示例#1
0
def subPixelPeak(inp, k=1, ignore_border=1):
    from pytom.voltools import transform
    is2d = len(inp.shape.squeeze()) == 2
    if is2d:
        inp2 = inp.squeeze()[ignore_border:-ignore_border,
                             ignore_border:-ignore_border]
        scale = (k, k, 1)
        out = xp.array(inp.squeeze(), dtype=xp.float32)
        x, y = xp.array(xp.unravel_index(inp2.argmax(),
                                         inp2.shape)) + ignore_border
        out = xp.expand_dims(out, 2)
        translation = [inp.shape[0] // 2 - x, inp.shape[1] // 2 - y, 0]
    else:
        inp2 = inp[ignore_border:-ignore_border, ignore_border:-ignore_border,
                   ignore_border:-ignore_border]
        scale = (k, k, k)
        out = xp.array(inp, dtype=xp.float32)
        x, y, z = xp.array(xp.unravel_index(inp2.argmax(),
                                            inp2.shape)) + ignore_border
        translation = [
            inp.shape[0] // 2 - x, inp.shape[1] // 2 - y, inp.shape[2] // 2 - z
        ]

    zoomed = xp.zeros_like(out, dtype=xp.float32)
    transform(out,
              output=zoomed,
              scale=scale,
              translation=translation,
              device='gpu:0',
              interpolation='filt_bspline')

    shifts = [x2, y2, z2] = xp.unravel_index(zoomed.argmax(), zoomed.shape)

    return [zoomed[x2, y2, z2], shifts[3 - is2d]]
def normalised_cross_correlation(first, second, filter_mask=None, device=0):
    """
    Do a cross correlation based on numpy

    @param first: The first dataset (numpy 2D)
    @type first: numpy array 2D
    @param second: The second dataset (numpy 2D)
    @type second: numpy array 2D
    @param filter_mask: a filter which is used to filter image 'first'
    @type filter_mask: numpy array 2D
    @return: The cross correlation result
    @returntype: numpy array 2D

    @requires: the shape of first to be equal to the shape of second, and equal t the shape of the filter (if used of course)
    """
    assert first.shape == second.shape
    assert len(first.shape) == 2
    if not (filter_mask is None): assert first.shape == filter_mask.shape

    # if filter_mask is None:
    ffirst = xp.fft.fft2(xp.array(first))
    # else:
    #     ffirst = xp.fft.fftshift(xp.fft.fftshift(xp.fft.fftn(first)) * filter_mask)

    ccmap = xp.real(
        xp.fft.fftshift(
            xp.fft.ifftn(xp.multiply(xp.fft.fftn(second),
                                     xp.conj(ffirst))))) / first.size

    return ccmap
示例#3
0
def cut_from_projection(proj, center, size, device=2):
    """Cut out a subregion out from a 2D projection.

    @param proj: 2D projection.
    @param center: cutting center.
    @param size: cutting size.

    @return: subprojection.
    """
    import pytom.voltools as vt
    if len(proj.shape) > 2 and proj.shape[2] > 1:
        raise Exception(
            'We assume that projections come from a 3D object, thus your projection cannot be a 3D object itself'
        )

    import numpy as np
    from scipy.ndimage import map_coordinates
    try:
        proj = proj.squeeze().get()
    except:
        proj = proj.squeeze()

    #v =
    # adjusted to python3
    grid = np.mgrid[center[0] - size[0] // 2:center[0] + size[0] -
                    size[0] // 2 - 1:size[0] * 1j,
                    center[1] - size[1] // 2:center[1] + size[1] -
                    size[1] // 2 - 1:size[1] * 1j]

    v = map_coordinates(proj, grid, order=2)

    return xp.array(v)
示例#4
0
def subPixelShifts(volume, scale=[1, 1, 1], cutout=20, shifts=True):
    from pytom.voltools import transform
    import numpy as np

    volC = xp.array(
        [volume.shape[0] // 2, volume.shape[1] // 2, volume.shape[2] // 2])
    cx, cy, cz = center = find_coords_max_ccmap(volume)

    x, y, z = volume.shape
    if cx - cutout // 2 < 0 or cy - cutout // 2 < 0 or cz - cutout // 2 < 0 or cx + cutout // 2 >= x or cy + cutout // 2 >= y or cz + cutout // 2 >= z:
        return [
            volume.max(),
            xp.array([cx - x // 2, cy - y // 2, cz - z // 2])
        ]

    cutvol = volume[cx - cutout // 2:cx + cutout // 2,
                    cy - cutout // 2:cy + cutout // 2,
                    cz - cutout // 2:cz + cutout // 2]
    nx, ny, nz = [int(np.ceil(cutout / s)) for s in scale]
    nC = xp.array([nx // 2, ny // 2, nz // 2])
    centered = xp.zeros((nx, ny, nz), dtype=xp.float32)
    centered[nx // 2 - cutout // 2:nx // 2 + cutout // 2,
             ny // 2 - cutout // 2:ny // 2 + cutout // 2,
             nz // 2 - cutout // 2:nz // 2 + cutout // 2] = cutvol
    interpolated_peak = xp.zeros_like(centered)
    transform(centered,
              scale=scale,
              device=device,
              interpolation='filt_bspline',
              output=interpolated_peak)
    interpol_center = find_coords_max_ccmap(interpolated_peak)
    shifts = xp.array(center) - volC + (xp.array(interpol_center) -
                                        xp.array(nC)) * xp.array(scale)

    return [interpolated_peak.max(), shifts]
示例#5
0
def subPixelShiftsImage(volume, scale=[1, 1, 1], cutout=20, shifts=True):
    from pytom.voltools import transform
    import numpy as np

    if shifts:
        volC = xp.array(
            [vol.shape[0] // 2, volume.shape[1] // 2, vol.shape[2] // 2])
    else:
        volC = xp.array([0, 0, 0], dtype=xp.int32)

