示例#1
0
    def map_call(self, expr):
        arg, = expr.parameters
        rec_arg = self.rec(arg)

        if isinstance(rec_arg, np.ndarray) and self.is_kind_matrix(rec_arg):
            raise RuntimeError("expression is nonlinear in variable")

        from numbers import Number
        if isinstance(rec_arg, Number):
            return getattr(np, expr.function.name)(rec_arg)
        else:
            rec_arg = unflatten_from_numpy(self.array_context, None, rec_arg)
            result = getattr(self.array_context.np,
                             expr.function.name)(rec_arg)
            return flatten_to_numpy(self.array_context, result)
示例#2
0
    def map_interpolation(self, expr):
        from pytential import sym

        if expr.to_dd.discr_stage != sym.QBX_SOURCE_QUAD_STAGE2:
            raise RuntimeError(
                "can only interpolate to QBX_SOURCE_QUAD_STAGE2")
        operand = self.rec(expr.operand)
        actx = self.array_context

        if isinstance(operand, (int, float, complex, np.number)):
            return operand
        elif isinstance(operand, np.ndarray) and operand.ndim == 1:
            conn = self.places.get_connection(expr.from_dd, expr.to_dd)
            discr = self.places.get_discretization(expr.from_dd.geometry,
                                                   expr.from_dd.discr_stage)

            operand = unflatten_from_numpy(actx, discr, operand)
            return flatten_to_numpy(actx, conn(operand))
        elif isinstance(operand, np.ndarray) and operand.ndim == 2:
            cache = self.places._get_cache("direct_resampler")
            key = (expr.from_dd.geometry, expr.from_dd.discr_stage,
                   expr.to_dd.discr_stage)

            try:
                mat = cache[key]
            except KeyError:
                from meshmode.discretization.connection import \
                    flatten_chained_connection

                conn = self.places.get_connection(expr.from_dd, expr.to_dd)
                conn = flatten_chained_connection(actx, conn)
                mat = actx.to_numpy(conn.full_resample_matrix(actx))

                # FIXME: the resample matrix is slow to compute and very big
                # to store, so caching it may not be the best idea
                cache[key] = mat

            return mat.dot(operand)
        else:
            raise RuntimeError("unknown operand type: {}".format(
                type(operand)))
示例#3
0
    def map_num_reference_derivative(self, expr):
        from pytential import bind, sym
        rec_operand = self.rec(expr.operand)

        assert isinstance(rec_operand, np.ndarray)
        if self.is_kind_matrix(rec_operand):
            raise NotImplementedError("derivatives")

        dofdesc = expr.dofdesc
        op = sym.NumReferenceDerivative(ref_axes=expr.ref_axes,
                                        operand=sym.var("u"),
                                        dofdesc=dofdesc)

        discr = self.places.get_discretization(dofdesc.geometry,
                                               dofdesc.discr_stage)
        rec_operand = unflatten_from_numpy(self.array_context, discr,
                                           rec_operand)

        return flatten_to_numpy(
            self.array_context,
            bind(self.places, op)(self.array_context, u=rec_operand))
示例#4
0
def test_build_matrix(ctx_factory, k, curve_fn, op_type, visualize=False):
    """Checks that the matrix built with `symbolic.execution.build_matrix`
    gives the same (to tolerance) answer as a direct evaluation.
    """

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    # prevent cache 'splosion
    from sympy.core.cache import clear_cache
    clear_cache()

    case = extra.CurveTestCase(name="curve",
                               knl_class_or_helmholtz_k=k,
                               curve_fn=curve_fn,
                               op_type=op_type,
                               target_order=7,
                               qbx_order=4,
                               resolutions=[30])

    logger.info("\n%s", case)

    # {{{ geometry

    qbx = case.get_layer_potential(actx, case.resolutions[-1],
                                   case.target_order)

    from pytential.qbx.refinement import refine_geometry_collection
    places = GeometryCollection(qbx, auto_where=case.name)
    places = refine_geometry_collection(places,
                                        kernel_length_scale=(5 /
                                                             k if k else None))

    dd = places.auto_source.to_stage1()
    density_discr = places.get_discretization(dd.geometry)

    logger.info("nelements:     %d", density_discr.mesh.nelements)
    logger.info("ndofs:         %d", density_discr.ndofs)

