def run(self, verbose=False): from sh_alignment.frm import frm_align from pytom.basic.structures import Shift, Rotation from pytom.tools.ProgressBar import FixedProgBar while True: # get the job try: job = self.get_job() except: if verbose: print(self.node_name + ': end') break # get some non-job message, break it if verbose: prog = FixedProgBar(0, len(job.particleList) - 1, self.node_name + ':') i = 0 ref = job.reference[0].getVolume() # run the job for p in job.particleList: if verbose: prog.update(i) i += 1 v = p.getVolume() pos, angle, score = frm_align(v, p.getWedge(), ref, None, job.bw_range, job.freq, job.peak_offset, job.mask.getVolume()) p.setShift( Shift([ pos[0] - v.sizeX() / 2, pos[1] - v.sizeY() / 2, pos[2] - v.sizeZ() / 2 ])) p.setRotation(Rotation(angle)) p.setScore(FRMScore(score)) # average the particle list name_prefix = os.path.join( self.destination, self.node_name + '_' + str(job.max_iter)) self.average_sub_pl(job.particleList, name_prefix, job.weighting) # send back the result self.send_result( FRMResult(name_prefix, job.particleList, self.mpi_id)) pytom_mpi.finalise()
def sequentialGA(self,verbose=False): """ sequentialGA: Sequential growing average procedure @todo: not tested yet """ import os from pytom.tools.ProgressBar import FixedProgBar jobCounter = 0 classIterator = 0 numberClasses = len(self.particleClassLists) progressBar = FixedProgBar(0,len(self.particleClassLists),'Jobs finished ') progressBar.update(0) numberJobsDone = 1 for classIterator in range(numberClasses): #distribute Jobs, make sure all available nodes are working print('Sending class ' +classIterator.__str__()) os.system('mkdir ' + self.destinationDirectory + '/class' + classIterator.__str__()) job = GrowingAverageJob(self.particleClassLists[classIterator],self.angleObject,self.mask,self.score,0,self.destinationDirectory+ '/class' + str(classIterator),self.preprocessing) if verbose: print(job) worker = GAWorker(-1) worker.fromJob(job) worker._run() #update progress bar progressBar.update(numberJobsDone) numberJobsDone = numberJobsDone +1
def paverage(particleList, norm, binning, verbose, outdir='./'): from pytom_volume import read, vol from pytom_volume import transformSpline as transform from pytom.basic.structures import Particle from pytom.basic.normalise import mean0std1 from pytom.tools.ProgressBar import FixedProgBar from pytom.basic.transformations import resize if len(particleList) == 0: raise RuntimeError('The particlelist provided is empty. Aborting!') if verbose: progressBar = FixedProgBar(0, len(particleList), 'Particles averaged ') progressBar.update(0) numberAlignedParticles = 0 result = None wedgeSum = None newParticle = None for particleObject in particleList: particle = read(particleObject.getFilename(), 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1) if binning != 1: particle, particlef = resize(volume=particle, factor=1. / binning, interpolation='Fourier') if norm: mean0std1(particle) wedgeInfo = particleObject.getWedge() if result is None: # initialization sizeX = particle.sizeX() sizeY = particle.sizeY() sizeZ = particle.sizeZ() newParticle = vol(sizeX, sizeY, sizeZ) centerX = sizeX // 2 centerY = sizeY // 2 centerZ = sizeZ // 2 result = vol(sizeX, sizeY, sizeZ) result.setAll(0.0) wedgeSum = wedgeInfo.returnWedgeVolume(sizeX, sizeY, sizeZ) wedgeSum.setAll(0) # create spectral wedge weighting rotation = particleObject.getRotation() wedge = wedgeInfo.returnWedgeVolume(sizeX, sizeY, sizeZ, False, rotation.invert()) wedgeSum += wedge # shift and rotate particle shiftV = particleObject.getShift() newParticle.setAll(0) transform(particle, newParticle, -rotation[1], -rotation[0], -rotation[2], centerX, centerY, centerZ, -shiftV[0] // binning, -shiftV[1] // binning, -shiftV[2] // binning, 0, 0, 0) result += newParticle if verbose: numberAlignedParticles = numberAlignedParticles + 1 progressBar.update(numberAlignedParticles) # write to the disk fname_result = os.path.join(outdir, 'avg_{}.em'.format(mpi.rank)) fname_wedge = os.path.join(outdir, 'wedge_{}.em'.format(mpi.rank)) result.write(fname_result) result = Particle(fname_result) wedgeSum.write(fname_wedge) wedgeSum = Particle(fname_wedge) return (result, wedgeSum)
