示例#1
0
    def calculate_vol_adjusted_returns(self, returns_df, br, returns = True):
        """
        calculate_vol_adjusted_returns - Adjusts returns for a vol target

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        returns_a_df : pandas.DataFrame
            Asset returns to be traded

        Returns
        -------
        pandas.DataFrame
        """

        tsc = TimeSeriesCalcs()

        if not returns: returns_df = tsc.calculate_returns(returns_df)

        if not(hasattr(br, 'portfolio_vol_resample_type')):
            br.portfolio_vol_resample_type = 'mean'

        leverage_df = self.calculate_leverage_factor(returns_df,
                                                               br.portfolio_vol_target, br.portfolio_vol_max_leverage,
                                                               br.portfolio_vol_periods, br.portfolio_vol_obs_in_year,
                                                               br.portfolio_vol_rebalance_freq, br.portfolio_vol_resample_freq,
                                                               br.portfolio_vol_resample_type)

        vol_returns_df = tsc.calculate_signal_returns_with_tc_matrix(leverage_df, returns_df, tc = br.spot_tc_bp)
        vol_returns_df.columns = returns_df.columns

        return vol_returns_df, leverage_df
示例#2
0
    def calculate_vol_adjusted_returns(self, returns_df, br, returns=True):
        """
        calculate_vol_adjusted_returns - Adjusts returns for a vol target

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        returns_a_df : pandas.DataFrame
            Asset returns to be traded

        Returns
        -------
        pandas.DataFrame
        """

        tsc = TimeSeriesCalcs()

        if not returns: returns_df = tsc.calculate_returns(returns_df)

        if not (hasattr(br, 'portfolio_vol_resample_type')):
            br.portfolio_vol_resample_type = 'mean'

        leverage_df = self.calculate_leverage_factor(
            returns_df, br.portfolio_vol_target, br.portfolio_vol_max_leverage,
            br.portfolio_vol_periods, br.portfolio_vol_obs_in_year,
            br.portfolio_vol_rebalance_freq, br.portfolio_vol_resample_freq,
            br.portfolio_vol_resample_type)

        vol_returns_df = tsc.calculate_signal_returns_with_tc_matrix(
            leverage_df, returns_df, tc=br.spot_tc_bp)
        vol_returns_df.columns = returns_df.columns

        return vol_returns_df, leverage_df
示例#3
0
    def calculate_trading_PnL(self, br, asset_a_df, signal_df):
        """
        calculate_trading_PnL - Calculates P&L of a trading strategy and statistics to be retrieved later

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        signal_df : pandas.DataFrame
            Signals for the trading strategy
        """

        tsc = TimeSeriesCalcs()
        # signal_df.to_csv('e:/temp0.csv')
        # make sure the dates of both traded asset and signal are aligned properly
        asset_df, signal_df = asset_a_df.align(signal_df, join='left', axis = 'index')

        # only allow signals to change on the days when we can trade assets
        signal_df = signal_df.mask(numpy.isnan(asset_df.values))    # fill asset holidays with NaN signals
        signal_df = signal_df.fillna(method='ffill')                # fill these down
        asset_df = asset_df.fillna(method='ffill')                  # fill down asset holidays

        returns_df = tsc.calculate_returns(asset_df)
        tc = br.spot_tc_bp

        signal_cols = signal_df.columns.values
        returns_cols = returns_df.columns.values

        pnl_cols = []

        for i in range(0, len(returns_cols)):
            pnl_cols.append(returns_cols[i] + " / " + signal_cols[i])

