示例#1
0
    def start(self, job, verbose=False):
        if self.mpi_id == 0:
            from pytom.basic.structures import ParticleList, Reference
            from pytom.basic.resolution import bandToAngstrom
            from pytom.basic.filter import lowpassFilter
            from math import ceil

            # randomly split the particle list into 2 half sets
            if len(job.particleList.splitByClass()) != 2:
                import numpy as np
                n = len(job.particleList)
                labels = np.random.randint(2, size=(n, ))
                print(self.node_name + ': Number of 1st half set:',
                      n - np.sum(labels), 'Number of 2nd half set:',
                      np.sum(labels))
                for i in range(n):
                    p = job.particleList[i]
                    p.setClass(labels[i])

            self.destination = job.destination
            new_reference = job.reference
            old_freq = job.freq
            new_freq = job.freq
            # main node
            for i in range(job.max_iter):
                if verbose:
                    print(self.node_name + ': starting iteration %d ...' % i)

                # construct a new job by updating the reference and the frequency
                new_job = FRMJob(job.particleList, new_reference, job.mask,
                                 job.peak_offset, job.sampleInformation,
                                 job.bw_range, new_freq, job.destination,
                                 job.max_iter - i, job.r_score, job.weighting)

                # distribute it
                self.distribute_job(new_job, verbose)

                # get the result back
                all_even_pre = None  # the 1st set
                all_even_wedge = None
                all_odd_pre = None  # the 2nd set
                all_odd_wedge = None
                pl = ParticleList()
                for j in range(self.num_workers):
                    result = self.get_result()
                    pl += result.pl
                    pre, wedge = self.retrieve_res_vols(result.name)

                    if self.assignment[result.worker_id] == 0:
                        if all_even_pre:
                            all_even_pre += pre
                            all_even_wedge += wedge
                        else:
                            all_even_pre = pre
                            all_even_wedge = wedge
                    else:
                        if all_odd_pre:
                            all_odd_pre += pre
                            all_odd_wedge += wedge
                        else:
                            all_odd_pre = pre
                            all_odd_wedge = wedge

                # write the new particle list to the disk
                pl.toXMLFile('aligned_pl_iter' + str(i) + '.xml')

                # create the averages separately
                if verbose:
                    print(self.node_name + ': determining the resolution ...')
                even = self.create_average(all_even_pre, all_even_wedge)
                odd = self.create_average(all_odd_pre, all_odd_wedge)

                # apply symmetries if any
                even = job.symmetries.applyToParticle(even)
                odd = job.symmetries.applyToParticle(odd)

                # determine the transformation between even and odd
                # here we assume the wedge from both sets are fully sampled
                from sh_alignment.frm import frm_align
                pos, angle, score = frm_align(odd, None, even, None,
                                              job.bw_range, new_freq,
                                              job.peak_offset)
                print(self.node_name +
                      'Transform of even set to match the odd set - shift: ' +
                      str(pos) + ' rotation: ' + str(angle))

                # transform the odd set accordingly
                from pytom_volume import vol, transformSpline
                from pytom.basic.fourier import ftshift
                from pytom_volume import reducedToFull
                from pytom_freqweight import weight
                transformed_odd_pre = vol(odd.sizeX(), odd.sizeY(),
                                          odd.sizeZ())
                full_all_odd_wedge = reducedToFull(all_odd_wedge)
                ftshift(full_all_odd_wedge)
                odd_weight = weight(
                    full_all_odd_wedge)  # the funny part of pytom
                transformed_odd = vol(odd.sizeX(), odd.sizeY(), odd.sizeZ())

                transformSpline(all_odd_pre, transformed_odd_pre, -angle[1],
                                -angle[0], -angle[2],
                                odd.sizeX() / 2,
                                odd.sizeY() / 2,
                                odd.sizeZ() / 2, -(pos[0] - odd.sizeX() / 2),
                                -(pos[1] - odd.sizeY() / 2),
                                -(pos[2] - odd.sizeZ() / 2), 0, 0, 0)
                odd_weight.rotate(-angle[1], -angle[0], -angle[2])
                transformed_odd_wedge = odd_weight.getWeightVolume(True)
                transformSpline(odd, transformed_odd, -angle[1], -angle[0],
                                -angle[2],
                                odd.sizeX() / 2,
                                odd.sizeY() / 2,
                                odd.sizeZ() / 2, -(pos[0] - odd.sizeX() / 2),
                                -(pos[1] - odd.sizeY() / 2),
                                -(pos[2] - odd.sizeZ() / 2), 0, 0, 0)

                all_odd_pre = transformed_odd_pre
                all_odd_wedge = transformed_odd_wedge
                odd = transformed_odd

