_inside > 1 else ' is'))

        var_IDs = output_header.var_IDs if args.vars is None else args.vars

        mode = 'w' if args.force else 'x'
        with open(args.out_csv, mode, newline='') as csvfile:
            csvwriter = csv.writer(csvfile, delimiter=args.sep)

            header = ['time_id', 'time']
            if args.long:
                header = header + [
                    'point_id', 'point_x', 'point_y', 'variable', 'value'
                ]
            else:
                for pt_id, (x, y) in enumerate(points):
                    for var in var_IDs:
                        header.append(
                            'Point %d %s (%s|%s)' %
                            (pt_id + 1, var, settings.FMT_COORD.format(x),
                             settings.FMT_COORD.format(y)))
            csvwriter.writerow(header)

            for time_index, time in enumerate(tqdm(resin.time, unit='frame')):
                values = [time_index, time]

                for var_ID in var_IDs:
                    var = resin.read_var_in_frame(time_index, var_ID)
                    for pt_id, (point, point_interpolator) in enumerate(
                            zip(points, point_interpolators)):
                        if args.long:
                            values_long = values + [str(pt_id + 1)] + [
                                settings.FMT_COORD.format(x) for x in point
                            ]

                        if point_interpolator is None:
                            if args.long:
                                csvwriter.writerow(values_long +
                                                   [var_ID, settings.NAN_STR])
                            else:
                                values.append(settings.NAN_STR)
                        else:
                            (i, j, k), interpolator = point_interpolator
                            int_value = settings.FMT_FLOAT.format(
                                interpolator.dot(var[[i, j, k]]))
                            if args.long:
                                csvwriter.writerow(values_long +
                                                   [var_ID, int_value])
                            else:
                                values.append(int_value)

                if not args.long: csvwriter.writerow(values)
示例#6
0
def slf_sedi_chain(args):
    # Check that float parameters are positive (especially ws!)
    for arg in ('Cmud', 'ws', 'C', 'M'):
        if getattr(args, arg) < 0:
            logger.critical('The argument %s has to be positive' % args)
            sys.exit(1)

    with Serafin.Read(args.in_slf, args.lang) as resin:
        resin.read_header()
        logger.info(resin.header.summary())
        resin.get_time()

        us_equation = get_US_equation(args.friction_law)
        necessary_equations = get_necessary_equations(resin.header.var_IDs,
                                                      ['TAU'],
                                                      is_2d=True,
                                                      us_equation=us_equation)

        if resin.header.nb_frames < 1:
            logger.critical('The input file must have at least one frame!')
            sys.exit(1)

        output_header = resin.header.copy()
        # Shift mesh coordinates if necessary
        if args.shift:
            output_header.transform_mesh(
                [Transformation(0, 1, 1, args.shift[0], args.shift[1], 0)])

        # Toggle output file endianness if necessary
        if args.toggle_endianness:
            output_header.toggle_endianness()

        # Convert to single precision
        if args.to_single_precision:
            if resin.header.is_double_precision():
                output_header.to_single_precision()
            else:
                logger.warn(
                    'Input file is already single precision! Argument `--to_single_precision` is ignored'
                )

        output_header.empty_variables()
        output_header.add_variable_from_ID('B')
        output_header.add_variable_from_ID('EV')

        with Serafin.Write(args.out_slf, args.lang,
                           overwrite=args.force) as resout:
            resout.write_header(output_header)

            prev_time = None
            prev_tau = None
            initial_bottom = resin.read_var_in_frame(0, 'B')
            bottom = copy(initial_bottom)
            for time_index, time in enumerate(resin.time):
                tau = do_calculations_in_frame(necessary_equations,
                                               resin,
                                               time_index, ['TAU'],
                                               output_header.np_float_type,
                                               is_2d=True,
                                               us_equation=us_equation,
                                               ori_values={})[0]
                if prev_time is not None:
                    dt = time - prev_time
                    mean_tau = (prev_tau + tau) / 2
                    if args.Tcd > 0:
                        bottom += args.Cmud * args.ws * args.C * \
                                  (1 - np.clip(mean_tau/args.Tcd, a_min=None, a_max=1.)) * dt
                    if args.Tce > 0:
                        bottom -= args.Cmud * args.M * (np.clip(
                            mean_tau / args.Tce, a_min=1., a_max=None) -
                                                        1.) * dt

