class Config(_EncoderBaseModel.Config): class BertModelInput(_EncoderBaseModel.Config.ModelInput): tokens: BERTTensorizer.Config = BERTTensorizer.Config(max_seq_len=128) inputs: BertModelInput = BertModelInput() encoder: TransformerSentenceEncoderBase.Config = ( HuggingFaceBertSentenceEncoder.Config() )
class Config(_EncoderPairwiseModel.Config): class ModelInput(_EncoderPairwiseModel.Config.ModelInput): tokens1: BERTTensorizerBase.Config = BERTTensorizer.Config( columns=["text1"], max_seq_len=128) tokens2: BERTTensorizerBase.Config = BERTTensorizer.Config( columns=["text2"], max_seq_len=128) inputs: ModelInput = ModelInput() encoder: TransformerSentenceEncoderBase.Config = ( HuggingFaceBertSentenceEncoder.Config())
class Config(NewBertModel.Config): class ModelInput(BaseModel.Config.ModelInput): squad_input: SquadForBERTTensorizer.Config = SquadForBERTTensorizer.Config( max_seq_len=256) # is_impossible label has_answer: LabelTensorizer.Config = LabelTensorizer.Config( column="has_answer") inputs: ModelInput = ModelInput() encoder: TransformerSentenceEncoderBase.Config = HuggingFaceBertSentenceEncoder.Config( ) decoder: MLPDecoder.Config = MLPDecoder.Config(out_dim=2) output_layer: SquadOutputLayer.Config = SquadOutputLayer.Config()
class Config(BasePairwiseModel.Config): class ModelInput(ModelInputBase): tokens1: BERTTensorizer.Config = BERTTensorizer.Config( columns=["text1"], max_seq_len=128) tokens2: BERTTensorizer.Config = BERTTensorizer.Config( columns=["text2"], max_seq_len=128) labels: LabelTensorizer.Config = LabelTensorizer.Config() # for metric reporter num_tokens: NtokensTensorizer.Config = NtokensTensorizer.Config( names=["tokens1", "tokens2"], indexes=[2, 2]) inputs: ModelInput = ModelInput() encoder: TransformerSentenceEncoderBase.Config = ( HuggingFaceBertSentenceEncoder.Config()) shared_encoder: bool = True
class Config(BaseModel.Config): class BertModelInput(BaseModel.Config.ModelInput): tokens: BERTTensorizer.Config = BERTTensorizer.Config( max_seq_len=128) dense: Optional[FloatListTensorizer.Config] = None labels: LabelTensorizer.Config = LabelTensorizer.Config() # for metric reporter num_tokens: NtokensTensorizer.Config = NtokensTensorizer.Config( names=["tokens"], indexes=[2]) inputs: BertModelInput = BertModelInput() encoder: TransformerSentenceEncoderBase.Config = ( HuggingFaceBertSentenceEncoder.Config()) decoder: MLPDecoder.Config = MLPDecoder.Config() output_layer: ClassificationOutputLayer.Config = ( ClassificationOutputLayer.Config())
class Config(BasePairwiseModel.Config): class ModelInput(ModelInputBase): tokens1: BERTTensorizerBase.Config = BERTTensorizer.Config( columns=["text1"], max_seq_len=128) tokens2: BERTTensorizerBase.Config = BERTTensorizer.Config( columns=["text2"], max_seq_len=128) labels: LabelTensorizer.Config = LabelTensorizer.Config() # for metric reporter num_tokens: NtokensTensorizer.Config = NtokensTensorizer.Config( names=["tokens1", "tokens2"], indexes=[2, 2]) inputs: ModelInput = ModelInput() encoder: TransformerSentenceEncoderBase.Config = ( HuggingFaceBertSentenceEncoder.Config()) # Decoder is a fully connected layer that expects concatenated encodings. # So, if decoder is provided we will concatenate the encodings from the # encoders and then pass to the decoder. decoder: Optional[MLPDecoder.Config] = MLPDecoder.Config() shared_encoder: bool = True