    # }}}

    # {{{ symbolic

    sym_u, sym_op = case.get_operator(places.ambient_dim)
    bound_op = bind(places, sym_op)

    # }}}

    # {{{ dense matrix

    from pytential.symbolic.execution import build_matrix
    mat = actx.to_numpy(
        build_matrix(actx,
                     places,
                     sym_op,
                     sym_u,
                     context=case.knl_concrete_kwargs))

    if visualize:
        try:
            import matplotlib.pyplot as pt
        except ImportError:
            visualize = False

    if visualize:
        from sumpy.tools import build_matrix as build_matrix_via_matvec
        mat2 = bound_op.scipy_op(actx,
                                 "u",
                                 dtype=mat.dtype,
                                 **case.knl_concrete_kwargs)
        mat2 = build_matrix_via_matvec(mat2)

        logger.info(
            "real %.5e imag %.5e",
            la.norm((mat - mat2).real, "fro") / la.norm(mat2.real, "fro"),
            la.norm((mat - mat2).imag, "fro") / la.norm(mat2.imag, "fro"))

        pt.subplot(121)
        pt.imshow(np.log10(np.abs(1.0e-20 + (mat - mat2).real)))
        pt.colorbar()
        pt.subplot(122)
        pt.imshow(np.log10(np.abs(1.0e-20 + (mat - mat2).imag)))
        pt.colorbar()
        pt.show()
        pt.clf()

    if visualize:
        pt.subplot(121)
        pt.imshow(mat.real)
        pt.colorbar()
        pt.subplot(122)
        pt.imshow(mat.imag)
        pt.colorbar()
        pt.show()
        pt.clf()

    # }}}

    # {{{ check

    from pytential.utils import unflatten_from_numpy, flatten_to_numpy

    np.random.seed(12)
    for i in range(5):
        if isinstance(sym_u, np.ndarray):
            u = make_obj_array([
                np.random.randn(density_discr.ndofs) for _ in range(len(sym_u))
            ])
        else:
            u = np.random.randn(density_discr.ndofs)
        u_dev = unflatten_from_numpy(actx, density_discr, u)

        res_matvec = np.hstack(
            flatten_to_numpy(
                actx, bound_op(actx, u=u_dev, **case.knl_concrete_kwargs)))
        res_mat = mat.dot(np.hstack(u))

        abs_err = la.norm(res_mat - res_matvec, np.inf)
        rel_err = abs_err / la.norm(res_matvec, np.inf)

        logger.info("AbsErr {:.5e} RelErr {:.5e}".format(abs_err, rel_err))
        assert rel_err < 1.0e-13, 'iteration: {}'.format(i)
示例#5
0
def run_exterior_stokes_2d(
        ctx_factory,
        nelements,
        mesh_order=4,
        target_order=4,
        qbx_order=4,
        fmm_order=False,  # FIXME: FMM is slower than direct eval
        mu=1,
        circle_rad=1.5,
        visualize=False):

    # This program tests an exterior Stokes flow in 2D using the
    # compound representation given in Hsiao & Kress,
    # ``On an integral equation for the two-dimensional exterior Stokes problem,''
    # Applied Numerical Mathematics 1 (1985).

    logging.basicConfig(level=logging.INFO)

    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    ovsmp_target_order = 4 * target_order

    # {{{ geometries

    from meshmode.mesh.generation import (  # noqa
        make_curve_mesh, starfish, ellipse, drop)
    mesh = make_curve_mesh(lambda t: circle_rad * ellipse(1, t),
                           np.linspace(0, 1, nelements + 1), target_order)
    coarse_density_discr = Discretization(
        actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    from pytential.qbx import QBXLayerPotentialSource
    target_association_tolerance = 0.05
    qbx = QBXLayerPotentialSource(
        coarse_density_discr,
        fine_order=ovsmp_target_order,
        qbx_order=qbx_order,
        fmm_order=fmm_order,
        target_association_tolerance=target_association_tolerance,
        _expansions_in_tree_have_extent=True,
    )

    def circle_mask(test_points, radius):
        return (test_points[0, :]**2 + test_points[1, :]**2 > radius**2)

    def outside_circle(test_points, radius):
        mask = circle_mask(test_points, radius)
        return np.array([row[mask] for row in test_points])