    cx, cy, cz = center = find_coords_max_ccmap(volume)
    cutvol = volume[cx - cutout // 2:cx + cutout // 2,
                    cy - cutout // 2:cy + cutout // 2, :]
    nx, ny, nz = [int(np.ceil(cutout / s)) for s in scale]
    nC = xp.array([nx // 2, ny // 2, 0])
    centered = xp.zeros((nx, ny, 1), dtype=xp.float32)
    centered[nx // 2 - cutout // 2:nx // 2 + cutout // 2,
             ny // 2 - cutout // 2:ny // 2 + cutout // 2, :] = cutvol

    interpolated_peak = transform(centered,
                                  scale=scale,
                                  device=device,
                                  interpolation='filt_bspline')

    interpol_center = find_coords_max_ccmap(interpolated_peak)
    shifts = xp.array(center) - volC + (xp.array(interpol_center) -
                                        xp.array(nC)) * xp.array(scale)

    return [interpolated_peak.max(), shifts]
示例#6
0
文件: filter.py 项目: xmzzaa/PyTom
def exact_filter(tilt_angles, tiltAngle, sX, sY, sliceWidth=1, arr=[]):
    """
    exactFilter: Generates the exact weighting function required for weighted backprojection - y-axis is tilt axis
    Reference : Optik, Exact filters for general geometry three dimensional reconstuction, vol.73,146,1986.
    @param tilt_angles: list of all the tilt angles in one tilt series
    @param titlAngle: tilt angle for which the exact weighting function is calculated
    @param sizeX: size of weighted image in X
    @param sizeY: size of weighted image in Y

    @return: filter volume

    """
    import numpy as xp

    # Calculate the relative angles in radians.
    diffAngles = (xp.array(tilt_angles) - tiltAngle) * xp.pi / 180.

    # Closest angle to tiltAngle (but not tiltAngle) sets the maximal frequency of overlap (Crowther's frequency).
    # Weights only need to be calculated up to this frequency.
    sampling = xp.min(xp.abs(diffAngles)[xp.abs(diffAngles) > 0.001])

    crowtherFreq = min(sX // 2,
                       xp.int32(xp.ceil(sliceWidth / xp.sin(sampling))))
    arrCrowther = xp.matrix(
        xp.abs(xp.arange(-crowtherFreq, min(sX // 2, crowtherFreq + 1))))

    # Calculate weights
    wfuncCrowther = 1. / (xp.clip(
        1 - xp.array(xp.matrix(xp.abs(xp.sin(diffAngles))).T * arrCrowther)**2,
        0, 2)).sum(axis=0)

    # Create full with weightFunc
    wfunc = xp.ones((sX, sY), dtype=xp.float32)

    # row_stack is not implemented in cupy
    weightingFunc = xp.column_stack(([
        (wfuncCrowther),
    ] * (sY))).T

    wfunc[:, sX // 2 - crowtherFreq:sX // 2 +
          min(sX // 2, crowtherFreq + 1)] = weightingFunc

    return wfunc
示例#7
0
def design_fsc_filter(fsc, fildim=None, fsc_criterion=0.143):
    """
    design spectral filter to weight by SNR of frequency
    @param fsc: input fsc
    @type fsc: 1-d list
    @param fildim: filter dimension
    @type fildim: int
    @return: filter
    @rtype: list
    @author: FF
    """
    from math import sqrt
    from pytom.basic.resolution import getResolutionBandFromFSC
    if not fildim:
        fildim = len(fsc)
    nband = len(fsc)
    if fsc_criterion != 0.0:
        resolutionBand = getResolutionBandFromFSC(fsc, criterion=fsc_criterion)
        smooth = max(resolutionBand / 5, 2)
    else:
        resolutionBand = len(fsc)
        smooth = 1
    #print "filter: fsc_criterion %2.3f, resolutionBand %d" % (fsc_criterion, resolutionBand)
    # filter by sqrt(FSC)
    fsc_fil = len(fsc) * [0.]
    for ii in range(0, len(fsc)):
        fscval = fsc[ii]
        if fscval > 0.:
            #fsc_fil[ii] = sqrt(fsc[ii])
            if ii <= resolutionBand:
                fsc_fil[ii] = sqrt(fsc[ii])
            elif (ii > resolutionBand) and (ii <= resolutionBand + smooth):
                fsc_fil[ii] = sqrt(fsc[ii]) * ((
                    (resolutionBand + smooth) - ii) /
                                               smooth)**2  # squared filter
            else:
                fsc_fil[ii] = 0.
        else:
            fsc_fil[ii] = 0.
    #design filter
    fil = xp.array(fildim * [0.])
    if nband != len(fil):
        shrinkfac = 1. / (len(fil) / nband)
    for ii in range(len(fil) - 1):
        # linear resample fsc if nband ~= size(fil)
        if nband != len(fil):
            ilow = int(xp.floor(shrinkfac * ii))
            dlow = shrinkfac * ii - ilow
            ihi = ilow + 1
            dhi = ihi - shrinkfac * ii
            fil[ii] = fsc_fil[ilow] * dhi + fsc_fil[ihi] * dlow
        else:
            fil[ii] = fsc_fil[ii]
    return fil
示例#8
0
def read_em(filename, order='F', keepnumpy=False, deviceID=None):
    """Read EM file. Now only support read the type float32 on little-endian machines.

    @param filename: file name to read.