def copyProjectionsForXMIPP(particleList, projectionLists, xmippProjectionDirectory, target, showProgressBar=False, verbose=False): """ """ from pytom.tools.ProgressBar import FixedProgBar from pytom.tools.files import readSpider, writeSpider import os projectionPropertiesList = [] lineOffset = 1 for i in range(len(particleList)): particle = particleList[i] projectionList = projectionLists[i] particleTupleList = getParticleTransformLines(particle, projectionList, lineOffset) lineOffset = lineOffset + len(particleTupleList) projectionPropertiesList.extend(particleTupleList) if showProgressBar: progressBar = FixedProgBar(0, len(projectionPropertiesList), 'Projections modified ') progressBar.update(0) for i in range(len(projectionPropertiesList)): projectionName = projectionPropertiesList[i][0] filename = projectionName.rsplit('/') filename = filename[len(filename) - 1] newFilename = xmippProjectionDirectory + os.sep + filename[ 0:len(filename) - 4] + '_P' + str(i) + '.spi' projection = readSpider(projectionName) #print projectionPropertiesList[i][1][2], projectionPropertiesList[i][1][3], projectionPropertiesList[i][1][4], projectionPropertiesList[i][1][5], projectionPropertiesList[i][1][6], 0 writeSpider(projection, newFilename, projectionPropertiesList[i][1][2], projectionPropertiesList[i][1][3], projectionPropertiesList[i][1][4], projectionPropertiesList[i][1][5], projectionPropertiesList[i][1][6], 0) if showProgressBar: progressBar.update(i) cmd = 'ls ' + xmippProjectionDirectory + '/*.spi | awk \'{print $1 \" 1\"}\' > ' + xmippProjectionDirectory + '/reconstruction.sel' os.system(cmd) cmd = 'xmipp_reconstruct_fourier -i ' + xmippProjectionDirectory + '/reconstruction.sel -o ' + xmippProjectionDirectory + '/result.out -sym C1 -thr 1 -pad_vol 3' os.system(cmd) v = readSpider(xmippProjectionDirectory + '/result.out') v.write(target)
def average2(particleList, weighting=False, norm=False, determine_resolution=False, mask=None, binning=1, verbose=False): """ 2nd version of average function. Will not write the averages to the disk. Also support internal \ resolution determination. """ from pytom_volume import read, vol, complexDiv, complexRealMult from pytom_volume import transformSpline as transform from pytom.basic.fourier import fft, ifft, convolute from pytom.basic.normalise import mean0std1 from pytom.tools.ProgressBar import FixedProgBar from pytom.basic.filter import lowpassFilter, rotateWeighting from math import exp if len(particleList) == 0: raise RuntimeError('The particlelist provided is empty. Aborting!') if verbose: progressBar = FixedProgBar(0,len(particleList),'Particles averaged ') progressBar.update(0) numberAlignedParticles = 0 even = None odd = None wedgeSum_even = None wedgeSum_odd = None newParticle = None is_odd = True for particleObject in particleList: particle = read(particleObject.getFilename(), 0,0,0,0,0,0,0,0,0, binning,binning,binning) if norm: mean0std1(particle) wedgeInfo = particleObject.getWedge() # apply its wedge to itself particle = wedgeInfo.apply(particle) if odd is None: # initialization sizeX = particle.sizeX() sizeY = particle.sizeY() sizeZ = particle.sizeZ() newParticle = vol(sizeX,sizeY,sizeZ) centerX = sizeX/2 centerY = sizeY/2 centerZ = sizeZ/2 odd = vol(sizeX,sizeY,sizeZ) odd.setAll(0.0) even = vol(sizeX,sizeY,sizeZ) even.setAll(0.0) wedgeSum_odd = wedgeInfo.returnWedgeVolume(sizeX,sizeY,sizeZ) wedgeSum_odd.setAll(0) wedgeSum_even = wedgeInfo.returnWedgeVolume(sizeX,sizeY,sizeZ) wedgeSum_even.setAll(0) # create spectral wedge weighting rotation = particleObject.getRotation() rotinvert = rotation.invert() if analytWedge: # > original buggy version wedge = wedgeInfo.returnWedgeVolume(sizeX,sizeY,sizeZ,False, rotinvert) # < original buggy version else: # > FF: interpol bugfix wedge = rotateWeighting( weighting=wedgeInfo.returnWedgeVolume(sizeX,sizeY,sizeZ,False), z1=rotinvert[0], z2=rotinvert[1], x=rotinvert[2], mask=None, isReducedComplex=True, returnReducedComplex=True) # < FF # > TH bugfix #wedgeVolume = wedgeInfo.returnWedgeVolume(wedgeSizeX=sizeX, wedgeSizeY=sizeY, wedgeSizeZ=sizeZ, # humanUnderstandable=True, rotation=rotinvert) #wedge = rotate(volume=wedgeVolume, rotation=rotinvert, imethod='linear') # < TH if is_odd: wedgeSum_odd = wedgeSum_odd + wedge else: wedgeSum_even = wedgeSum_even + wedge # shift and rotate particle shiftV = particleObject.getShift() newParticle.setAll(0) transform(particle,newParticle,-rotation[1],-rotation[0],-rotation[2], centerX,centerY,centerZ,-shiftV[0]/binning, -shiftV[1]/binning,-shiftV[2]/binning,0,0,0) if is_odd: if weighting: weight = 1. - particleObject.getScore().getValue() #weight = weight**2 weight = exp(-1.*weight) odd = odd + newParticle * weight else: odd = odd + newParticle else: if weighting: weight = 1. - particleObject.getScore().getValue() #weight = weight**2 weight = exp(-1.