        # do we have a vol target for individual signals?
        if hasattr(br, 'signal_vol_adjust'):
            if br.signal_vol_adjust is True:
                if not(hasattr(br, 'signal_vol_resample_type')):
                    br.signal_vol_resample_type = 'mean'

                leverage_df = self.calculate_leverage_factor(returns_df, br.signal_vol_target, br.signal_vol_max_leverage,
                                               br.signal_vol_periods, br.signal_vol_obs_in_year,
                                               br.signal_vol_rebalance_freq, br.signal_vol_resample_freq,
                                               br.signal_vol_resample_type)

                signal_df = pandas.DataFrame(
                    signal_df.values * leverage_df.values, index = signal_df.index, columns = signal_df.columns)

                self._individual_leverage = leverage_df     # contains leverage of individual signal (before portfolio vol target)

        _pnl = tsc.calculate_signal_returns_with_tc_matrix(signal_df, returns_df, tc = tc)
        _pnl.columns = pnl_cols

        # portfolio is average of the underlying signals: should we sum them or average them?
        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                 portfolio = pandas.DataFrame(data = _pnl.sum(axis = 1), index = _pnl.index, columns = ['Portfolio'])
            elif br.portfolio_combination == 'mean':
                 portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])
        else:
            portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])

        portfolio_leverage_df = pandas.DataFrame(data = numpy.ones(len(_pnl.index)), index = _pnl.index, columns = ['Portfolio'])

        # should we apply vol target on a portfolio level basis?
        if hasattr(br, 'portfolio_vol_adjust'):
            if br.portfolio_vol_adjust is True:
                portfolio, portfolio_leverage_df = self.calculate_vol_adjusted_returns(portfolio, br = br)

        self._portfolio = portfolio
        self._signal = signal_df                            # individual signals (before portfolio leverage)
        self._portfolio_leverage = portfolio_leverage_df    # leverage on portfolio

        # multiply portfolio leverage * individual signals to get final position signals
        length_cols = len(signal_df.columns)
        leverage_matrix = numpy.repeat(portfolio_leverage_df.values.flatten()[numpy.newaxis,:], length_cols, 0)

        # final portfolio signals (including signal & portfolio leverage)
        self._portfolio_signal = pandas.DataFrame(
            data = numpy.multiply(numpy.transpose(leverage_matrix), signal_df.values),
            index = signal_df.index, columns = signal_df.columns)

        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                pass
            elif br.portfolio_combination == 'mean':
                self._portfolio_signal = self._portfolio_signal / float(length_cols)
        else:
            self._portfolio_signal = self._portfolio_signal / float(length_cols)

        self._pnl = _pnl                                                            # individual signals P&L

        # TODO FIX very slow - hence only calculate on demand
        _pnl_trades = None
        # _pnl_trades = tsc.calculate_individual_trade_gains(signal_df, _pnl)
        self._pnl_trades = _pnl_trades

        self._tsd_pnl = TimeSeriesDesc()
        self._tsd_pnl.calculate_ret_stats(self._pnl, br.ann_factor)

        self._portfolio.columns = ['Port']
        self._tsd_portfolio = TimeSeriesDesc()
        self._tsd_portfolio.calculate_ret_stats(self._portfolio, br.ann_factor)

        self._cumpnl = tsc.create_mult_index(self._pnl)                             # individual signals cumulative P&L
        self._cumpnl.columns = pnl_cols

        self._cumportfolio = tsc.create_mult_index(self._portfolio)                 # portfolio cumulative P&L
        self._cumportfolio.columns = ['Port']
示例#4
0
    def calculate_trading_PnL(self, br, asset_a_df, signal_df):
        """
        calculate_trading_PnL - Calculates P&L of a trading strategy and statistics to be retrieved later

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        signal_df : pandas.DataFrame
            Signals for the trading strategy
        """

        tsc = TimeSeriesCalcs()
        # signal_df.to_csv('e:/temp0.csv')
        # make sure the dates of both traded asset and signal are aligned properly
        asset_df, signal_df = asset_a_df.align(signal_df,
                                               join='left',
                                               axis='index')