    @return The data from the EM file in ndarray
    """
    f = open(filename, 'r')

    try:
        dt_header = np.dtype('int32')
        header = np.fromfile(f, dt_header, 128)
        x = header[1]
        y = header[2]
        z = header[3]

        # read the data type
        dt = int(hex(header[0])[2])
        default_type = False

        if dt == 1:  # byte
            raise Exception("Data type not supported yet!")
        elif dt == 2:  # short
            dt_data = np.dtype('<i2')
        elif dt == 4:  # long
            dt_data = np.dtype('<i4')
        elif dt == 5:  # float32
            dt_data = np.dtype('<f4')  # little-endian, float32
            default_type = True
        elif dt == 8:  # float complex
            raise Exception("Data type not supported yet!")
        elif dt == 9:  # double
            dt_data = np.dtype('<f8')
        elif dt == 10:  # double complex
            raise Exception("Data type not supported yet!")
        else:
            raise Exception("Data type not supported yet!")

        v = np.fromfile(f, dt_data, x * y * z)
    finally:
        f.close()

    if keepnumpy:
        volume = np.array(v.reshape((x, y, z), order=order),
                          dtype='float32').copy()  # fortran-order array
    else:  # if the input data is not the default type, convert
        if not deviceID == None:
            id = int(deviceID.split(":")[1])
            xp.cuda.Device(id).use()
        volume = xp.array(v.reshape((x, y, z), order=order),
                          dtype='float32').copy()  # fortran-order array

    return volume
示例#9
0
def add_transformed_particle_to_sum(particle,
                                    sum,
                                    rotation=None,
                                    rotation_order='rzxz',
                                    translation=None,
                                    scale=None):
    from pytom.voltools import transform
    rot = transform(particle,
                    rotation=rotation,
                    translation=translation,
                    scale=scale,
                    rotation_order=rotation_order,
                    device=device,
                    interpolation='filt_bspline')
    sum += xp.array(rot)
    return sum
示例#10
0
def read_mrc(filename, order='F', keepnumpy=False, deviceID=None):
    import numpy as np
    f = open(filename, 'r')
    try:
        dt_header = np.dtype('int32')
        header = np.fromfile(f, dt_header, 256)
        x = header[0]
        y = header[1]
        z = header[2]

        if header[23]:
            extended_header = np.fromfile(f, np.float32, header[23] // 4)

        # read the data type
        dt = header[3]
        default_type = False
        if dt == 0:  # byte
            dt_data = np.dtype('int8')
        elif dt == 1:  # short
            dt_data = np.dtype('int16')
        elif dt == 2:  # long
            dt_data = np.dtype('float32')  # little-endian, float32
            default_type = True
        elif dt == 4:  # float32
            dt_data = np.dtype('complex32')
        elif dt == 6:  # float complex
            dt_data = np.dtype('uint16')
        else:
            raise Exception("Data type not supported yet!")

        v = np.fromfile(f, dt_data, x * y * z)
    finally:
        f.close()

    if keepnumpy:
        volume = np.array(v.reshape((x, y, z), order=order),
                          dtype='float32').copy()  # fortran-order array
    else:
        if not deviceID == None:
            id = int(deviceID.split(":")[1])
            xp.cuda.Device(id).use()
        volume = xp.array(v.reshape((x, y, z), order=order),
                          dtype=xp.float32).copy()  # fortran-order array

    return volume
示例#11
0
def find_sub_pixel_max_value_voltools(inp, k=.1, ignore_border=50):
    """
    To find the highest point in a 2D array, with subpixel accuracy based on 1D spline interpolation.
    The algorithm is based on a matlab script "tom_peak.m"

    @param inp: A 2D numpy array containing the data points.
    @type inp: numpy array 2D
    @param k: The smoothing factor used in the spline interpolation, must be 1 <= k <= 5.
    @type k: int
    @return: A list of all points of maximal value in the structure of tuples with the x position, the y position and
        the value.
    @returntype: list
    """
    # assert len(ixp.shape) == 2
    # assert isinstance(k, int) and 1 <= k <= 5

    import cupy
    import numpy as xp
    from scipy.interpolate import InterpolatedUnivariateSpline
    from pytom.voltools import transform

    inp2 = inp[ignore_border:-ignore_border, ignore_border:-ignore_border]

    out = cupy.array(inp, dtype=cupy.float32)
    x, y = xp.array(xp.unravel_index(inp2.argmax(),
                                     inp2.shape)) + ignore_border

    out = cupy.expand_dims(out, 2)
    zoomed = cupy.zeros_like(out, dtype=cupy.float32)
    transform(out,
              output=zoomed,
              scale=(k, k, 1),
              translation=[inp.shape[0] // 2 - x, inp.shape[1] // 2 - y, 0],
              device='gpu:0',
              interpolation='filt_bspline')

    z = zoomed.get().squeeze()

    x2, y2 = xp.unravel_index(z.argmax(), z.shape)
    return [
        x + (x2 - z.shape[0] // 2) * k - z.shape[0] // 2,
        y + (y2 - z.shape[1] // 2) * k - z.shape[0] // 2, z, x, y, x2, y2
    ]
示例#12
0
def FSC(volume1,
        volume2,
        numberBands=None,
        mask=None,
        verbose=False,
        filename=None,
        num_procs=1):
    """
    FSC - Calculates the Fourier Shell Correlation for two volumes
    @param volume1: volume one
    @type volume1: L{pytom_volume.vol}
    @param volume2: volume two
    @type volume2: L{pytom_volume.vol}
    @param numberBands: number of shells for FSC
    @type numberBands: int
    @param filename: write FSC to ascii file if specified
    @type filename: string

    @return: Returns a list of cc values 
    @author: Thomas Hrabe  
    @rtype: list[floats]
    """

    from pytom.tompy.correlation import bandCC
    from pytom.basic.structures import Mask
    from pytom.tompy.io import read, write
    from pytom.tompy.tools import volumesSameSize
    import time
    t = time.time()

    if not volumesSameSize(volume1, volume2):
        raise RuntimeError('Volumes must have the same size!')