                # determine resolution
                resNyquist, resolutionBand, numberBands = self.determine_resolution(
                    even, odd, job.fsc_criterion, None, job.mask, verbose)

                # write the half set to the disk
                even.write(
                    os.path.join(self.destination,
                                 'fsc_' + str(i) + '_even.em'))
                odd.write(
                    os.path.join(self.destination,
                                 'fsc_' + str(i) + '_odd.em'))

                current_resolution = bandToAngstrom(
                    resolutionBand, job.sampleInformation.getPixelSize(),
                    numberBands, 1)
                if verbose:
                    print(
                        self.node_name + ': current resolution ' +
                        str(current_resolution), resNyquist)

                # create new average
                all_even_pre += all_odd_pre
                all_even_wedge += all_odd_wedge
                average = self.create_average(all_even_pre, all_even_wedge)

                # apply symmetries
                average = job.symmetries.applyToParticle(average)

                # filter average to resolution
                average_name = os.path.join(self.destination,
                                            'average_iter' + str(i) + '.em')
                average.write(average_name)

                # update the references
                new_reference = [
                    Reference(
                        os.path.join(self.destination,
                                     'fsc_' + str(i) + '_even.em')),
                    Reference(
                        os.path.join(self.destination,
                                     'fsc_' + str(i) + '_odd.em'))
                ]

                # low pass filter the reference and write it to the disk
                filtered = lowpassFilter(average, ceil(resolutionBand),
                                         ceil(resolutionBand) / 10)
                filtered_ref_name = os.path.join(
                    self.destination, 'average_iter' + str(i) + '_res' +
                    str(current_resolution) + '.em')
                filtered[0].write(filtered_ref_name)

                # if the position/orientation is not improved, break it

                # change the frequency to a higher value
                new_freq = int(ceil(resolutionBand)) + 1
                if new_freq <= old_freq:
                    if job.adaptive_res is not False:  # two different strategies
                        print(
                            self.node_name +
                            ': Determined resolution gets worse. Include additional %f percent frequency to be aligned!'
                            % job.adaptive_res)
                        new_freq = int((1 + job.adaptive_res) * old_freq)
                    else:  # always increase by 1
                        print(
                            self.node_name +
                            ': Determined resolution gets worse. Increase the frequency to be aligned by 1!'
                        )
                        new_freq = old_freq + 1
                        old_freq = new_freq
                else:
                    old_freq = new_freq
                if new_freq >= numberBands:
                    print(self.node_name +
                          ': New frequency too high. Terminate!')
                    break

                if verbose:
                    print(self.node_name + ': change the frequency to ' +
                          str(new_freq))

            # send end signal to other nodes and terminate itself
            self.end(verbose)
        else:
            # other nodes
            self.run(verbose)
示例#2
0
    def start(self, job, verbose=False):
        """
        start FRM job
        @param job: FRM job
        @type job: L{FRMJob}
        @param verbose: print stuff (default: False)
        @type verbose: C{bool}
        """
        if self.mpi_id == 0:
            from pytom.basic.structures import ParticleList, Reference
            from pytom.basic.resolution import bandToAngstrom
            from pytom.basic.filter import lowpassFilter
            from math import ceil
            self.destination = job.destination
            new_reference = job.reference
            old_freq = job.freq
            new_freq = job.freq
            #print(f"reference  = {job.reference}")
            #print(f"particlelist = {job.particleList}")
            print(f"iterations = {job.max_iter:d}")
            print(f"binning    = {job.binning:d}")
            #print(f"mask       = {job.mask}")
            #print(f"peak_offset= {job.peak_offset:f2.1}")
            print(f"destination= {job.destination:s}")
            print(f"freq cut   = {job.freq:d}")
            # main node
            for i in range(job.max_iter):
                if verbose:
                    print(self.node_name + ': starting iteration %d ...' % i)

                # construct a new job by updating the reference and the frequency
                new_job = FRMJob(job.particleList,
                                 new_reference,
                                 job.mask,
                                 job.peak_offset,
                                 job.sampleInformation,
                                 job.bw_range,
                                 new_freq,
                                 job.destination,
                                 job.max_iter - i,
                                 job.r_score,
                                 job.weighting,
                                 constraint=job.constraint,
                                 binning=job.binning)