                evol_bottom = bottom - initial_bottom
                resout.write_entire_frame(output_header, time,
                                          np.vstack((bottom, evol_bottom)))

                prev_time = time
                prev_tau = tau
示例#7
0
def ADCP_comp(args):
    x_mes = []
    y_mes = []
    cord_mes = open(args.inADCP_GPS).read().splitlines()
    for x_l in cord_mes:
        y, x = x_l.split(',')
        if x == NODATA or y == NODATA:
            print("Warning: one point is missing")
        else:
            x_mes.append(x)
            y_mes.append(y)
    x_mes = [float(a) for a in x_mes]
    y_mes = [float(a) for a in y_mes]
    inProj = Proj("+init=EPSG:%i" % args.inEPSG)
    outProj = Proj("+init=EPSG:%i" % args.outEPSG)
    x_mes, y_mes = transform(inProj, outProj, x_mes, y_mes)

    SCHEMA = {'geometry': 'LineString', 'properties': {'nom': 'str'}}
    with fiona.open(args.outADCP_GPS,
                    'w',
                    'ESRI Shapefile',
                    SCHEMA,
                    crs=from_epsg(args.outEPSG)) as out_shp:
        Ltest = LineString([(x_2, y_2) for x_2, y_2 in zip(x_mes, y_mes)])
        elem = {}
        elem['geometry'] = mapping(Ltest)
        elem['properties'] = {'nom': 'ADCP line'}
        out_shp.write(elem)

    p_raw = RawProfileObj(args.inADCP)
    processing_settings = {'proj_method': 2}
    startingpoint = dict(start=Vector(0, 0))
    p0 = ProcessedProfileObj(p_raw, processing_settings, startingpoint)
    profile_averaged = averaging.get_averaged_profile(p0, cfg={'order': 15})
    header = 'X;Y;Uadcp;Vadcp;MagnitudeXY;Hadcp\n'
    writeAscii2D(profile_averaged,
                 '{x};{y};{vx};{vy};{vmag};{depth}',
                 args.outADCP,
                 header=header)

    if args.inTELEMAC:
        with open(args.outT2DCSV, 'w', newline='') as csvfile:
            csvwriter = csv.writer(csvfile, delimiter=';')
            HEADER = [
                'folder', 'time_id', 'time', 'point_x', 'point_y', 'distance',
                'value'
            ]
            csvwriter.writerow(HEADER)

            for slf_path in args.inTELEMAC:
                folder = os.path.basename(os.path.split(slf_path)[0])
                with Serafin.Read(slf_path, 'fr') as resin:
                    resin.read_header()
                    logger.info(resin.header.summary())
                    resin.get_time()
                    output_header = resin.header.copy()
                    if args.shift:
                        output_header.transform_mesh([
                            Transformation(0, 1, 1, args.shift[0],
                                           args.shift[1], 0)
                        ])
                    mesh = MeshInterpolator(output_header, True)
                    lines = []
                    for poly in Shapefile.get_lines(args.outADCP_GPS,
                                                    shape_type=3):
                        lines.append(poly)
                    nb_nonempty, indices_nonempty, line_interpolators, line_interpolators_internal = \
                        mesh.get_line_interpolators(lines)
                    res = mesh.interpolate_along_lines(
                        resin, 'M', list(range(len(resin.time))),
                        indices_nonempty, line_interpolators, '{:.6e}')
                    csvwriter.writerows([[folder] + x[2] for x in res])
示例#8
0
def slf_flux2d(args):
    if len(args.scalars) > 2:
        logger.critical('Only two scalars can be integrated!')
        sys.exit(2)