    numberBands = volume1.shape[0] // 2 if numberBands is None else numberBands

    if not mask is None:
        if mask.__class__ == xp.array([0]).__class__:
            volume1 = volume1 * mask
            volume2 = volume2 * mask

        elif mask.__class__ == Mask:
            mask = mask.getVolume()
            volume1 = volume1 * mask
            volume2 = volume2 * mask

        elif mask.__class__ == str:
            mask = read(mask)
            volume1 = volume1 * mask
            volume2 = volume2 * mask

        else:
            raise RuntimeError(
                'FSC: Mask must be a volume OR a Mask object OR a string path to a mask!'
            )

    fscResult = []
    band = [-1, -1]

    increment = int(volume1.shape[0] / 2 * 1 / numberBands)
    import time

    fvolume1 = xp.fft.fftn(volume1)
    fvolume2 = xp.fft.fftn(volume2)

    for n, i in enumerate(range(0, volume1.shape[0] // 2, increment)):

        band[0] = i
        band[1] = i + increment

        if verbose:
            print('Band : ', band)

        res = bandCC(fvolume1, fvolume2, band, verbose)

        if i == 0 and increment == 1:
            #force a 1 for correlation of the zero frequency
            res = 1

        if verbose:
            print('Correlation ', res)

        fscResult.append(res)

    if filename:
        f = open(filename, 'w')
        for item in fscResult:
            f.write("%s\n" % item)
        f.close()

    return fscResult
示例#13
0
def determineResolution(fsc,
                        resolutionCriterion,
                        verbose=False,
                        randomizedFSC=None,
                        gpu=False):
    """
    determineResolution: Determines frequency and band where correlation drops below the resolutionCriterion. Uses linear interpolation between two positions
    @param fsc: The fsc list determined by L{pytom.basic.correlation.FSC}
    @param resolutionCriterion: A value between 0 and 1
    @return: [resolution,interpolatedBand,numberBands] 
    @author: Thomas Hrabe 
    @todo: Add test! 
    """

    fsc = xp.array(fsc)
    numberBands = len(fsc)

    band = numberBands

    if randomizedFSC is None:
        randomizedFSC = xp.ones_like(fsc) * (fsc.min() - 0.1)

    for i in range(numberBands):
        if fsc[i] < resolutionCriterion and fsc[i] > randomizedFSC[i]:
            band = i - 1  #select the band that is still larger than criterion
            break

    if verbose:
        print('Band detected at ', band)

    if band == -1:
        raise RuntimeError(
            "Please check your resolution criterion or you FSC!")

    elif band < numberBands:
        fsc1 = fsc[band]
        fsc2 = fsc[band + 1]

        rfsc1 = randomizedFSC[band]
        rfsc2 = randomizedFSC[band + 1]

        try:
            if fsc2 < rfsc2:
                interpolatedBand = (fsc1 - rfsc1) / (rfsc2 - rfsc1 + fsc1 -
                                                     fsc2)
                pass
            else:
                interpolatedBand = (resolutionCriterion - fsc1) / (fsc2 -
                                                                   fsc1) + band

        except ZeroDivisionError:
            interpolatedBand = band

    else:
        interpolatedBand = band

    if verbose:
        print('Band interpolated to ', interpolatedBand)

    resolution = (interpolatedBand + 1) / float(numberBands)

    if resolution < 0:
        resolution = 1
        interpolatedBand = numberBands
        print(
            'Warning: PyTom determined a resolution < 0 for your data. Please check "mass" in data is positive or negative for all cubes.'
        )
        print('Warning: Setting resolution to 1 and ', interpolatedBand)
        print('')

    return [resolution, interpolatedBand, numberBands]
示例#14
0
def subPixelMax3D(volume,
                  k=.01,
                  ignore_border=50,
                  interpolation='filt_bspline',
                  plan=None,
                  profile=True,
                  num_threads=1024,
                  zoomed=None,
                  fast_sum=None,
                  max_id=None):
    """
    Function to find the highest point in a 3D array, with subpixel accuracy using cubic spline interpolation.

    @param inp: A 3D numpy/cupy array containing the data points.
    @type inp: numpy/cupy array 3D
    @param k: The interpolation factor used in the spline interpolation, k < 1 is zoomed in, k>1 zoom out.
    @type k: float
    @return: A list of maximal value in the interpolated volume and a list of  x position, the y position and
        the value.
    @returntype: list
    """

    from pytom.voltools import transform
    from pytom.tompy.io import write

    ox, oy, oz = volume.shape
    ib = ignore_border
    cropped_volume = volume[ib:ox - ib, ib:oy - ib,
                            ib:oz - ib].astype(xp.float32)

    if profile:
        stream = xp.cuda.Stream.null
        t_start = stream.record()

    # x,y,z = xp.array(maxIndex(cropped_volume)) + ignore_border
    x, y, z = xp.array(
        xp.unravel_index(cropped_volume.argmax(),
                         cropped_volume.shape)) + ignore_border

    dx, dy, dz = volume.shape
    translation = [dx // 2 - x, dy // 2 - y, dz // 2 - z]

    if profile:
        t_end = stream.record()
        t_end.synchronize()

        time_took = xp.cuda.get_elapsed_time(t_start, t_end)
        print(f'initial find max time: \t{time_took:.3f}ms')
        t_start = stream.record()

    b = border = max(0, int(volume.shape[0] // 2 - 4 / k))
    zx, zy, zz = volume.shape
    out = volume[b:zx - b, b:zy - b, b:zz - b]

    transform(out,
              output=zoomed,
              scale=(k, k, k),
              device=device,
              translation=translation,
              interpolation=interpolation)

    if profile:
        t_end = stream.record()
        t_end.synchronize()

        time_took = xp.cuda.get_elapsed_time(t_start, t_end)
        print(f'transform finished in \t{time_took:.3f}ms')
        t_start = stream.record()

    nblocks = int(xp.ceil(zoomed.size / num_threads / 2))
    argmax((
        nblocks,
        1,
    ), (num_threads, 1, 1), (zoomed, fast_sum, max_id, zoomed.size),
           shared_mem=8 * num_threads)
    x2, y2, z2 = xp.unravel_index(max_id[fast_sum.argmax()], zoomed.shape)

    peakValue = zoomed[x2][y2][z2]
    peakShift = [
        x + (x2 - zoomed.shape[0] // 2) * k - volume.shape[0] // 2,
        y + (y2 - zoomed.shape[1] // 2) * k - volume.shape[1] // 2,
        z + (z2 - zoomed.shape[2] // 2) * k - volume.shape[2] // 2
    ]

    if profile:
        t_end = stream.record()
        t_end.synchronize()

        time_took = xp.cuda.get_elapsed_time(t_start, t_end)
        print(f'argmax finished in \t{time_took:.3f}ms')
        t_start = stream.record()
        print()