                # distribute it
                self.distribute_job(new_job, verbose)

                # get the result back
                all_even_pre = None
                all_even_wedge = None
                all_odd_pre = None
                all_odd_wedge = None
                pl = ParticleList()
                for j in range(self.num_workers):
                    result = self.get_result()
                    pl += result.pl
                    even_pre, even_wedge, odd_pre, odd_wedge = self.retrieve_res_vols(
                        result.name)

                    if all_even_pre:
                        all_even_pre += even_pre
                        all_even_wedge += even_wedge
                        all_odd_pre += odd_pre
                        all_odd_wedge += odd_wedge
                    else:
                        all_even_pre = even_pre
                        all_even_wedge = even_wedge
                        all_odd_pre = odd_pre
                        all_odd_wedge = odd_wedge

                # write the new particle list to the disk
                pl.toXMLFile(
                    os.path.join(job.destination,
                                 'aligned_pl_iter' + str(i) + '.xml'))

                # create half sets
                even = self.create_average(all_even_pre, all_even_wedge)
                odd = self.create_average(all_odd_pre, all_odd_wedge)

                # apply symmetries before determine resolution
                even = job.symmetries.applyToParticle(even)
                odd = job.symmetries.applyToParticle(odd)
                resNyquist, resolutionBand, numberBands = self.determine_resolution(
                    even, odd, job.fsc_criterion, None, job.mask, verbose)

                # write the half set to the disk
                even.write(
                    os.path.join(self.destination,
                                 'fsc_' + str(i) + '_even.em'))
                odd.write(
                    os.path.join(self.destination,
                                 'fsc_' + str(i) + '_odd.em'))

                # determine the resolution
                if verbose:
                    print(self.node_name + ': determining the resolution ...')
                current_resolution = bandToAngstrom(
                    resolutionBand, job.sampleInformation.getPixelSize(),
                    numberBands, 1)
                if verbose:
                    print(
                        self.node_name + ': current resolution ' +
                        str(current_resolution), resNyquist)

                # create new average
                all_even_pre += all_odd_pre
                all_even_wedge += all_odd_wedge
                average = self.create_average(all_even_pre, all_even_wedge)

                # apply symmetries
                average = job.symmetries.applyToParticle(average)

                # filter average to resolution and update the new reference
                average_name = os.path.join(self.destination,
                                            'average_iter' + str(i) + '.em')
                #                pl.average(average_name, True)
                average.write(average_name)
                new_reference = Reference(average_name)

                # low pass filter the reference and write it to the disk
                filtered = lowpassFilter(average, ceil(resolutionBand),
                                         ceil(resolutionBand) / 10)
                filtered_ref_name = os.path.join(
                    self.destination, 'average_iter' + str(i) + '_res' +
                    str(current_resolution) + '.em')
                filtered[0].write(filtered_ref_name)

                # if the position/orientation is not improved, break it

                # change the frequency to a higher value
                new_freq = int(ceil(resolutionBand)) + 1
                if new_freq <= old_freq:
                    if job.adaptive_res is not False:  # two different strategies
                        print(
                            self.node_name +
                            ': Determined resolution gets worse. Include additional %f percent frequency to be aligned!'
                            % job.adaptive_res)
                        new_freq = int((1 + job.adaptive_res) * new_freq)
                        old_freq = new_freq
                    else:  # always increase by 1
                        print(
                            self.node_name +
                            ': Determined resolution gets worse. Increase the frequency to be aligned by 1!'
                        )
                        new_freq = old_freq + 1
                        old_freq = new_freq
                else:
                    old_freq = new_freq
                if new_freq >= numberBands:
                    print(self.node_name +
                          ': New frequency too high. Terminate!')
                    break

                if verbose:
                    print(self.node_name + ': change the frequency to ' +
                          str(new_freq))

            # send end signal to other nodes and terminate itself
            self.end(verbose)
        else:
            # other nodes
            self.run(verbose)
示例#3
0
        if v1Filename and v2Filename:
            print('Resolution determined for ', v1Filename, ' and ',
                  v2Filename)
        elif particleList:
            print('Resolution determined for ', particleList, ' ')

        print('')
        print('FSC Criterion:   ', fscCriterion)
        print('Number of Bands: ', numberBands)
        print('')
        print('Nyquist: ', r[0])
        print('Band:    ', r[1])

        if pixelSize:
            from pytom.basic.resolution import bandToAngstrom
            resolution = bandToAngstrom(r[1], pixelSize, numberBands)
            print('Resolution determined for pixelsize : ', pixelSize, ' at ',
                  resolution, ' Angstrom')

    else:
        print('XML')

    if plot and v1Filename and v2Filename:
        import matplotlib
        import numpy
        matplotlib.use('Qt5Agg')
        from pylab import subplots, savefig, show

        fig, ax = subplots(1, 1, figsize=(10, 5))