        # only allow signals to change on the days when we can trade assets
        signal_df = signal_df.mask(numpy.isnan(
            asset_df.values))  # fill asset holidays with NaN signals
        signal_df = signal_df.fillna(method='ffill')  # fill these down
        asset_df = asset_df.fillna(method='ffill')  # fill down asset holidays

        returns_df = tsc.calculate_returns(asset_df)
        tc = br.spot_tc_bp

        signal_cols = signal_df.columns.values
        returns_cols = returns_df.columns.values

        pnl_cols = []

        for i in range(0, len(returns_cols)):
            pnl_cols.append(returns_cols[i] + " / " + signal_cols[i])

        # do we have a vol target for individual signals?
        if hasattr(br, 'signal_vol_adjust'):
            if br.signal_vol_adjust is True:
                if not (hasattr(br, 'signal_vol_resample_type')):
                    br.signal_vol_resample_type = 'mean'

                leverage_df = self.calculate_leverage_factor(
                    returns_df, br.signal_vol_target,
                    br.signal_vol_max_leverage, br.signal_vol_periods,
                    br.signal_vol_obs_in_year, br.signal_vol_rebalance_freq,
                    br.signal_vol_resample_freq, br.signal_vol_resample_type)

                signal_df = pandas.DataFrame(signal_df.values *
                                             leverage_df.values,
                                             index=signal_df.index,
                                             columns=signal_df.columns)

                self._individual_leverage = leverage_df  # contains leverage of individual signal (before portfolio vol target)

        _pnl = tsc.calculate_signal_returns_with_tc_matrix(signal_df,
                                                           returns_df,
                                                           tc=tc)
        _pnl.columns = pnl_cols

        # portfolio is average of the underlying signals: should we sum them or average them?
        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                portfolio = pandas.DataFrame(data=_pnl.sum(axis=1),
                                             index=_pnl.index,
                                             columns=['Portfolio'])
            elif br.portfolio_combination == 'mean':
                portfolio = pandas.DataFrame(data=_pnl.mean(axis=1),
                                             index=_pnl.index,
                                             columns=['Portfolio'])
        else:
            portfolio = pandas.DataFrame(data=_pnl.mean(axis=1),
                                         index=_pnl.index,
                                         columns=['Portfolio'])

        portfolio_leverage_df = pandas.DataFrame(data=numpy.ones(
            len(_pnl.index)),
                                                 index=_pnl.index,
                                                 columns=['Portfolio'])

        # should we apply vol target on a portfolio level basis?
        if hasattr(br, 'portfolio_vol_adjust'):
            if br.portfolio_vol_adjust is True:
                portfolio, portfolio_leverage_df = self.calculate_vol_adjusted_returns(
                    portfolio, br=br)

        self._portfolio = portfolio
        self._signal = signal_df  # individual signals (before portfolio leverage)
        self._portfolio_leverage = portfolio_leverage_df  # leverage on portfolio

        # multiply portfolio leverage * individual signals to get final position signals
        length_cols = len(signal_df.columns)
        leverage_matrix = numpy.repeat(
            portfolio_leverage_df.values.flatten()[numpy.newaxis, :],
            length_cols, 0)

        # final portfolio signals (including signal & portfolio leverage)
        self._portfolio_signal = pandas.DataFrame(data=numpy.multiply(
            numpy.transpose(leverage_matrix), signal_df.values),
                                                  index=signal_df.index,
                                                  columns=signal_df.columns)

        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                pass
            elif br.portfolio_combination == 'mean':
                self._portfolio_signal = self._portfolio_signal / float(
                    length_cols)
        else:
            self._portfolio_signal = self._portfolio_signal / float(
                length_cols)

        self._pnl = _pnl  # individual signals P&L

        # TODO FIX very slow - hence only calculate on demand
        _pnl_trades = None
        # _pnl_trades = tsc.calculate_individual_trade_gains(signal_df, _pnl)
        self._pnl_trades = _pnl_trades

        self._tsd_pnl = TimeSeriesDesc()
        self._tsd_pnl.calculate_ret_stats(self._pnl, br.ann_factor)