*weight) even = even + newParticle * weight else: even = even + newParticle is_odd = not is_odd if verbose: numberAlignedParticles = numberAlignedParticles + 1 progressBar.update(numberAlignedParticles) # determine resolution if needed fsc = None if determine_resolution: # apply spectral weighting to sum f_even = fft(even) w_even = complexDiv(f_even, wedgeSum_even) w_even = ifft(w_even) w_even.shiftscale(0.0,1/float(sizeX*sizeY*sizeZ)) f_odd = fft(odd) w_odd = complexDiv(f_odd, wedgeSum_odd) w_odd = ifft(w_odd) w_odd.shiftscale(0.0,1/float(sizeX*sizeY*sizeZ)) from pytom.basic.correlation import FSC fsc = FSC(w_even, w_odd, sizeX/2, mask, verbose=False) # add together result = even+odd wedgeSum = wedgeSum_even+wedgeSum_odd invert_WedgeSum( invol=wedgeSum, r_max=sizeX/2-2., lowlimit=.05*len(particleList), lowval=.05*len(particleList)) #wedgeSum.write(averageName[:len(averageName)-3] + '-WedgeSumInverted.em') result = convolute(v=result, k=wedgeSum, kernel_in_fourier=True) # do a low pass filter #result = lowpassFilter(result, sizeX/2-2, (sizeX/2-1)/10.)[0] return (result, fsc)
def average( particleList, averageName, showProgressBar=False, verbose=False, createInfoVolumes=False, weighting=False, norm=False): """ average : Creates new average from a particleList @param particleList: The particles @param averageName: Filename of new average @param verbose: Prints particle information. Disabled by default. @param createInfoVolumes: Create info data (wedge sum, inverted density) too? False by default. @param weighting: apply weighting to each average according to its correlation score @param norm: apply normalization for each particle @return: A new Reference object @rtype: L{pytom.basic.structures.Reference} @author: Thomas Hrabe @change: limit for wedgeSum set to 1% or particles to avoid division by small numbers - FF """ from pytom_volume import read,vol,reducedToFull,limit, complexRealMult from pytom.basic.filter import lowpassFilter, rotateWeighting from pytom_volume import transformSpline as transform from pytom.basic.fourier import convolute from pytom.basic.structures import Reference from pytom.basic.normalise import mean0std1 from pytom.tools.ProgressBar import FixedProgBar from math import exp import os if len(particleList) == 0: raise RuntimeError('The particle list is empty. Aborting!') if showProgressBar: progressBar = FixedProgBar(0,len(particleList),'Particles averaged ') progressBar.update(0) numberAlignedParticles = 0 result = [] wedgeSum = [] newParticle = None # pre-check that scores != 0 if weighting: wsum = 0. for particleObject in particleList: wsum += particleObject.getScore().getValue() if wsum < 0.00001: weighting = False print("Warning: all scores have been zero - weighting not applied") for particleObject in particleList: if verbose: print(particleObject) if not os.path.exists(particleObject.getFilename()): continue particle = read(particleObject.getFilename()) if norm: # normalize the particle mean0std1(particle) # happen inplace wedgeInfo = particleObject.getWedge() # apply its wedge to itself particle = wedgeInfo.apply(particle) if result == []: sizeX = particle.sizeX() sizeY = particle.sizeY() sizeZ = particle.sizeZ() newParticle = vol(sizeX,sizeY,sizeZ) centerX = sizeX/2 centerY = sizeY/2 centerZ = sizeZ/2 result = vol(sizeX,sizeY,sizeZ) result.setAll(0.0) if analytWedge: wedgeSum = wedgeInfo.returnWedgeVolume(wedgeSizeX=sizeX, wedgeSizeY=sizeY, wedgeSizeZ=sizeZ) else: # > FF bugfix wedgeSum = wedgeInfo.returnWedgeVolume(sizeX,sizeY,sizeZ) # < FF # > TH bugfix #wedgeSum = vol(sizeX,sizeY,sizeZ) # < TH #wedgeSum.setAll(0) assert wedgeSum.sizeX() == sizeX and wedgeSum.sizeY() == sizeY and wedgeSum.sizeZ() == sizeZ/2+1, \ "wedge initialization result in wrong dims :(" wedgeSum.setAll(0) ### create spectral wedge weighting rotation = particleObject.getRotation() rotinvert = rotation.invert() if analytWedge: # > analytical buggy version wedge = wedgeInfo.returnWedgeVolume(sizeX,sizeY,sizeZ,False, rotinvert) else: # > FF: interpol bugfix wedge = rotateWeighting( weighting=wedgeInfo.returnWedgeVolume(sizeX,sizeY,sizeZ,False), z1=rotinvert[0], z2=rotinvert[1], x=rotinvert[2], mask=None, isReducedComplex=True, returnReducedComplex=True) # < FF # > TH bugfix #wedgeVolume = wedgeInfo.returnWedgeVolume(wedgeSizeX=sizeX, wedgeSizeY=sizeY, wedgeSizeZ=sizeZ, # humanUnderstandable=True, rotation=rotinvert) #wedge = rotate(volume=wedgeVolume, rotation=rotinvert, imethod='linear') # < TH ### shift and rotate particle shiftV = particleObject.getShift() newParticle.setAll(0) transform(particle,newParticle,-rotation[1],-rotation[0],-rotation[2], centerX,centerY,centerZ,-shiftV[0],-shiftV[1],-shiftV[2],0,0,0) if weighting: weight = 1.-particleObject.getScore().getValue() #weight = weight**2 weight = exp(-1.