        ax.plot(f, label='FSC orig')
示例#4
0
def multiRef_EXMXAlign(multiRefJob, doFinalize=True, verbose=False):
    """
    multiRef_EXMXAlign: Performs multi reference alignment on a particle list
    @param multiRefJob: The multi reference alignment job 
    @param doFinalize: Send finalize msgs to workers or not. Default is true  
    @param verbose: Default is false
    """
    import pytom_mpi

    if doFinalize:
        pytom_mpi.init()

    if pytom_mpi.rank() == 0:

        from pytom.alignment.ExMaxAlignment import ExMaxManager
        from pytom.tools.files import checkDirExists
        from os import mkdir
        from pytom.basic.resolution import bandToAngstrom, angstromToBand, angleFromResolution

        particleList = multiRefJob.getParticleList()
        initialParticleList = particleList
        previousParticleList = initialParticleList

        destinationDirectory = multiRefJob.getDestinationDirectory()
        numberIterations = multiRefJob.getNumberIterations()
        numberClasses = multiRefJob.getNumberClasses()

        exMaxJob = multiRefJob.getExMaxJob()
        p = particleList[0]
        pVol = p.getVolume()
        cubeSize = pVol.sizeX()

        preprocessing = exMaxJob.getPreprocessing()
        sampleInfo = exMaxJob.getSampleInformation()

        if verbose:
            print(multiRefJob)

        if not checkDirExists(destinationDirectory):
            raise IOError('Destination directory ' + destinationDirectory +
                          ' not found!')

        try:
            particleLists = particleList.splitByClass()
            if len(particleLists) <= 1:
                raise Exception()

        except Exception:
            from pytom.cluster.clusterFunctions import randomiseParticleListClasses

            if numberClasses:
                if verbose:
                    print('Randomizing particle list')

                particleList = randomiseParticleListClasses(
                    particleList, numberClasses)
                particleList.toXMLFile(destinationDirectory +
                                       '/RandomisedParticleList.xml')
                particleLists = particleList.splitByClass()

            else:
                raise RuntimeError(
                    'The particle list provided is not pre-classified and you did not set numberClasses for a random seed!'
                )

        iteration = 0
        converged = False

        while iteration < numberIterations and (not converged):

            if verbose:
                print('Running iteration ' + str(iteration) + ' of ' +
                      str(numberIterations))

            iterationDirectory = destinationDirectory + '/' + str(
                iteration) + '/'

            if not checkDirExists(iterationDirectory):
                mkdir(iterationDirectory)

            #determine resolution of all classes
            maxRes = 0
            minRes = 1000000

            if not checkDirExists(iterationDirectory + 'resolution/'):
                mkdir(iterationDirectory + 'resolution/')

            for classIterator in range(len(particleLists)):
                currentParticleList = particleLists[classIterator]
                if len(currentParticleList) > 1:
                    [resNyquist, resolutionBand,
                     numberBands] = currentParticleList.determineResolution(
                         criterion=exMaxJob.getFSCCriterion(),
                         numberBands=cubeSize / 2,
                         mask=exMaxJob.getMask(),
                         keepHalfsetAverages=False,
                         halfsetPrefix=iterationDirectory + 'resolution/' +
                         'class' + str(classIterator) + '_fsc-',
                         verbose=verbose)
                else:
                    continue
                resolutionAngstrom = bandToAngstrom(resolutionBand,
                                                    sampleInfo.getPixelSize(),
                                                    numberBands, 1)
                #resolutionAngstrom = bandToAngstrom(resolutionBand,sampleInfo.getPixelSize(),numberBands,exMaxJob.getBinning() )

                if resolutionBand > maxRes:
                    maxRes = resolutionBand
                if resolutionBand < minRes:
                    minRes = resolutionBand

                if verbose:
                    print(
                        'Class ', classIterator, ' - current resolution :' +
                        str(resolutionAngstrom) + ' Angstrom')

            #set highest frequency according to user specification
            band = maxRes
            if not multiRefJob.getUseMaxResolution():
                band = minRes

            if band == numberBands:
                #determineResolution returns numberBands for filter if fsc result is invalid. in that case, use nyquist /2 as filter setting
                print('Warning MultiRefAlignment.py: LL 114')
                print(
                    'Warning: Resolution determined for all classes was invalid. Will use Nyquist/2 for current iteration'
                )
                band = numberBands / 2

            preprocessing.setHighestFrequency(band)
            exMaxJob.setPreprocessing(preprocessing)

            alignmentLists = [None] * len(particleLists)
            #generate cluster centers
            referenceList = distributeExpectation(
                particleLists, iterationDirectory,
                'clusterCenter' + str(iteration), verbose,
                exMaxJob.getSymmetry())

            for classIterator in range(len(particleLists)):

                classDirectory = iterationDirectory + 'class' + str(
                    classIterator) + '/'