    return [peakValue, peakShift]
示例#15
0
文件: average.py 项目: xmzzaa/PyTom
def averageGPU(particleList,
               averageName,
               showProgressBar=False,
               verbose=False,
               createInfoVolumes=False,
               weighting=False,
               norm=False,
               gpuId=None,
               profile=True):
    """
    average : Creates new average from a particleList
    @param particleList: The particles
    @param averageName: Filename of new average
    @param verbose: Prints particle information. Disabled by default.
    @param createInfoVolumes: Create info data (wedge sum, inverted density) too? False by default.
    @param weighting: apply weighting to each average according to its correlation score
    @param norm: apply normalization for each particle
    @return: A new Reference object
    @rtype: L{pytom.basic.structures.Reference}
    @author: Thomas Hrabe
    @change: limit for wedgeSum set to 1% or particles to avoid division by small numbers - FF
    """
    import time
    from pytom.tompy.io import read, write, read_size
    from pytom.tompy.filter import bandpass as lowpassFilter, rotateWeighting, applyFourierFilter, applyFourierFilterFull, create_wedge
    from pytom.voltools import transform, StaticVolume
    from pytom.basic.structures import Reference
    from pytom.tompy.normalise import mean0std1
    from pytom.tompy.tools import volumesSameSize, invert_WedgeSum, create_sphere
    from pytom.tompy.transform import fourier_full2reduced, fourier_reduced2full
    from cupyx.scipy.fftpack.fft import fftn as fftnP
    from cupyx.scipy.fftpack.fft import ifftn as ifftnP
    from cupyx.scipy.fftpack.fft import get_fft_plan
    from pytom.tools.ProgressBar import FixedProgBar
    from multiprocessing import RawArray
    import numpy as np
    import cupy as xp

    if not gpuId is None:
        device = f'gpu:{gpuId}'
        xp.cuda.Device(gpuId).use()
    else:
        print(gpuId)
        raise Exception('Running gpu code on non-gpu device')
    print(device)
    cstream = xp.cuda.Stream()
    if profile:
        stream = xp.cuda.Stream.null
        t_start = stream.record()

    # from pytom.tools.ProgressBar import FixedProgBar
    from math import exp
    import os

    if len(particleList) == 0:
        raise RuntimeError('The particle list is empty. Aborting!')

    if showProgressBar:
        progressBar = FixedProgBar(0, len(particleList), 'Particles averaged ')
        progressBar.update(0)
        numberAlignedParticles = 0

    # pre-check that scores != 0
    if weighting:
        wsum = 0.
        for particleObject in particleList:
            wsum += particleObject.getScore().getValue()
        if wsum < 0.00001:
            weighting = False
            print("Warning: all scores have been zero - weighting not applied")
    import time
    sx, sy, sz = read_size(particleList[0].getFilename())
    wedgeInfo = particleList[0].getWedge().convert2numpy()
    print('angle: ', wedgeInfo.getWedgeAngle())
    wedgeZero = xp.fft.fftshift(
        xp.array(wedgeInfo.returnWedgeVolume(sx, sy, sz, True).get(),
                 dtype=xp.float32))
    # wedgeZeroReduced = fourier_full2reduced(wedgeZero)
    wedge = xp.zeros_like(wedgeZero, dtype=xp.float32)
    wedgeSum = xp.zeros_like(wedge, dtype=xp.float32)
    print('init texture')
    wedgeText = StaticVolume(xp.fft.fftshift(wedgeZero),
                             device=device,
                             interpolation='filt_bspline')

    newParticle = xp.zeros((sx, sy, sz), dtype=xp.float32)

    centerX = sx // 2
    centerY = sy // 2
    centerZ = sz // 2

    result = xp.zeros((sx, sy, sz), dtype=xp.float32)

    fftplan = get_fft_plan(wedge.astype(xp.complex64))

    n = 0

    total = len(particleList)
    # total = int(np.floor((11*1024**3 - mempool.total_bytes())/(sx*sy*sz*4)))
    # total = 128
    #
    #
    # particlesNP = np.zeros((total, sx, sy, sz),dtype=np.float32)
    # particles = []
    # mask = create_sphere([sx,sy,sz], sx//2-6, 2)
    # raw = RawArray('f', int(particlesNP.size))
    # shared_array = np.ctypeslib.as_array(raw)
    # shared_array[:] = particlesNP.flatten()
    # procs = allocateProcess(particleList, shared_array, n, total, wedgeZero.size)
    # del particlesNP

    if profile:
        t_end = stream.record()
        t_end.synchronize()

        time_took = xp.cuda.get_elapsed_time(t_start, t_end)
        print(f'startup time {n:5d}: \t{time_took:.3f}ms')
        t_start = stream.record()

    for particleObject in particleList:

        rotation = particleObject.getRotation()
        rotinvert = rotation.invert()
        shiftV = particleObject.getShift()

        # if n % total == 0:
        #     while len(procs):
        #         procs =[proc for proc in procs if proc.is_alive()]
        #         time.sleep(0.1)
        #         print(0.1)
        #     # del particles
        #     # xp._default_memory_pool.free_all_blocks()
        #     # pinned_mempool.free_all_blocks()
        #     particles = xp.array(shared_array.reshape(total, sx, sy, sz), dtype=xp.float32)
        #     procs = allocateProcess(particleList, shared_array, n, total, size=wedgeZero.size)
        #     #pinned_mempool.free_all_blocks()
        #     #print(mempool.total_bytes()/1024**3)

        particle = read(particleObject.getFilename(), deviceID=device)

        #particle = particles[n%total]

        if norm:  # normalize the particle
            mean0std1(particle)  # happen inplace

        # apply its wedge to
        #particle = applyFourierFilter(particle, wedgeZeroReduced)
        #particle = (xp.fft.ifftn( xp.fft.fftn(particle) * wedgeZero)).real
        particle = (ifftnP(fftnP(particle, plan=fftplan) * wedgeZero,
                           plan=fftplan)).real