*weight) result = result + newParticle * weight wedgeSum = wedgeSum + wedge * weight else: result = result + newParticle wedgeSum = wedgeSum + wedge if showProgressBar: numberAlignedParticles = numberAlignedParticles + 1 progressBar.update(numberAlignedParticles) ###apply spectral weighting to sum result = lowpassFilter(result, sizeX/2-1, 0.)[0] #if createInfoVolumes: result.write(averageName[:len(averageName)-3]+'-PreWedge.em') wedgeSum.write(averageName[:len(averageName)-3] + '-WedgeSumUnscaled.em') invert_WedgeSum( invol=wedgeSum, r_max=sizeX/2-2., lowlimit=.05*len(particleList), lowval=.05*len(particleList)) if createInfoVolumes: wedgeSum.write(averageName[:len(averageName)-3] + '-WedgeSumInverted.em') result = convolute(v=result, k=wedgeSum, kernel_in_fourier=True) # do a low pass filter #result = lowpassFilter(result, sizeX/2-2, (sizeX/2-1)/10.)[0] result.write(averageName) if createInfoVolumes: resultINV = result * -1 #write sign inverted result to disk (good for chimera viewing ... ) resultINV.write(averageName[:len(averageName)-3]+'-INV.em') newReference = Reference(averageName,particleList) return newReference
def run(self, verbose=False): from pytom_volume import read, sum from pytom.basic.filter import lowpassFilter from pytom.basic.correlation import nxcc from pytom.basic.structures import Rotation from pytom.tools.ProgressBar import FixedProgBar while True: # get the job job = self.get_job() try: pairs = job["Pairs"] pl_filename = job["ParticleList"] except: if verbose: print(self.node_name + ': end') break # get some non-job message, break it from pytom.basic.structures import ParticleList pl = ParticleList('.') pl.fromXMLFile(pl_filename) if verbose: prog = FixedProgBar(0, len(pairs)-1, self.node_name+':') i = 0 # run the job result = {} last_filename = None binning = int(job["Binning"]) mask = read(job["Mask"], 0, 0, 0, 0, 0, 0, 0, 0, 0, binning, binning, binning) for pair in pairs: if verbose: prog.update(i) i += 1 g = pl[pair[0]] f = pl[pair[1]] vf = f.getTransformedVolume(binning) wf = f.getWedge().getWedgeObject() wf_rotation = f.getRotation().invert() # wf.setRotation(Rotation(-rotation[1],-rotation[0],-rotation[2])) # wf_vol = wf.returnWedgeVolume(vf.sizeX(), vf.sizeY(), vf.sizeZ(), True, -rotation[1],-rotation[0],-rotation[2]) vf = lowpassFilter(vf, job["Frequency"], 0)[0] if g.getFilename() != last_filename: vg = g.getTransformedVolume(binning) wg = g.getWedge().getWedgeObject() wg_rotation = g.getRotation().invert() # wg.setRotation(Rotation(-rotation[1],-rotation[0],-rotation[2])) # wg_vol = wg.returnWedgeVolume(vg.sizeX(), vg.sizeY(), vg.sizeZ(), True, -rotation[1],-rotation[0],-rotation[2]) vg = lowpassFilter(vg, job["Frequency"], 0)[0] last_filename = g.getFilename() score = nxcc( wg.apply(vf, wg_rotation), wf.apply(vg, wf_rotation), mask) # overlapped_wedge_vol = wf_vol * wg_vol # scaling = float(overlapped_wedge_vol.numelem())/sum(overlapped_wedge_vol) # score *= scaling result[pair] = score # send back the result self.send_result(result) pytom_mpi.finalise()
def run(self, verbose=False): from sh_alignment.frm import frm_align from sh_alignment.constrained_frm import frm_constrained_align, AngularConstraint from pytom.basic.structures import Shift, Rotation from pytom.tools.ProgressBar import FixedProgBar from pytom.basic.transformations import resize, resizeFourier binningType = 'Fourier' while True: # get the job try: job = self.get_job() except: if verbose: print(self.node_name + ': end') break # get some non-job message, break it if verbose: prog = FixedProgBar(0, len(job.particleList) - 1, self.node_name + ':') i = 0 ref = job.reference.getVolume() if job.binning > 1: ref = resize(volume=ref, factor=1. / job.binning, interpolation=binningType) if type(ref) == tuple: ref = ref[0] # re-set max frequency in case it exceeds Nyquist - a bit brute force job.freq = min(job.freq, ref.sizeX() // 2 - 1) # run the job for p in job.particleList: if verbose: prog.update(i) i += 1 v = p.getVolume() if job.binning > 1: v = resize(volume=v, factor=1. / job.binning, interpolation=binningType) if type(v) == tuple: v = v[0] mask = job.mask.getVolume() if job.binning > 1: mask = resize(volume=mask, factor=1. / job.binning, interpolation='Spline') if type(mask) == tuple: mask = mask[0] if job.constraint: constraint = job.constraint if job.constraint.type == AngularConstraint.ADP_ANGLE: # set the constraint around certain angle rot = p.getRotation() constraint.setAngle(rot.getPhi(), rot.getPsi(), rot.getTheta()) #pos, angle, score = frm_constrained_align(v, p.getWedge(), ref, None, job.bw_range, job.freq, job.peak_offset, job.mask.getVolume(), constraint) if job.binning > 1: pos, angle, score = frm_constrained_align( v, p.getWedge(), ref, None, job.bw_range, job.freq, job.peak_offset / job.binning, mask, constraint) else: pos, angle, score = frm_constrained_align( v, p.getWedge(), ref, None, job.bw_range, job.freq, job.peak_offset, mask, constraint) else: #pos, angle, score = frm_align(v, p.getWedge(), ref, None, job.bw_range, job.freq, job.peak_offset, job.mask.getVolume()) #if job.binning >1: # print(job.peak_offset) # print(type(job.peak_offset)) # print(job.peak_offset/job.binning) # print(type(job.binning)) # pos, angle, score = frm_align(v, p.getWedge(), ref, None, job.bw_range, job.freq, # job.peak_offset/job.binning, mask) #else: pos, angle, score = frm_align(v, p.getWedge(), ref, None, job.bw_range, job.freq, job.peak_offset, mask) if job.binning > 1: pos[0] = job.binning * (pos[0] - v.sizeX() / 2) pos[1] = job.binning * (pos[1] - v.sizeY() / 2) pos[2] = job.binning * (pos[2] - v.sizeZ() / 2) p.setShift(Shift([pos[0], pos[1], pos[2]])) else: p.setShift( Shift([ pos[0] - v.sizeX() / 2, pos[1] - v.sizeY() / 2, pos[2] - v.sizeZ() / 2 ])) p.setRotation(Rotation(angle)) p.setScore(FRMScore(score)) # average the particle list name_prefix = os.path.join( job.destination, self.node_name + '_' + str(job.max_iter)) self.average_sub_pl(job.particleList, name_prefix, job.weighting) # send back the result self.send_result( FRMResult(name_prefix, job.particleList, self.mpi_id)) pytom_mpi.finalise()
def extractPeaks(volume, reference, rotations, scoreFnc=None, mask=None, maskIsSphere=False, wedgeInfo=None, **kwargs): ''' Created on May 17, 2010 @param volume: target volume @type volume: L{pytom_volume.vol} @param reference: reference @type reference: L{pytom_volume.vol} @param rotations: rotation angle list @type rotations: L{pytom.angles.globalSampling.GlobalSampling} @param scoreFnc: score function that is used @type scoreFnc: L{pytom.basic.correlation} @param mask: mask volume @type mask: L{pytom_volume.vol} @param maskIsSphere: flag to indicate whether the mask is sphere or not @type maskIsSphere: boolean @param wedgeInfo: wedge information @type wedgeInfo: L{pytom.basic.structures.WedgeInfo} @return: both the score volume and the corresponding rotation index volume @rtype: L{pytom_volume.vol} @author: chen ''' # from pytom.tools.timing import timing # t = timing(); t.start() # parse the parameters nodeName = kwargs.get('nodeName', '') verbose = kwargs.get('verboseMode', True) if verbose not in [True, False]: verbose = True moreInfo = kwargs.get('moreInfo', False) if moreInfo not in [True, False]: moreInfo = False from pytom.basic.correlation import FLCF from pytom.basic.structures import WedgeInfo, Wedge from pytom_volume import vol, pasteCenter from pytom_volume import rotateSpline as rotate # for more accuracy from pytom_volume import updateResFromIdx from pytom.basic.files import write_em if scoreFnc == None: scoreFnc = FLCF # only FLCF needs mask if scoreFnc == FLCF: if mask.__class__ != vol: # construct a sphere mask by default from pytom_volume import initSphere mask = vol(reference.sizeX(), reference.sizeY(), reference.sizeZ()) mask.setAll(0) initSphere(mask, reference.sizeX() / 2, 0, 0, reference.sizeX() / 2, reference.sizeX() / 2, reference.sizeX() / 2) maskIsSphere = True # result volume which stores the score result = vol(volume.sizeX(), volume.sizeY(), volume.sizeZ()) result.setAll(-1) # result orientation of the peak value (index) orientation = vol(volume.sizeX(), volume.sizeY(), volume.sizeZ()) orientation.setAll(0) currentRotation = rotations.nextRotation() index = 0 if verbose == True: from pytom.tools.ProgressBar import FixedProgBar max = rotations.numberRotations() - 1 prog = FixedProgBar(0, max, nodeName) if moreInfo: sumV = vol(volume.sizeX(), volume.sizeY(), volume.sizeZ()) sumV.setAll(0) sqrV = vol(volume.sizeX(), volume.sizeY(), volume.sizeZ()) sqrV.setAll(0) else: sumV = None sqrV = None if wedgeInfo.__class__ == WedgeInfo or wedgeInfo.__class__ == Wedge: print('Applied wedge to volume') volume = wedgeInfo.apply(volume) while currentRotation != [None, None, None]: if verbose == True: prog.update(index) # rotate the reference ref = vol(reference.sizeX(), reference.sizeY(), reference.sizeZ()) rotate(reference, ref, currentRotation[0], currentRotation[1], currentRotation[2]) # apply wedge if wedgeInfo.__class__ == WedgeInfo or wedgeInfo.