                #determine distance for all particles
                refinementDirectory = classDirectory + 'refinement/'

                if verbose:
                    print(refinementDirectory)

                if not checkDirExists(refinementDirectory):
                    mkdir(refinementDirectory)

                exMaxJob.setParticleList(particleList)
                exMaxJob.setReference(referenceList[classIterator])
                exMaxJob.setDestination(refinementDirectory)

                #run refinement
                manager = ExMaxManager(exMaxJob)

                manager.distributeAlignment(verbose)

                alignmentLists[classIterator] = manager.getAlignmentList()
                alignmentLists[classIterator].toXMLFile(iterationDirectory +
                                                        'AlignmentList' +
                                                        str(classIterator) +
                                                        '.xml')

            #perform classification here
            if verbose:
                print('Classifying after iteration ' + str(iteration))

            particleList = classifyParticleList(initialParticleList,
                                                alignmentLists, verbose)
            particleList.toXMLFile(iterationDirectory +
                                   'classifiedParticles.xml')
            particleLists = particleList.splitByClass()

            difference = previousParticleList.classDifference(particleList)
            converged = multiRefJob.getEndThreshold() >= difference[3]

            #set up for next round!
            previousParticleList = particleList
            iteration = iteration + 1

        if doFinalize:
            manager.parallelEnd()
            pytom_mpi.finalise()

        return [particleList, alignmentLists]

    else:
        from pytom.alignment.ExMaxAlignment import ExMaxWorker
        worker = ExMaxWorker()
        worker.parallelRun()
        pytom_mpi.finalise()
示例#5
0
    def start(self, job, verbose=False):
        if self.mpi_id == 0:
            from pytom.basic.structures import ParticleList, Reference
            from pytom.basic.resolution import bandToAngstrom
            from pytom.basic.filter import lowpassFilter
            from math import ceil
            from pytom.basic.fourier import convolute
            from pytom_volume import vol, power, read

            # randomly split the particle list into 2 half sets
            import numpy as np
            num_pairs = len(job.particleList.pairs)
            for i in range(num_pairs):
                # randomize the class labels to indicate the two half sets
                pl = job.particleList.pairs[i].get_phase_flip_pl()
                n = len(pl)
                labels = np.random.randint(2, size=(n, ))
                print(self.node_name + ': Number of 1st half set:',
                      n - np.sum(labels), 'Number of 2nd half set:',
                      np.sum(labels))
                for j in range(n):
                    p = pl[j]
                    p.setClass(labels[j])

            new_reference = job.reference
            old_freq = job.freq
            new_freq = job.freq
            # main node
            for i in range(job.max_iter):
                if verbose:
                    print(self.node_name + ': starting iteration %d ...' % i)

                # construct a new job by updating the reference and the frequency
                # here the job.particleList is actually ParticleListSet
                new_job = MultiDefocusJob(job.particleList, new_reference,
                                          job.mask, job.peak_offset,
                                          job.sampleInformation, job.bw_range,
                                          new_freq, job.destination,
                                          job.max_iter - i, job.r_score,
                                          job.weighting, job.bfactor)

                # distribute it
                num_all_particles = self.distribute_job(new_job, verbose)

                # calculate the denominator
                sum_ctf_squared = None
                for pair in job.particleList.pairs:
                    if sum_ctf_squared is None:
                        sum_ctf_squared = pair.get_ctf_sqr_vol() * pair.snr
                    else:
                        sum_ctf_squared += pair.get_ctf_sqr_vol() * pair.snr

                # get the result back
                all_even_pre = None
                all_even_wedge = None
                all_odd_pre = None
                all_odd_wedge = None
                pls = []
                for j in range(len(job.particleList.pairs)):
                    pls.append(ParticleList())

                for j in range(self.num_workers):
                    result = self.get_result()

                    pair_id = self.assignment[result.worker_id]
                    pair = job.particleList.pairs[pair_id]

                    pl = pls[pair_id]
                    pl += result.pl
                    even_pre, even_wedge, odd_pre, odd_wedge = self.retrieve_res_vols(
                        result.name)

                    if all_even_pre:
                        all_even_pre += even_pre * pair.snr
                        all_even_wedge += even_wedge
                        all_odd_pre += odd_pre * pair.snr
                        all_odd_wedge += odd_wedge
                    else:
                        all_even_pre = even_pre * pair.snr
                        all_even_wedge = even_wedge
                        all_odd_pre = odd_pre * pair.snr
                        all_odd_wedge = odd_wedge