        ### create spectral wedge weighting

        wedge *= 0

        wedgeText.transform(
            rotation=[rotinvert[0], rotinvert[2], rotinvert[1]],
            rotation_order='rzxz',
            output=wedge)
        #wedge = xp.fft.fftshift(fourier_reduced2full(create_wedge(30, 30, 21, 42, 42, 42, rotation=[rotinvert[0],rotinvert[2], rotinvert[1]])))
        # if analytWedge:
        #     # > analytical buggy version
        # wedge = wedgeInfo.returnWedgeVolume(sx, sy, sz, True, rotinvert)
        # else:
        #     # > FF: interpol bugfix

        # wedge = rotateWeighting(weighting=wedgeInfo.returnWedgeVolume(sx, sy, sz, True), rotation=[rotinvert[0], rotinvert[2], rotinvert[1]])
        #     # < FF
        #     # > TH bugfix
        #     # wedgeVolume = wedgeInfo.returnWedgeVolume(wedgeSizeX=sizeX, wedgeSizeY=sizeY, wedgeSizeZ=sizeZ,
        #     #                                    humanUnderstandable=True, rotation=rotinvert)
        #     # wedge = rotate(volume=wedgeVolume, rotation=rotinvert, imethod='linear')
        #     # < TH

        ### shift and rotate particle

        newParticle *= 0
        transform(particle,
                  output=newParticle,
                  rotation=[-rotation[1], -rotation[2], -rotation[0]],
                  center=[centerX, centerY, centerZ],
                  translation=[-shiftV[0], -shiftV[1], -shiftV[2]],
                  device=device,
                  interpolation='filt_bspline',
                  rotation_order='rzxz')

        #write(f'trash/GPU_{n}.em', newParticle)
        # print(rotation.toVector())
        # break
        result += newParticle
        wedgeSum += xp.fft.fftshift(wedge)
        # if showProgressBar:
        #     numberAlignedParticles = numberAlignedParticles + 1
        #     progressBar.update(numberAlignedParticles)

        if n % total == 0:
            if profile:
                t_end = stream.record()
                t_end.synchronize()

                time_took = xp.cuda.get_elapsed_time(t_start, t_end)
                print(f'total time {n:5d}: \t{time_took:.3f}ms')
                t_start = stream.record()
        cstream.synchronize()
        n += 1

    print('averaged particles')
    ###apply spectral weighting to sum

    result = lowpassFilter(result, high=sx / 2 - 1, sigma=0)
    # if createInfoVolumes:
    write(averageName[:len(averageName) - 3] + '-PreWedge.em', result)
    write(averageName[:len(averageName) - 3] + '-WedgeSumUnscaled.em',
          fourier_full2reduced(wedgeSum))

    wedgeSumINV = invert_WedgeSum(wedgeSum,
                                  r_max=sx // 2 - 2.,
                                  lowlimit=.05 * len(particleList),
                                  lowval=.05 * len(particleList))
    wedgeSumINV = wedgeSumINV

    #print(wedgeSum.mean(), wedgeSum.std())
    if createInfoVolumes:
        write(averageName[:len(averageName) - 3] + '-WedgeSumInverted.em',
              xp.fft.fftshift(wedgeSumINV))

    result = applyFourierFilterFull(result, xp.fft.fftshift(wedgeSumINV))

    # do a low pass filter
    result = lowpassFilter(result, sx / 2 - 2, (sx / 2 - 1) / 10.)[0]
    write(averageName, result)

    if createInfoVolumes:
        resultINV = result * -1
        # write sign inverted result to disk (good for chimera viewing ... )
        write(averageName[:len(averageName) - 3] + '-INV.em', resultINV)

    newReference = Reference(averageName, particleList)

    return newReference
示例#16
0
def euclidian_distance(pos1, pos2):
    return xp.linalg.norm(xp.array(pos1) - xp.array(pos2))
示例#17
0
def volumesSameSize(v0, v1):
    if len(v0.shape) != len(v1.shape):
        return False
    return xp.array([
        abs(v0.shape[pos] - v1.shape[pos]) == 0 for pos in range(len(v0.shape))
    ]).sum() == len(v0.shape)
示例#18
0
def alignImagesUsingAlignmentResultFile(alignmentResultsFile,
                                        weighting=None,
                                        lowpassFilter=0.9,
                                        binning=1,
                                        circleFilter=False):
    import os
    from pytom.basic.files import read as readCVol
    from pytom_numpy import vol2npy, npy2vol
    from pytom.gui.guiFunctions import fmtAR, headerAlignmentResults, datatype, datatypeAR, loadstar
    from pytom.reconstruction.reconstructionStructures import Projection, ProjectionList
    from pytom.tompy.io import read, write, read_size
    from pytom.tompy.tools import taper_edges, create_circle
    from pytom.tompy.filter import circle_filter, ramp_filter, exact_filter
    import pytom.voltools as vt
    from pytom.gpu.initialize import xp, device
    print("Create aligned images from alignResults.txt")

    alignmentResults = loadstar(alignmentResultsFile, dtype=datatypeAR)
    imageList = alignmentResults['FileName']
    tilt_angles = alignmentResults['TiltAngle']

    imdim = read_size(imageList[0], 'x')

    if binning > 1:
        imdim = int(float(imdim) / float(binning) + .5)
    else:
        imdim = imdim

    sliceWidth = imdim

    if (weighting != None) and (float(weighting) < -0.001):
        weightSlice = xp.fft.fftshift(ramp_filter(imdim, imdim))

    if circleFilter:
        circleFilterRadius = imdim // 2
        circleSlice = xp.fft.fftshift(
            circle_filter(imdim, imdim, circleFilterRadius))
    else:
        circleSlice = xp.ones((imdim, imdim))

    # design lowpass filter
    if lowpassFilter:
        if lowpassFilter > 1.:
            lowpassFilter = 1.
            print("Warning: lowpassFilter > 1 - set to 1 (=Nyquist)")