    from pytential.target import PointsTarget
    nsamp = 30
    eval_points_1d = np.linspace(-3., 3., nsamp)
    eval_points = np.zeros((2, len(eval_points_1d)**2))
    eval_points[0, :] = np.tile(eval_points_1d, len(eval_points_1d))
    eval_points[1, :] = np.repeat(eval_points_1d, len(eval_points_1d))
    eval_points = outside_circle(eval_points, radius=circle_rad)
    point_targets = PointsTarget(eval_points)

    fplot = FieldPlotter(np.zeros(2), extent=6, npoints=100)
    plot_targets = PointsTarget(outside_circle(fplot.points,
                                               radius=circle_rad))

    places = GeometryCollection({
        sym.DEFAULT_SOURCE: qbx,
        sym.DEFAULT_TARGET: qbx.density_discr,
        "point_target": point_targets,
        "plot_target": plot_targets,
    })

    density_discr = places.get_discretization(sym.DEFAULT_SOURCE)

    normal = bind(places, sym.normal(2).as_vector())(actx)
    path_length = bind(places, sym.integral(2, 1, 1))(actx)

    # }}}

    # {{{ describe bvp

    from pytential.symbolic.stokes import StressletWrapper, StokesletWrapper
    dim = 2
    cse = sym.cse

    sigma_sym = sym.make_sym_vector("sigma", dim)
    meanless_sigma_sym = cse(sigma_sym - sym.mean(2, 1, sigma_sym))
    int_sigma = sym.Ones() * sym.integral(2, 1, sigma_sym)

    nvec_sym = sym.make_sym_vector("normal", dim)
    mu_sym = sym.var("mu")

    # -1 for interior Dirichlet
    # +1 for exterior Dirichlet
    loc_sign = 1

    stresslet_obj = StressletWrapper(dim=2)
    stokeslet_obj = StokesletWrapper(dim=2)
    bdry_op_sym = (-loc_sign * 0.5 * sigma_sym - stresslet_obj.apply(
        sigma_sym, nvec_sym, mu_sym, qbx_forced_limit="avg") +
                   stokeslet_obj.apply(
                       meanless_sigma_sym, mu_sym, qbx_forced_limit="avg") -
                   (0.5 / np.pi) * int_sigma)

    # }}}

    bound_op = bind(places, bdry_op_sym)

    # {{{ fix rhs and solve

    def fund_soln(x, y, loc, strength):
        #with direction (1,0) for point source
        r = actx.np.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        scaling = strength / (4 * np.pi * mu)
        xcomp = (-actx.np.log(r) + (x - loc[0])**2 / r**2) * scaling
        ycomp = ((x - loc[0]) * (y - loc[1]) / r**2) * scaling
        return [xcomp, ycomp]

    def rotlet_soln(x, y, loc):
        r = actx.np.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        xcomp = -(y - loc[1]) / r**2
        ycomp = (x - loc[0]) / r**2
        return [xcomp, ycomp]

    def fund_and_rot_soln(x, y, loc, strength):
        #with direction (1,0) for point source
        r = actx.np.sqrt((x - loc[0])**2 + (y - loc[1])**2)
        scaling = strength / (4 * np.pi * mu)
        xcomp = ((-actx.np.log(r) + (x - loc[0])**2 / r**2) * scaling -
                 (y - loc[1]) * strength * 0.125 / r**2 + 3.3)
        ycomp = (((x - loc[0]) * (y - loc[1]) / r**2) * scaling +
                 (x - loc[0]) * strength * 0.125 / r**2 + 1.5)
        return make_obj_array([xcomp, ycomp])

    from meshmode.dof_array import unflatten, flatten, thaw
    nodes = flatten(thaw(actx, density_discr.nodes()))
    fund_soln_loc = np.array([0.5, -0.2])
    strength = 100.
    bc = unflatten(
        actx, density_discr,
        fund_and_rot_soln(nodes[0], nodes[1], fund_soln_loc, strength))

    omega_sym = sym.make_sym_vector("omega", dim)
    u_A_sym_bdry = stokeslet_obj.apply(  # noqa: N806
        omega_sym, mu_sym, qbx_forced_limit=1)

    from pytential.utils import unflatten_from_numpy
    omega = unflatten_from_numpy(
        actx, density_discr,
        make_obj_array([(strength / path_length) * np.ones(len(nodes[0])),
                        np.zeros(len(nodes[0]))]))

    bvp_rhs = bind(places,
                   sym.make_sym_vector("bc", dim) + u_A_sym_bdry)(actx,
                                                                  bc=bc,
                                                                  mu=mu,
                                                                  omega=omega)
    gmres_result = gmres(bound_op.scipy_op(actx,
                                           "sigma",
                                           np.float64,
                                           mu=mu,
                                           normal=normal),
                         bvp_rhs,
                         x0=bvp_rhs,
                         tol=1e-9,
                         progress=True,
                         stall_iterations=0,
                         hard_failure=True)