                # write the new particle list to the disk
                for j in range(len(job.particleList.pairs)):
                    pls[j].toXMLFile('aligned_pl' + str(j) + '_iter' + str(i) +
                                     '.xml')

                # correct for the number of particles in wiener filter
                sum_ctf_squared = sum_ctf_squared / num_all_particles
                #                all_even_pre = all_even_pre/(num_all_particles/2)
                #                all_odd_pre = all_odd_pre/(num_all_particles/2)

                # bfactor
                if job.bfactor and job.bfactor != 'None':
                    #                    bfactor_kernel = create_bfactor_vol(sum_ctf_squared.sizeX(), job.sampleInformation.getPixelSize(), job.bfactor)
                    bfactor_kernel = read(job.bfactor)
                    bfactor_kernel_sqr = vol(bfactor_kernel)
                    power(bfactor_kernel_sqr, 2)
                    all_even_pre = convolute(all_even_pre, bfactor_kernel,
                                             True)
                    all_odd_pre = convolute(all_odd_pre, bfactor_kernel, True)
                    sum_ctf_squared = sum_ctf_squared * bfactor_kernel_sqr

                # create averages of two sets
                if verbose:
                    print(self.node_name + ': determining the resolution ...')
                even = self.create_average(
                    all_even_pre, sum_ctf_squared, all_even_wedge
                )  # assume that the CTF sum is the same for the even and odd
                odd = self.create_average(all_odd_pre, sum_ctf_squared,
                                          all_odd_wedge)

                # determine the transformation between even and odd
                # here we assume the wedge from both sets are fully sampled
                from sh_alignment.frm import frm_align
                pos, angle, score = frm_align(odd, None, even, None,
                                              job.bw_range, new_freq,
                                              job.peak_offset)
                print(
                    self.node_name +
                    ': transform of even set to match the odd set - shift: ' +
                    str(pos) + ' rotation: ' + str(angle))

                # transform the odd set accordingly
                from pytom_volume import vol, transformSpline
                from pytom.basic.fourier import ftshift
                from pytom_volume import reducedToFull
                from pytom_freqweight import weight
                transformed_odd_pre = vol(odd.sizeX(), odd.sizeY(),
                                          odd.sizeZ())
                full_all_odd_wedge = reducedToFull(all_odd_wedge)
                ftshift(full_all_odd_wedge)
                odd_weight = weight(
                    full_all_odd_wedge)  # the funny part of pytom
                transformed_odd = vol(odd.sizeX(), odd.sizeY(), odd.sizeZ())

                transformSpline(all_odd_pre, transformed_odd_pre, -angle[1],
                                -angle[0], -angle[2], int(odd.sizeX() / 2),
                                int(odd.sizeY() / 2), int(odd.sizeZ() / 2),
                                -(pos[0] - odd.sizeX() / 2),
                                -(pos[1] - odd.sizeY() / 2),
                                -(pos[2] - odd.sizeZ() / 2), 0, 0, 0)
                odd_weight.rotate(-angle[1], -angle[0], -angle[2])
                transformed_odd_wedge = odd_weight.getWeightVolume(True)
                transformSpline(odd, transformed_odd, -angle[1], -angle[0],
                                -angle[2], int(odd.sizeX() / 2),
                                int(odd.sizeY() / 2), int(odd.sizeZ() / 2),
                                -(pos[0] - odd.sizeX() / 2),
                                -(pos[1] - odd.sizeY() / 2),
                                -(pos[2] - odd.sizeZ() / 2), 0, 0, 0)

                all_odd_pre = transformed_odd_pre
                all_odd_wedge = transformed_odd_wedge
                odd = transformed_odd

                # apply symmetries before determine resolution
                # with gold standard you should be careful about applying the symmetry!
                even = job.symmetries.applyToParticle(even)
                odd = job.symmetries.applyToParticle(odd)
                resNyquist, resolutionBand, numberBands = self.determine_resolution(
                    even, odd, job.fsc_criterion, None, job.mask, verbose)

                # write the half set to the disk
                even.write('fsc_' + str(i) + '_even.em')
                odd.write('fsc_' + str(i) + '_odd.em')

                current_resolution = bandToAngstrom(
                    resolutionBand, job.sampleInformation.getPixelSize(),
                    numberBands, 1)
                if verbose:
                    print(
                        self.node_name + ': current resolution ' +
                        str(current_resolution), resNyquist)