        # weighting filter: arguments: (()dimx, dimy), cutoff radius, sigma
        lpf = xp.fft.fftshift(
            create_circle((imdim, imdim),
                          lowpassFilter * (imdim // 2),
                          sigma=0.4 * lowpassFilter * (imdim // 2)))

    projectionList = ProjectionList()
    for n, image in enumerate(imageList):
        atx = alignmentResults['AlignmentTransX'][n] / binning
        aty = alignmentResults['AlignmentTransY'][n] / binning
        rot = alignmentResults['InPlaneRotation'][n]
        mag = 1 / alignmentResults['Magnification'][n]
        projection = Projection(imageList[n],
                                tiltAngle=tilt_angles[n],
                                alignmentTransX=atx,
                                alignmentTransY=aty,
                                alignmentRotation=rot,
                                alignmentMagnification=mag)
        projectionList.append(projection)

    stack = xp.zeros((imdim, imdim, len(imageList)), dtype=xp.float32)
    phiStack = xp.zeros((1, 1, len(imageList)), dtype=xp.float32)
    thetaStack = xp.zeros((1, 1, len(imageList)), dtype=xp.float32)
    offsetStack = xp.zeros((1, 2, len(imageList)), dtype=xp.float32)

    for (ii, projection) in enumerate(projectionList):
        print(f'Align {projection._filename}')
        image = read(str(projection._filename))[::binning, ::binning].squeeze()

        if lowpassFilter:
            image = xp.abs((xp.fft.ifftn(xp.fft.fftn(image) * lpf)))

        tiltAngle = projection._tiltAngle

        # normalize to contrast - subtract mean and norm to mean
        immean = image.mean()
        image = (image - immean) / immean

        # smoothen borders to prevent high contrast oscillations
        image = taper_edges(image, imdim // 30)[0]

        # transform projection according to tilt alignment
        transX = projection._alignmentTransX / binning
        transY = projection._alignmentTransY / binning
        rot = float(projection._alignmentRotation)
        mag = float(projection._alignmentMagnification)

        inputImage = xp.expand_dims(image, 2).copy()
        outputImage = xp.zeros_like(inputImage, dtype=xp.float32)

        vt.transform(inputImage.astype(xp.float32),
                     rotation=[0, 0, rot],
                     rotation_order='rxyz',
                     output=outputImage,
                     device=device,
                     translation=[transX, transY, 0],
                     scale=[mag, mag, 1],
                     interpolation='filt_bspline')

        image = outputImage.squeeze()

        # smoothen once more to avoid edges
        image = taper_edges(image, imdim // 30)[0]

        # analytical weighting
        if (weighting != None) and (weighting < 0):
            # image = (ifft(complexRealMult(fft(image), w_func)) / (image.sizeX() * image.sizeY() * image.sizeZ()))
            image = xp.fft.ifftn(
                xp.fft.fftn(image) * weightSlice * circleSlice)

        elif (weighting != None) and (weighting > 0):
            weightSlice = xp.fft.fftshift(
                exact_filter(tilt_angles, tiltAngle, imdim, imdim, sliceWidth))
            image = xp.fft.ifftn(
                xp.fft.fftn(image) * weightSlice * circleSlice)

        thetaStack[0, 0, ii] = int(round(projection.getTiltAngle()))
        offsetStack[0, :, ii] = xp.array([
            int(round(projection.getOffsetX())),
            int(round(projection.getOffsetY()))
        ])

        stack[:, :, ii] = image

    arrays = []

    for fname, arr in (('stack.mrc', stack), ('offsetStack.mrc', offsetStack),
                       ('thetaStack.mrc', thetaStack), ('phiStack.mrc',
                                                        phiStack)):
        if 'gpu' in device:
            arr = arr.get()
        import numpy as np
        res = npy2vol(np.array(arr, dtype='float32', order='F'), 3)
        arrays.append(res)

    #
    #     write('stack.mrc', stack)
    #     stack = readCVol('stack.mrc')
    # write('offsetstack.mrc', offsetStack)
    # offsetStack = readCVol('offsetstack.mrc')
    # write('thetastack.mrc', thetaStack)
    # thetaStack = readCVol('thetastack.mrc')
    # write('phistack.mrc', phiStack)
    # phiStack = readCVol('phistack.mrc')
    #
    # os.remove('stack.mrc')
    # os.remove('offsetstack.mrc')
    # os.remove('thetastack.mrc')
    # os.remove('psistack.mrc')

    return arrays
示例#19
0
文件: filter.py 项目: xmzzaa/PyTom
def profile2FourierVol(profile, dim=None, reduced=False):
    """
    create Volume from 1d radial profile, e.g., to modulate signal with \
    specific function such as CTF or FSC. Simple linear interpolation is used\
    for sampling.

    @param profile: profile
    @type profile: 1-d L{pytom_volume.vol} or 1-d python array
    @param dim: dimension of (cubic) output
    @type dim: L{int}
    @param reduced: If true reduced Fourier representation (N/2+1, N, N) is generated.
    @type reduced: L{bool}

    @return: 3-dim complex volume with spherically symmetrical profile
    @rtype: L{pytom_volume.vol}
    @author: FF
    """

    if dim is None:
        try:
            dim = [
                2 * profile.shape[0],
            ] * 3
        except:
            dim = [
                2 * len(profile),
            ] * 3

    is3D = (len(dim) == 3)

    nx, ny = dim[:2]
    if reduced:
        if is3D:
            nz = int(dim[2] // 2) + 1
        else:
            ny = int(ny // 2) + 1
    else:
        if is3D:
            nz = dim[2]

    try:
        r_max = profile.shape[0] - 1
    except:
        r_max = len(profile) - 1

    if len(dim) == 3:
        if reduced:
            X, Y, Z = xp.meshgrid(xp.arange(-nx // 2, nx // 2 + nx % 2),
                                  xp.arange(-ny // 2, ny // 2 + ny % 2),
                                  xp.arange(0, nz))
        else:
            X, Y, Z = xp.meshgrid(xp.arange(-nx // 2, nx // 2 + nx % 2),
                                  xp.arange(-ny // 2, ny // 2 + ny % 2),
                                  xp.arange(-nz // 2, nz // 2 + nz % 2))
        R = xp.sqrt(X**2 + Y**2 + Z**2)

    else:
        if reduced:
            X, Y = xp.meshgrid(xp.arange(-nx // 2, ny // 2 + ny % 2),
                               xp.arange(0, ny))
        else:
            X, Y = xp.meshgrid(xp.arange(-nx // 2, nx // 2 + nx % 2),
                               xp.arange(-ny // 2, ny // 2 + ny % 2))
        R = xp.sqrt(X**2 + Y**2)