    # }}}

    # {{{ postprocess/visualize

    sigma = gmres_result.solution
    sigma_int_val_sym = sym.make_sym_vector("sigma_int_val", 2)
    int_val = bind(places, sym.integral(2, 1, sigma_sym))(actx, sigma=sigma)
    int_val = -int_val / (2 * np.pi)
    print("int_val = ", int_val)

    u_A_sym_vol = stokeslet_obj.apply(  # noqa: N806
        omega_sym, mu_sym, qbx_forced_limit=2)
    representation_sym = (
        -stresslet_obj.apply(sigma_sym, nvec_sym, mu_sym, qbx_forced_limit=2) +
        stokeslet_obj.apply(meanless_sigma_sym, mu_sym, qbx_forced_limit=2) -
        u_A_sym_vol + sigma_int_val_sym)

    where = (sym.DEFAULT_SOURCE, "point_target")
    vel = bind(places, representation_sym,
               auto_where=where)(actx,
                                 sigma=sigma,
                                 mu=mu,
                                 normal=normal,
                                 sigma_int_val=int_val,
                                 omega=omega)
    print("@@@@@@@@")

    plot_vel = bind(places,
                    representation_sym,
                    auto_where=(sym.DEFAULT_SOURCE,
                                "plot_target"))(actx,
                                                sigma=sigma,
                                                mu=mu,
                                                normal=normal,
                                                sigma_int_val=int_val,
                                                omega=omega)

    def get_obj_array(obj_array):
        return make_obj_array([ary.get() for ary in obj_array])

    exact_soln = fund_and_rot_soln(actx.from_numpy(eval_points[0]),
                                   actx.from_numpy(eval_points[1]),
                                   fund_soln_loc, strength)

    vel = get_obj_array(vel)
    err = vel - get_obj_array(exact_soln)

    # FIXME: Pointwise relative errors don't make sense!
    rel_err = err / (get_obj_array(exact_soln))

    if 0:
        print("@@@@@@@@")
        print("vel[0], err[0], rel_err[0] ***** vel[1], err[1], rel_err[1]: ")
        for i in range(len(vel[0])):
            print(
                "{:15.8e}, {:15.8e}, {:15.8e} ***** {:15.8e}, {:15.8e}, {:15.8e}"
                .format(vel[0][i], err[0][i], rel_err[0][i], vel[1][i],
                        err[1][i], rel_err[1][i]))

        print("@@@@@@@@")

    l2_err = np.sqrt((6. / (nsamp - 1))**2 * np.sum(err[0] * err[0]) +
                     (6. / (nsamp - 1))**2 * np.sum(err[1] * err[1]))
    l2_rel_err = np.sqrt((6. /
                          (nsamp - 1))**2 * np.sum(rel_err[0] * rel_err[0]) +
                         (6. /
                          (nsamp - 1))**2 * np.sum(rel_err[1] * rel_err[1]))

    print("L2 error estimate: ", l2_err)
    print("L2 rel error estimate: ", l2_rel_err)
    print("max error at sampled points: ", max(abs(err[0])), max(abs(err[1])))
    print("max rel error at sampled points: ", max(abs(rel_err[0])),
          max(abs(rel_err[1])))

    if visualize:
        import matplotlib.pyplot as plt

        full_pot = np.zeros_like(fplot.points) * float("nan")
        mask = circle_mask(fplot.points, radius=circle_rad)

        for i, vel in enumerate(plot_vel):
            full_pot[i, mask] = vel.get()

        plt.quiver(fplot.points[0],
                   fplot.points[1],
                   full_pot[0],
                   full_pot[1],
                   linewidth=0.1)
        plt.savefig("exterior-2d-field.pdf")

    # }}}

    h_max = bind(places, sym.h_max(qbx.ambient_dim))(actx)
    return h_max, l2_err