示例#1
0
def plot_active_cases(country):
    data.process_data(country)
    model = Model(data.dtf)
    model.forecast()
    model.add_deaths(data.mortality)
    result = Result(model.dtf)
    return result.plot_active(model.today)
示例#2
0
def render_output_panel(country):
    data.process_data(country)
    model = Model(data.dtf)
    model.forecast()
    model.add_deaths(data.mortality)
    result = Result(model.dtf)
    peak_day, num_max, total_cases_until_today, total_cases_in_30days, active_cases_today, active_cases_in_30days = result.get_panel(
    )
    peak_color = "white" if model.today > peak_day else "red"
    panel = html.Div([
        html.H4(country),
        dbc.Card(body=True,
                 className="text-white bg-primary",
                 children=[
                     html.H6("Total cases until today:",
                             style={"color": "white"}),
                     html.H3("{:,.0f}".format(total_cases_until_today),
                             style={"color": "white"}),
                     html.H6("Total cases in 30 days:",
                             className="text-danger"),
                     html.H3("{:,.0f}".format(total_cases_in_30days),
                             className="text-danger"),
                     html.H6("Active cases today:", style={"color": "white"}),
                     html.H3("{:,.0f}".format(active_cases_today),
                             style={"color": "white"}),
                     html.H6("Active cases in 30 days:",
                             className="text-danger"),
                     html.H3("{:,.0f}".format(active_cases_in_30days),
                             className="text-danger"),
                     html.H6("Peak day:", style={"color": peak_color}),
                     html.H3(peak_day.strftime("%Y-%m-%d"),
                             style={"color": peak_color}),
                     html.H6("with {:,.0f} cases".format(num_max),
                             style={"color": peak_color})
                 ])
    ])
    return panel
示例#3
0
import argparse
from python.model import Model

if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    # required
    parser.add_argument("caffemodel", help="")
    parser.add_argument("deploy", help="")

    # optional
    parser.add_argument("-m", "--mean", help="")
    parser.add_argument("-l", "--labels", help="")
    parser.add_argument("-g",
                        "--gpu",
                        dest="gpu",
                        action="store_true",
                        help="")
    parser.set_defaults(gpu=False)

    args = vars(parser.parse_args())

    model = Model(caffemodel_file=args["caffemodel"],
                  deploy_file=args["deploy"],
                  mean_file=args["mean"],
                  labels_file=args["labels"],
                  gpu=args["gpu"])

    print model.classify(image_path="")
示例#4
0
    parser = argparse.ArgumentParser()

    # required
    parser.add_argument("caffemodel", help="")
    parser.add_argument("deploy", help="")

    # optional
    parser.add_argument("--port", type=int, help="")
    parser.add_argument("--mean", help="")
    parser.add_argument("--labels", help="")
    parser.add_argument("--gpu", dest="gpu", action="store_true", help="")
    parser.add_argument("--download_folder", help="")

    parser.set_defaults(port=8080)
    parser.set_defaults(gpu=False)
    parser.set_defaults(download_folder="/tmp/caffe-classifier")

    args = vars(parser.parse_args())

    download_folder = args["download_folder"]
    make_download_folder()

    model = Model(caffemodel_file=args["caffemodel"],
                  deploy_file=args["deploy"],
                  mean_file=args["mean"],
                  labels_file=args["labels"],
                  gpu=args["gpu"])

    start(args["port"])