                # create new average
                all_even_pre += all_odd_pre
                all_even_wedge += all_odd_wedge
                #                all_even_pre = all_even_pre/2 # correct for the number of particles in wiener filter
                average = self.create_average(all_even_pre, sum_ctf_squared,
                                              all_even_wedge)

                # apply symmetries
                average = job.symmetries.applyToParticle(average)

                # filter average to resolution and update the new reference
                average_name = 'average_iter' + str(i) + '.em'
                average.write(average_name)

                # update the references
                new_reference = [
                    Reference('fsc_' + str(i) + '_even.em'),
                    Reference('fsc_' + str(i) + '_odd.em')
                ]

                # low pass filter the reference and write it to the disk
                filtered = lowpassFilter(average, ceil(resolutionBand),
                                         ceil(resolutionBand) / 10)
                filtered_ref_name = 'average_iter' + str(i) + '_res' + str(
                    current_resolution) + '.em'
                filtered[0].write(filtered_ref_name)

                # change the frequency to a higher value
                new_freq = int(ceil(resolutionBand)) + 1
                if new_freq <= old_freq:
                    if job.adaptive_res is not False:  # two different strategies
                        print(
                            self.node_name +
                            ': Determined resolution gets worse. Include additional %f percent frequency to be aligned!'
                            % job.adaptive_res)
                        new_freq = int((1 + job.adaptive_res) * old_freq)
                    else:  # always increase by 1
                        print(
                            self.node_name +
                            ': Determined resolution gets worse. Increase the frequency to be aligned by 1!'
                        )
                        new_freq = old_freq + 1
                        old_freq = new_freq
                else:
                    old_freq = new_freq
                if new_freq >= numberBands:
                    print(self.node_name +
                          ': Determined frequency too high. Terminate!')
                    break

                if verbose:
                    print(self.node_name + ': change the frequency to ' +
                          str(new_freq))

            # send end signal to other nodes and terminate itself
            self.end(verbose)
        else:
            # other nodes
            self.run(verbose)
示例#6
0
    def start(self, job, verbose=False):
        if self.mpi_id == 0:
            from pytom.basic.structures import ParticleList, Reference
            from pytom.basic.resolution import bandToAngstrom
            from pytom.basic.filter import lowpassFilter
            from math import ceil
            from pytom.basic.fourier import convolute
            from pytom_volume import vol, power, read
            
            new_reference = job.reference
            old_freq = job.freq
            new_freq = job.freq
            # main node
            for i in range(job.max_iter):
                if verbose:
                    print(self.node_name + ': starting iteration %d ...' % i)
                
                # construct a new job by updating the reference and the frequency
                # here the job.particleList is actually ParticleListSet
                new_job = MultiDefocusJob(job.particleList, new_reference, job.mask, job.peak_offset, job.sampleInformation, job.bw_range, new_freq, job.destination, job.max_iter-i, job.r_score, job.weighting, job.bfactor)
                
                # distribute it
                num_all_particles = self.distribute_job(new_job, verbose)
                
                # calculate the denominator
                sum_ctf_squared = None
                for pair in job.particleList.pairs:
                    if sum_ctf_squared is None:
                        sum_ctf_squared = pair.get_ctf_sqr_vol() * pair.snr
                    else:
                        sum_ctf_squared += pair.get_ctf_sqr_vol() * pair.snr
                
                # get the result back
                all_even_pre = None
                all_even_wedge = None
                all_odd_pre = None
                all_odd_wedge = None
                pls = []
                for j in range(len(job.particleList.pairs)):
                    pls.append(ParticleList())
                
                for j in range(self.num_workers):
                    result = self.get_result()
                    
                    pair_id = self.assignment[result.worker_id]
                    pair = job.particleList.pairs[pair_id]
                    
                    pl = pls[pair_id]
                    pl += result.pl
                    even_pre, even_wedge, odd_pre, odd_wedge = self.retrieve_res_vols(result.name)
                    
                    if all_even_pre:
                        all_even_pre += even_pre * pair.snr
                        all_even_wedge += even_wedge
                        all_odd_pre += odd_pre * pair.snr
                        all_odd_wedge += odd_wedge
                    else:
                        all_even_pre = even_pre * pair.snr
                        all_even_wedge = even_wedge
                        all_odd_pre = odd_pre * pair.snr
                        all_odd_wedge = odd_wedge
                
                # write the new particle list to the disk
                for j in range(len(job.particleList.pairs)):
                    pls[j].toXMLFile('aligned_pl'+str(j)+'_iter'+str(i)+'.xml')
                