    # Read set of lines from input file
    polylines = []
    if args.in_sections.endswith('.i2s'):
        with BlueKenue.Read(args.in_sections) as f:
            f.read_header()
            for polyline in f.get_open_polylines():
                polylines.append(polyline)
    elif args.in_sections.endswith('.shp'):
        try:
            for polyline in Shapefile.get_open_polylines(args.in_sections):
                polylines.append(polyline)
        except ShapefileException as e:
            logger.critical(e)
            sys.exit(3)
    else:
        logger.critical('File "%s" is not a i2s or shp file.' %
                        args.in_sections)
        sys.exit(2)

    if not polylines:
        logger.critical('The file does not contain any open polyline.')
        sys.exit(1)
    logger.debug('The file contains {} open polyline{}.'.format(
        len(polylines), 's' if len(polylines) > 1 else ''))

    # Read Serafin file
    with Serafin.Read(args.in_slf, args.lang) as resin:
        resin.read_header()
        logger.info(resin.header.summary())
        resin.get_time()

        if not resin.header.is_2d:
            logger.critical('The file has to be a 2D Serafin!')
            sys.exit(3)

        # Determine flux computations properties
        var_IDs = args.vectors + args.scalars
        variables_missing = [
            var_ID for var_ID in var_IDs if var_ID not in resin.header.var_IDs
        ]
        if variables_missing:
            if len(variables_missing) > 1:
                logger.critical(
                    'Variables {} are not present in the Serafin file'.format(
                        variables_missing))
            else:
                logger.critical(
                    'Variable {} is not present in the Serafin file'.format(
                        variables_missing[0]))
            logger.critical(
                'Check also `--lang` argument for variable detection.')
            sys.exit(1)
        if var_IDs not in PossibleFluxComputation.common_fluxes():
            logger.warn(
                'Flux computations is not common. Check what you are doing (or the language).'
            )

        flux_type = PossibleFluxComputation.get_flux_type(var_IDs)

        section_names = ['Section %i' % (i + 1) for i in range(len(polylines))]
        calculator = FluxCalculator(flux_type, var_IDs, resin, section_names,
                                    polylines, args.ech)
        calculator.construct_triangles(tqdm)
        calculator.construct_intersections()
        result = []
        for time_index, time in enumerate(tqdm(resin.time, unit='frame')):
            i_result = [str(time)]
            values = []

            for var_ID in calculator.var_IDs:
                values.append(resin.read_var_in_frame(time_index, var_ID))

            for j in range(len(polylines)):
                intersections = calculator.intersections[j]
                flux = calculator.flux_in_frame(intersections, values)
                i_result.append(settings.FMT_FLOAT.format(flux))

            result.append(i_result)

        # Write CSV
        mode = 'w' if args.force else 'x'
        with open(args.out_csv, mode) as out_csv:
            calculator.write_csv(result, out_csv, args.sep)
示例#9
0
def slf_max_over_files(args):
    if args.vars is None:
        with Serafin.Read(args.in_slfs[0], args.lang) as resin:
            resin.read_header()
            var_IDs = resin.header.var_IDs if args.vars is None else args.vars
    else:
        var_IDs = args.vars

    if args.operation == 'max':
        fun = np.maximum
    elif args.operation == 'min':
        fun = np.minimum
    else:
        raise NotImplementedError