        self._portfolio.columns = ['Port']
        self._tsd_portfolio = TimeSeriesDesc()
        self._tsd_portfolio.calculate_ret_stats(self._portfolio, br.ann_factor)

        self._cumpnl = tsc.create_mult_index(
            self._pnl)  # individual signals cumulative P&L
        self._cumpnl.columns = pnl_cols

        self._cumportfolio = tsc.create_mult_index(
            self._portfolio)  # portfolio cumulative P&L
        self._cumportfolio.columns = ['Port']
示例#5
0
    def calculate_trading_PnL(self, br, asset_a_df, signal_df):
        """
        calculate_trading_PnL - Calculates P&L of a trading strategy and statistics to be retrieved later

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        signal_df : pandas.DataFrame
            Signals for the trading strategy
        """

        tsc = TimeSeriesCalcs()

        # make sure the dates of both traded asset and signal are aligned properly
        asset_df, signal_df = asset_a_df.align(signal_df, join='left', axis = 0)

        # only allow signals to change on the days when we can trade assets
        signal_df = signal_df.mask(numpy.isnan(asset_df.values))    # fill asset holidays with NaN signals
        signal_df = signal_df.fillna(method='ffill')                # fill these down
        asset_df = asset_df.fillna(method='ffill')                  # fill down asset holidays

        returns_df = tsc.calculate_returns(asset_df)
        tc = br.spot_tc_bp

        signal_cols = signal_df.columns.values
        returns_cols = returns_df.columns.values

        pnl_cols = []

        for i in range(0, len(returns_cols)):
            pnl_cols.append(returns_cols[i] + " / " + signal_cols[i])

        if hasattr(br, 'signal_vol_adjust'):
            if br.signal_vol_adjust is True:
                leverage_df = self.calculate_leverage_factor(returns_df, br.signal_vol_target, br.signal_vol_max_leverage,
                                               br.signal_vol_periods, br.signal_vol_obs_in_year,
                                               br.signal_vol_rebalance_freq)

                signal_df = pandas.DataFrame(
                    signal_df.values * leverage_df.values, index = signal_df.index, columns = signal_df.columns)

                self._individual_leverage = leverage_df

        _pnl = tsc.calculate_signal_returns_with_tc_matrix(signal_df, returns_df, tc = tc)
        _pnl.columns = pnl_cols

        # portfolio is average of the underlying signals
        interim_portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])

        portfolio_leverage_df = pandas.DataFrame(data = numpy.ones(len(_pnl.index)), index = _pnl.index, columns = ['Portfolio'])

        if hasattr(br, 'portfolio_vol_adjust'):
            if br.portfolio_vol_adjust is True:
                interim_portfolio, portfolio_leverage_df = self.calculate_vol_adjusted_returns(interim_portfolio, br = br)

        self._portfolio = interim_portfolio
        self._signal = signal_df
        self._portfolio_leverage = portfolio_leverage_df

        # multiply portfolio leverage * individual signals to get final position signals
        length_cols = len(signal_df.columns)
        leverage_matrix = numpy.repeat(portfolio_leverage_df.values.flatten()[numpy.newaxis,:], length_cols, 0)

        self._portfolio_signal = pandas.DataFrame(
            data = numpy.multiply(numpy.transpose(leverage_matrix), signal_df.values),
            index = signal_df.index, columns = signal_df.columns) / float(length_cols)

        self._pnl = _pnl

        self._tsd_pnl = TimeSeriesDesc()
        self._tsd_pnl.calculate_ret_stats(self._pnl, br.ann_factor)

        self._portfolio.columns = ['Port']
        self._tsd_portfolio = TimeSeriesDesc()
        self._tsd_portfolio.calculate_ret_stats(self._portfolio, br.ann_factor)

        self._cumpnl = tsc.create_mult_index(self._pnl)
        self._cumpnl.columns = pnl_cols

        self._cumportfolio = tsc.create_mult_index(self._portfolio)
        self._cumportfolio.columns = ['Port']