                # correct for the number of particles in wiener filter
                sum_ctf_squared = sum_ctf_squared/num_all_particles
#                all_even_pre = all_even_pre/(num_all_particles/2)
#                all_odd_pre = all_odd_pre/(num_all_particles/2)
                
                # bfactor
                if job.bfactor and job.bfactor != 'None':
#                    bfactor_kernel = create_bfactor_vol(sum_ctf_squared.sizeX(), job.sampleInformation.getPixelSize(), job.bfactor)
                    bfactor_kernel = read(job.bfactor)
                    bfactor_kernel_sqr = vol(bfactor_kernel)
                    power(bfactor_kernel_sqr, 2)
                    all_even_pre = convolute(all_even_pre, bfactor_kernel, True)
                    all_odd_pre = convolute(all_odd_pre, bfactor_kernel, True)
                    sum_ctf_squared = sum_ctf_squared*bfactor_kernel_sqr
                
                # determine the resolution
                if verbose:
                    print(self.node_name + ': determining the resolution ...')
                even = self.create_average(all_even_pre, sum_ctf_squared, all_even_wedge) # assume that the CTF sum is the same for the even and odd
                odd = self.create_average(all_odd_pre, sum_ctf_squared, all_odd_wedge)
                
                # apply symmetries before determine resolution
                even = job.symmetries.applyToParticle(even)
                odd = job.symmetries.applyToParticle(odd)
                resNyquist, resolutionBand, numberBands = self.determine_resolution(even, odd, job.fsc_criterion, None, job.mask, verbose)
                
                # write the half set to the disk
                even.write('fsc_'+str(i)+'_even.em')
                odd.write('fsc_'+str(i)+'_odd.em')
                
                current_resolution = bandToAngstrom(resolutionBand, job.sampleInformation.getPixelSize(), numberBands, 1)
                if verbose:
                    print(self.node_name + ': current resolution ' + str(current_resolution), resNyquist)
                
                # create new average
                all_even_pre += all_odd_pre
                all_even_wedge += all_odd_wedge
#                all_even_pre = all_even_pre/2 # correct for the number of particles in wiener filter
                average = self.create_average(all_even_pre, sum_ctf_squared, all_even_wedge)
                
                # apply symmetries
                average = job.symmetries.applyToParticle(average)
                
                # filter average to resolution and update the new reference
                average_name = 'average_iter'+str(i)+'.em'
                average.write(average_name)
                new_reference = Reference(average_name)
                
                # low pass filter the reference and write it to the disk
                filtered = lowpassFilter(average, ceil(resolutionBand), ceil(resolutionBand)/10)
                filtered_ref_name = 'average_iter'+str(i)+'_res'+str(current_resolution)+'.em'
                filtered[0].write(filtered_ref_name)
                
                # change the frequency to a higher value
                new_freq = int(ceil(resolutionBand))+1
                if new_freq <= old_freq:
                    if job.adaptive_res is not False: # two different strategies
                        print(self.node_name + ': Determined resolution gets worse. Include additional %f percent frequency to be aligned!' % job.adaptive_res)
                        new_freq = int((1+job.adaptive_res)*old_freq)
                    else: # always increase by 1
                        print(self.node_name + ': Determined resolution gets worse. Increase the frequency to be aligned by 1!')
                        new_freq = old_freq+1
                        old_freq = new_freq
                else:
                    old_freq = new_freq
                if new_freq >= numberBands:
                    print(self.node_name + ': Determined frequency too high. Terminate!')
                    break
                
                if verbose:
                    print(self.node_name + ': change the frequency to ' + str(new_freq))
            
            # send end signal to other nodes and terminate itself
            self.end(verbose)
        else:
            # other nodes
            self.run(verbose)
示例#7
0
                  v2Filename)
        elif particleList:
            print('Resolution determined for ', particleList, ' ')

        print('')
        print('FSC Criterion:   ', fscCriterion)
        print('Number of Bands: ', numberBands)
        print('')
        print('Nyquist: ', r[0])
        print('Band:    ', r[1])

        if pixelSize:
            from pytom.basic.resolution import bandToAngstrom

            print('Resolution determined for pixelsize : ', pixelSize, ' at ',
                  bandToAngstrom(r[1], pixelSize, numberBands), ' Angstrom')

    else:
        print('XML')

    if plot and v1Filename and v2Filename:
        import matplotlib
        import numpy
        matplotlib.use('Qt5Agg')
        from pylab import subplots, savefig, show

        fig, ax = subplots(1, 1, figsize=(10, 5))
        ax.plot(f, label='FSC orig')
        if randomize:
            ax.plot(fsc_rand, label='FSC rand')
            ax.plot(fsc_corr, label='FSC corrected')