    IR = xp.floor(R).astype(xp.int64)
    valIR_l1 = IR.copy()
    valIR_l2 = valIR_l1 + 1
    val_l1, val_l2 = xp.zeros_like(X, dtype=xp.float64), xp.zeros_like(
        X, dtype=xp.float64)

    l1 = R - IR.astype(xp.float32)
    l2 = 1 - l1

    try:
        profile = xp.array(profile)
    except:
        import numpy
        profile = xp.array(numpy.array(profile))

    for n in xp.arange(r_max):
        val_l1[valIR_l1 == n] = profile[n]
        val_l2[valIR_l2 == n + 1] = profile[n + 1]

    val_l1[IR == r_max] = profile[n + 1]
    val_l2[IR == r_max] = profile[n + 1]

    val_l1[R > r_max] = 0
    val_l2[R > r_max] = 0

    fkernel = l2 * val_l1 + l1 * val_l2

    if reduced:
        fkernel = xp.fft.fftshift(fkernel, axes=(0, 1))
    else:
        fkernel = xp.fft.fftshift(fkernel)

    return fkernel
def polish_particles(particle_list_filename,
                     projection_directory,
                     averaged_subtomogram,
                     binning,
                     offset,
                     projections,
                     tilt_angles,
                     fsc_path='',
                     peak_border=75,
                     outputDirectory='./',
                     create_graphics=False,
                     number_of_particles=0,
                     verbose=False,
                     gpuID=-1):
    """
    To polish a particle list based on (an) initial subtomogram(s).

    :param particle_list_filename: the filename of the particlelist
    :type particle_list_filename: str
    :param projection_directory: the directory of the projections
    :type projection_directory: str
    :param averaged_subtomogram: to give a path to an averaged subtomogram to be used instead of subtomograms of all
               particles separately
    :type averaged_subtomogram: str
    :param binning: the binning factor used
    :type binning: int
    :param offset: the offset used (x, y, z)
    :type offset: list(int, int, int)

    :param projections: a list with filenames of projections
    :type projections: list(str)
    :param tilt_angles: the list of tiltangles used
    :type tilt_angles: list(int)
    :param create_graphics: to create plots of major parts of the algorithm, mainly used for debugging
               and initial creation
    :type create_graphics: bool
    :param number_of_particles: to use a subset of the particles for the particle polishing
    :type number_of_particles: int
    :param skip_alignment: skips the alignment phase, does not do particle polishing
    :type skip_alignment: bool

    :return: nothing, it writes everything to disk
    :returntype: void
    """
    assert number_of_particles == -1 or number_of_particles > 0
    assert binning > 0
    assert vol_size > 0
    assert vol_size % 2 == 0
    assert isinstance(projections, list)
    assert isinstance(vol_size, int)
    assert isinstance(binning, int)
    assert isinstance(offset, list) and len(offset) == 3
    assert isinstance(offset[0], int) and isinstance(
        offset[1], int) and isinstance(offset[2], int)
    assert isinstance(tilt_angles, list)
    assert isinstance(particle_list_filename, str)
    assert isinstance(projection_directory, str)
    assert isinstance(create_graphics, bool)
    assert isinstance(averaged_subtomogram, str)
    assert isinstance(number_of_particles, int)
    assert isinstance(skip_alignment, bool)

    import os, time
    from pytom.tompy.io import read_size, read
    from pytom.gui.guiFunctions import fmtLAR, headerLocalAlignmentResults, LOCAL_ALIGNMENT_RESULTS
    import pytom.voltools as vt

    # load particle list
    from pytom.basic.structures import ParticleList

    particlelist = ParticleList()
    particlelist.fromXMLFile(particle_list_filename)
    particle_list_name = os.path.splitext(
        os.path.basename(str(particle_list_filename)))[0]
    if number_of_particles > 0:
        particlelist = particlelist[:number_of_particles]

    if verbose:
        print(len(particlelist))
        print("{:s}> Creating the input array".format(gettime()))

    dimz = read_size(particlelist[0].getPickPosition().getOriginFilename(),
                     'z') * binning
    vol_size = 200
    input_to_processes = []

    data = {}

    for projectioname in projections:
        data[projectioname] = xp.array(read(projectioname))


#
    template1 = read(averaged_subtomogram, order='F')

    #template1 = mrcfile.open(averaged_subtomogram,permissive=True).data.copy().T.copy()

    template = vt.StaticVolume(template1,
                               interpolation='filt_bspline',
                               device=device)

    # output = []
    results_file = os.path.join(outputDirectory,
                                f"resultsPolish_{particle_list_name}.txt")

    results = []

    for particle_number, particle in enumerate(particlelist):

        rot = (particle.getRotation().getZ1(), particle.getRotation().getX(),
               particle.getRotation().getZ2())
        # loop over tiltrange, take patch and cross correlate with reprojected subtomogram
        for img, ang in zip(projections, tilt_angles):
            pick_position = particle.getPickPosition().toVector()

            result = run_single_tilt_angle(template, ang, offset, vol_size,
                                           pick_position, rot,
                                           particle.getFilename(),
                                           particle_number, binning, data,
                                           create_graphics, fsc_path, dimz,
                                           peak_border, img,
                                           averaged_subtomogram)
            results.append(tuple(result))

    try:

        np.savetxt(results_file,
                   np.array(results, dtype=LOCAL_ALIGNMENT_RESULTS),
                   fmt=fmtLAR,
                   header=headerLocalAlignmentResults)
    except Exception as e:
        print(e)
        for res in results:
            print('{:7d} {:15.3f} {:15.3f} {:15.3f} {:15.3f} {:15.10f} {:s}'.
                  format(*res))
            break

    if verbose: print("{:s}> Ran the processes".format(gettime()))