    # Read polygons
    if args.in_polygons is not None:
        if not args.in_polygons.endswith('.shp'):
            logger.critical('File "%s" is not a shp file.' % args.in_polygons)
            sys.exit(3)
        polygons = []
        try:
            for polygon in Shapefile.get_polygons(args.in_polygons):
                polygons.append(polygon)
        except ShapefileException as e:
            logger.error(e)
            sys.exit(3)

        if not polygons:
            logger.error('The file does not contain any polygon.')
            sys.exit(1)
        logger.info('The file contains {} polygon{}.'.format(len(polygons), 's' if len(polygons) > 1 else ''))
    else:
        polygons = None

    output_header = None
    out_values = None  # min or max values
    mask_nodes = None
    for i, in_slf in enumerate(args.in_slfs):
        with Serafin.Read(in_slf, args.lang) as resin:
            resin.read_header()
            logger.info(resin.header.summary())
            if not resin.header.is_2d:
                logger.critical('The file has to be a 2D Serafin!')
                sys.exit(3)
            resin.get_time()

            for var_ID in var_IDs:
                if var_ID not in resin.header.var_IDs:
                    logger.critical('The variable %s is missing in %s' % (var_ID, in_slf))
                    sys.exit(3)

            if i == 0:
                output_header = resin.header.copy()
                output_header.empty_variables()
                for var_ID in var_IDs:
                    output_header.add_variable_from_ID(var_ID)
                out_values = np.empty((output_header.nb_var, output_header.nb_nodes),
                                      dtype=output_header.np_float_type)
                if polygons is not None:
                    mask_nodes = np.zeros(output_header.nb_nodes, dtype=bool)
                    for idx_node, (x, y) in enumerate(zip(output_header.x, output_header.y)):
                        point = Point(x, y)
                        for polygon in polygons:
                            if polygon.contains(point):
                                mask_nodes[idx_node] = True
                                break
                    logger.info('Number of nodes inside polygon(s): %i (over %i)'
                                % (mask_nodes.sum(), output_header.nb_nodes))
                else:
                    mask_nodes = np.ones(output_header.nb_nodes, dtype=bool)
            else:
                if not resin.header.same_2d_mesh(output_header):
                    logger.critical('The mesh of %s is different from the first one' % in_slf)
                    sys.exit(1)

            for time_index, time in enumerate(resin.time):
                for j, var_ID in enumerate(var_IDs):
                    values = resin.read_var_in_frame(time_index, var_ID)
                    if time_index == 0 and i == 0:
                        out_values[j, :] = values
                    else:
                        out_values[j, mask_nodes] = fun(out_values[j, mask_nodes], values[mask_nodes])

    with Serafin.Write(args.out_slf, args.lang, overwrite=args.force) as resout:
        resout.write_header(output_header)
        resout.write_entire_frame(output_header, 0.0, out_values)
示例#10
0
def slf_volume(args):
    # Read set of lines from input file
    polygons = []
    if args.in_polygons.endswith('.i2s'):
        with BlueKenue.Read(args.in_polygons) as f:
            f.read_header()
            for poly in f.get_polygons():
                polygons.append(poly)
    elif args.in_polygons.endswith('.shp'):
        try:
            for polygon in Shapefile.get_polygons(args.in_polygons):
                polygons.append(polygon)
        except ShapefileException as e:
            logger.error(e)
            sys.exit(3)
    else:
        logger.error('File "%s" is not a i2s or shp file.' % args.in_polygons)
        sys.exit(2)

    if not polygons:
        logger.error('The file does not contain any polygon.')
        sys.exit(1)
    logger.debug('The file contains {} polygon{}.'.format(
        len(polygons), 's' if len(polygons) > 1 else ''))

    names = ['Polygon %d' % (i + 1) for i in range(len(polygons))]

    # Read Serafin file
    with Serafin.Read(args.in_slf, args.lang) as resin:
        resin.read_header()
        logger.info(resin.header.summary())
        resin.get_time()

        if not resin.header.is_2d:
            logger.error('The file has to be a 2D Serafin!')
            sys.exit(3)

        # Check variables consistency
        if args.upper_var not in resin.header.var_IDs:
            logger.error('Upper variable "%s" is not in Serafin file' %
                         args.upper_var)
            sys.exit(1)
        upper_var = args.upper_var
        lower_var = args.lower_var
        if args.lower_var is not None:
            if args.lower_var == 'init':
                lower_var = VolumeCalculator.INIT_VALUE
            else:
                if lower_var not in resin.header.var_IDs:
                    logger.error('Lower variable "%s" is not in Serafin file' %
                                 lower_var)
                    sys.exit(1)

        if args.detailed:
            volume_type = VolumeCalculator.POSITIVE
        else:
            volume_type = VolumeCalculator.NET
        calculator = VolumeCalculator(volume_type, upper_var, lower_var, resin,
                                      names, polygons, args.ech)
        calculator.construct_triangles(tqdm)
        calculator.construct_weights(tqdm)

        result = []
        for time_index in tqdm(calculator.time_indices, unit='frame'):
            i_result = [str(resin.time[time_index])]
            values = calculator.read_values_in_frame(time_index)

            for j in range(len(calculator.polygons)):
                weight = calculator.weights[j]
                volume = calculator.volume_in_frame_in_polygon(
                    weight, values, calculator.polygons[j])
                if calculator.volume_type == VolumeCalculator.POSITIVE:
                    for v in volume:
                        i_result.append(settings.FMT_FLOAT.format(v))
                else:
                    i_result.append(settings.FMT_FLOAT.format(volume))
            result.append(i_result)

        # Write CSV
        mode = 'w' if args.force else 'x'
        with open(args.out_csv, mode) as out_csv:
            calculator.write_csv(result, out_csv, args.sep)
示例#11
0
def slf_3d_to_2d(args):
    with Serafin.Read(args.in_slf, args.lang) as resin:
        resin.read_header()
        logger.info(resin.header.summary())
        resin.get_time()

        if resin.header.is_2d:
            logger.critical('The input file is not 3D.')
            sys.exit(1)
        if 'Z' not in resin.header.var_IDs:
            logger.critical(
                'The elevation variable Z is not found in the Serafin file.')
            sys.exit(1)
        if args.layer is not None:
            upper_plane = resin.header.nb_planes
            if args.layer < 1 or args.layer > upper_plane:
                logger.critical('Layer has to be in [1, %i]' % upper_plane)
                sys.exit(1)

        output_header = resin.header.copy_as_2d()
        # Shift mesh coordinates if necessary
        if args.shift:
            output_header.transform_mesh(
                [Transformation(0, 1, 1, args.shift[0], args.shift[1], 0)])

        # Toggle output file endianness if necessary
        if args.toggle_endianness:
            output_header.toggle_endianness()

        # Convert to single precision
        if args.to_single_precision:
            if resin.header.is_double_precision():
                output_header.to_single_precision()
            else:
                logger.warn(
                    'Input file is already single precision! Argument `--to_single_precision` is ignored'
                )

        if args.aggregation is not None:
            if args.aggregation == 'max':
                operation_type = operations.MAX
            elif args.aggregation == 'min':
                operation_type = operations.MIN
            else:  # args.aggregation == 'mean'
                operation_type = operations.MEAN
            selected_vars = [
                var for var in output_header.iter_on_all_variables()
            ]
            vertical_calculator = operations.VerticalMaxMinMeanCalculator(
                operation_type, resin, output_header, selected_vars, args.vars)
            output_header.set_variables(
                vertical_calculator.get_variables())  # sort variables

        # Add some elevation variables
        for var_ID in args.vars:
            output_header.add_variable_from_ID(var_ID)

        with Serafin.Write(args.out_slf, args.lang,
                           overwrite=args.force) as resout:
            resout.write_header(output_header)

            vars_2d = np.empty(
                (output_header.nb_var, output_header.nb_nodes_2d),
                dtype=output_header.np_float_type)
            for time_index, time in enumerate(tqdm(resin.time, unit='frame')):
                if args.aggregation is not None:
                    vars_2d = vertical_calculator.max_min_mean_in_frame(
                        time_index)
                else:
                    for i, var in enumerate(output_header.var_IDs):
                        vars_2d[i, :] = resin.read_var_in_frame_as_3d(
                            time_index, var)[args.layer - 1, :]
                resout.write_entire_frame(output_header, time, vars_2d)