__class__ == Wedge: ref = wedgeInfo.apply(ref) # rotate the mask if it is asymmetric if scoreFnc == FLCF: if maskIsSphere == False: # if mask is not a sphere, then rotate it m = vol(mask.sizeX(), mask.sizeY(), mask.sizeZ()) rotate(mask, m, currentRotation[0], currentRotation[1], currentRotation[2]) else: m = mask # compute the score # if mask is sphere and it is the first run, compute the standard deviation of the volume under mask for late use if scoreFnc == FLCF and index == 0 and maskIsSphere == True: # compute standard deviation of the volume under mask maskV = m if volume.sizeX() != m.sizeX() or volume.sizeY() != m.sizeY( ) or volume.sizeZ() != m.sizeZ(): maskV = vol(volume.sizeX(), volume.sizeY(), volume.sizeZ()) maskV.setAll(0) pasteCenter(m, maskV) from pytom_volume import sum p = sum(m) from pytom.basic.correlation import meanUnderMask, stdUnderMask meanV = meanUnderMask(volume, maskV, p) stdV = stdUnderMask(volume, maskV, p, meanV) # ref.write('template_cpu.em') if scoreFnc == FLCF: if maskIsSphere == True: score = scoreFnc(volume, ref, m, stdV, wedge=1) else: score = scoreFnc(volume, ref, m) else: # not FLCF, so doesn't need mask as parameter and perhaps the reference should have the same size _ref = vol(volume.sizeX(), volume.sizeY(), volume.sizeZ()) _ref.setAll(0) pasteCenter(ref, _ref) score = scoreFnc(volume, _ref) # update the result volume and the orientation volume updateResFromIdx(result, score, orientation, index) if moreInfo: sumV = sumV + score sqrV = sqrV + score * score currentRotation = rotations.nextRotation() index = index + 1 # if moreInfo: # sumV = sumV/rotations.numberRotations() # sqrV = sqrV/rotations.numberRotations() # time = t.end(); print 'The overall execution time: %f' % time return [result, orientation, sumV, sqrV]
def distributeCalculation(self, mpi_myid, verbose=False): """ distributeCalculation: Distribute calculation of matrix to multiple nodes. """ import pytom_mpi from pytom.cluster.correlationMatrixStructures import CorrelationVectorJob from pytom.parallel.clusterMessages import CorrelationVectorJobMessage, CorrelationVectorMessage from pytom.tools.ProgressBar import FixedProgBar if not mpi_myid == 0: raise Exception( 'This function (distributeCalculation) can only be processed by mpi_id = 0! ID == ' + mpi_myid.__str__() + ' Aborting!') mpi_myname = 'node_' + mpi_myid.__str__() mpi_numberNodes = pytom_mpi.size() particleIndex = 0 progressBar = FixedProgBar(0, len(self._particleList), 'Particles correlated ') progressBar.update(0) #distribute on all nodes for nodeIndex in range(1, mpi_numberNodes): if particleIndex < len(self._particleList): particle = self._particleList[particleIndex] reducedParticleList = self._particleList[particleIndex + 1:] job = CorrelationVectorJob(particle, reducedParticleList, self._mask, particleIndex, self._applyWedge, self._binningFactor, self._lowestFrequency, self._highestFrequency) jobMsg = CorrelationVectorJobMessage(str(mpi_myid), str(nodeIndex)) jobMsg.setJob(job) if verbose: print(jobMsg) pytom_mpi.send(str(jobMsg), nodeIndex) particleIndex = particleIndex + 1 numberVectorsReceived = 0 finished = numberVectorsReceived > len(self._particleList) while not finished: #listen until numberVectorsReceived > len(self._particleList) and continue distributing mpi_msgString = pytom_mpi.receive() if verbose: print(mpi_msgString) correlationVectorMsg = CorrelationVectorMessage() correlationVectorMsg.fromStr(mpi_msgString) assert correlationVectorMsg.__str__() == mpi_msgString vector = correlationVectorMsg.getVector() self._setMatrixValuesFromVector(vector.getParticleIndex(), vector) self._savePreliminaryResult() #print 'Result received from ' + correlationVectorMsg.getSender().__str__() + ' and matrix saved to disk.' numberVectorsReceived = numberVectorsReceived + 1 if particleIndex < len(self._particleList): #print 'Send particle number :' , particleIndex particle = self._particleList[particleIndex] reducedParticleList = self._particleList[particleIndex + 1:] job = CorrelationVectorJob(particle, reducedParticleList, self._mask, particleIndex, self._applyWedge, self._binningFactor, self._lowestFrequency, self._highestFrequency) jobMsg = CorrelationVectorJobMessage( mpi_myid.__str__(), correlationVectorMsg.getSender().__str__()) jobMsg.setJob(job) pytom_mpi.send(jobMsg.__str__(), int(correlationVectorMsg.getSender())) particleIndex = particleIndex + 1 #update progress bar progressBar.update(numberVectorsReceived) finished = numberVectorsReceived >= len(self._particleList)
particleList.fromXMLFile(plFilename) except: from pytom.localization.structures import readParticleFile particles = readParticleFile(plFilename) particleList = ParticleList() for particle in particles: particleList.append(particle.toParticle()) particlePath = particleList[0].getFilename() particleFolder = particlePath[0:particlePath.rfind('/')] if not checkDirExists(particleFolder): os.makedirs(particleFolder) prog = FixedProgBar(0, len(particleList) - 1, '') newParticleList = ParticleList() vol = read(volFilename) volX = vol.sizeX() volY = vol.sizeY() volZ = vol.sizeZ() i = 0 for particle in particleList: i = i + 1 # even if some particles are skipped, the progress shall be updated prog.update(i) pi = particle.getPickPosition() try:
def averageGPU(particleList, averageName, showProgressBar=False, verbose=False, createInfoVolumes=False, weighting=False, norm=False, gpuId=None, profile=True): """ average : Creates new average from a particleList @param particleList: The particles @param averageName: Filename of new average @param verbose: Prints particle information. Disabled by default. @param createInfoVolumes: Create info data (wedge sum, inverted density) too? False by default. @param weighting: apply weighting to each average according to its correlation score @param norm: apply normalization for each particle @return: A new Reference object @rtype: L{pytom.basic.structures.Reference} @author: Thomas Hrabe @change: limit for wedgeSum set to 1% or particles to avoid division by small numbers - FF """ import time from pytom.tompy.io import read, write, read_size from pytom.tompy.filter import bandpass as lowpassFilter, rotateWeighting, applyFourierFilter, applyFourierFilterFull, create_wedge from pytom.voltools import transform, StaticVolume from pytom.basic.structures import Reference from pytom.tompy.normalise import mean0std1 from pytom.tompy.tools import volumesSameSize, invert_WedgeSum, create_sphere from pytom.tompy.transform import fourier_full2reduced, fourier_reduced2full from cupyx.scipy.fftpack.fft import fftn as fftnP from cupyx.scipy.fftpack.fft import ifftn as ifftnP from cupyx.scipy.fftpack.fft import get_fft_plan from pytom.tools.ProgressBar import FixedProgBar from multiprocessing import RawArray import numpy as np import cupy as xp if not gpuId is None: device = f'gpu:{gpuId}' xp.cuda.Device(gpuId).use() else: print(gpuId) raise Exception('Running gpu code on non-gpu device') print(device) cstream = xp.cuda.Stream() if profile: stream = xp.cuda.Stream.null t_start = stream.record() # from pytom.tools.ProgressBar import FixedProgBar from math import exp import os if len(particleList) == 0: raise RuntimeError('The particle list is empty. Aborting!') if showProgressBar: progressBar = FixedProgBar(0, len(particleList), 'Particles averaged ') progressBar.update(0) numberAlignedParticles = 0 # pre-check that scores != 0 if weighting: wsum = 0. for particleObject in particleList: wsum += particleObject.getScore().getValue() if wsum < 0.00001: weighting = False print("Warning: all scores have been zero - weighting not applied") import time sx, sy, sz = read_size(particleList[0].getFilename()) wedgeInfo = particleList[0].getWedge().convert2numpy() print('angle: ', wedgeInfo.getWedgeAngle()) wedgeZero = xp.fft.fftshift( xp.array(wedgeInfo.returnWedgeVolume(sx, sy, sz, True).get(), dtype=xp.float32)) # wedgeZeroReduced = fourier_full2reduced(wedgeZero) wedge = xp.zeros_like(wedgeZero, dtype=xp.float32) wedgeSum = xp.zeros_like(wedge, dtype=xp.float32) print('init texture') wedgeText = StaticVolume(xp.fft.fftshift(wedgeZero), device=device, interpolation='filt_bspline') newParticle = xp.zeros((sx, sy, sz), dtype=xp.float32) centerX = sx // 2 centerY = sy // 2 centerZ = sz // 2 result = xp.zeros((sx, sy, sz), dtype=xp.float32) fftplan = get_fft_plan(wedge.astype(xp.complex64)) n = 0 total = len(particleList) # total = int(np.floor((11*1024**3 - mempool.total_bytes())/(sx*sy*sz*4))) # total = 128 # # # particlesNP = np.zeros((total, sx, sy, sz),dtype=np.float32) # particles = [] # mask = create_sphere([sx,sy,sz], sx//2-6, 2) # raw = RawArray('f', int(particlesNP.size)) # shared_array = np.ctypeslib.as_array(raw) # shared_array[:] = particlesNP.flatten() # procs = allocateProcess(particleList, shared_array, n, total, wedgeZero.size) # del particlesNP if profile: t_end = stream.record() t_end.synchronize() time_took = xp.cuda.get_elapsed_time(t_start, t_end) print(f'startup time {n:5d}: \t{time_took:.3f}ms') t_start = stream.record() for particleObject in particleList: rotation = particleObject.getRotation() rotinvert = rotation.invert() shiftV = particleObject.getShift() # if n % total == 0: # while len(procs): # procs =[proc for proc in procs if proc.is_alive()] # time.sleep(0.1) # print(0.1) # # del particles # # xp._default_memory_pool.free_all_blocks() # # pinned_mempool.free_all_blocks() # particles = xp.array(shared_array.reshape(total, sx, sy, sz), dtype=xp.float32) # procs = allocateProcess(particleList, shared_array, n, total, size=wedgeZero.size) # #pinned_mempool.free_all_blocks() # #print(mempool.total_bytes()/1024**3) particle = read(particleObject.getFilename(), deviceID=device) #particle = particles[n%total] if norm: # normalize the particle mean0std1(particle) # happen inplace # apply its wedge to #particle = applyFourierFilter(particle, wedgeZeroReduced) #particle = (xp.fft.ifftn( xp.fft.fftn(particle) * wedgeZero)).real particle = (ifftnP(fftnP(particle, plan=fftplan) * wedgeZero, plan=fftplan)).real ### create spectral wedge weighting wedge *= 0 wedgeText.transform( rotation=[rotinvert[0], rotinvert[2], rotinvert[1]], rotation_order='rzxz', output=wedge) #wedge = xp.fft.fftshift(fourier_reduced2full(create_wedge(30, 30, 21, 42, 42, 42, rotation=[rotinvert[0],rotinvert[2], rotinvert[1]]))) # if analytWedge: # # > analytical buggy version # wedge = wedgeInfo.returnWedgeVolume(sx, sy, sz, True, rotinvert) # else: # # > FF: interpol bugfix # wedge = rotateWeighting(weighting=wedgeInfo.returnWedgeVolume(sx, sy, sz, True), rotation=[rotinvert[0], rotinvert[2], rotinvert[1]]) # # < FF # # > TH bugfix # # wedgeVolume = wedgeInfo.returnWedgeVolume(wedgeSizeX=sizeX, wedgeSizeY=sizeY, wedgeSizeZ=sizeZ, # # humanUnderstandable=True, rotation=rotinvert) # # wedge = rotate(volume=wedgeVolume, rotation=rotinvert, imethod='linear') # # < TH ### shift and rotate particle newParticle *= 0 transform(particle, output=newParticle, rotation=[-rotation[1], -rotation[2], -rotation[0]], center=[centerX, centerY, centerZ], translation=[-shiftV[0], -shiftV[1], -shiftV[2]], device=device, interpolation='filt_bspline', rotation_order='rzxz') #write(f'trash/GPU_{n}.em', newParticle) # print(rotation.toVector()) # break result += newParticle wedgeSum += xp.fft.fftshift(wedge) # if showProgressBar: # numberAlignedParticles = numberAlignedParticles + 1 # progressBar.update(numberAlignedParticles) if n % total == 0: if profile: t_end = stream.record() t_end.synchronize() time_took = xp.cuda.get_elapsed_time(t_start, t_end) print(f'total time {n:5d}: \t{time_took:.3f}ms') t_start = stream.record() cstream.synchronize() n += 1 print('averaged particles') ###apply spectral weighting to sum result = lowpassFilter(result, high=sx / 2 - 1, sigma=0) # if createInfoVolumes: write(averageName[:len(averageName) - 3] + '-PreWedge.em', result) write(averageName[:len(averageName) - 3] + '-WedgeSumUnscaled.em', fourier_full2reduced(wedgeSum)) wedgeSumINV = invert_WedgeSum(wedgeSum, r_max=sx // 2 - 2., lowlimit=.05 * len(particleList), lowval=.05 * len(particleList)) wedgeSumINV = wedgeSumINV #print(wedgeSum.mean(), wedgeSum.std()) if createInfoVolumes: write(averageName[:len(averageName) - 3] + '-WedgeSumInverted.em', xp.fft.fftshift(wedgeSumINV)) result = applyFourierFilterFull(result, xp.fft.fftshift(wedgeSumINV)) # do a low pass filter result = lowpassFilter(result, sx / 2 - 2, (sx / 2 - 1) / 10.)[0] write(averageName, result) if createInfoVolumes: resultINV = result * -1 # write sign inverted result to disk (good for chimera viewing ... ) write(averageName[:len(averageName) - 3] + '-INV.em', resultINV) newReference = Reference(averageName, particleList) return newReference
def run(self, verbose=False): from pytom.gui.additional.frm import frm_align from sh_alignment.constrained_frm import frm_constrained_align, AngularConstraint from pytom.basic.structures import Shift, Rotation from pytom.tools.ProgressBar import FixedProgBar while True: # get the job try: job = self.get_job() except: if verbose: print self.node_name + ': end' break # get some non-job message, break it if verbose: prog = FixedProgBar(0, len(job.particleList) - 1, self.node_name + ':') i = 0 ref = job.reference.getVolume() # run the job for p in job.particleList: if verbose: prog.update(i) i += 1 v = p.getVolume() if job.constraint: constraint = job.constraint if job.constraint.type == AngularConstraint.ADP_ANGLE: # set the constraint around certain angle rot = p.getRotation() constraint.setAngle(rot.getPhi(), rot.getPsi(), rot.getTheta()) pos, angle, score = frm_constrained_align( v, p.getWedge(), ref, None, job.bw_range, job.freq, job.peak_offset, job.mask.getVolume(), constraint) else: pos, angle, score = frm_align(v, p.getWedge(), ref, None, job.bw_range, job.freq, job.peak_offset, job.mask.getVolume()) p.setShift( Shift([ pos[0] - v.sizeX() / 2, pos[1] - v.sizeY() / 2, pos[2] - v.sizeZ() / 2 ])) p.setRotation(Rotation(angle)) p.setScore(FRMScore(score)) # average the particle list name_prefix = self.node_name + '_' + str(job.max_iter) self.average_sub_pl(job.particleList, name_prefix, job.weighting) # send back the result self.send_result( FRMResult(name_prefix, job.particleList, self.mpi_id)) pytom_mpi.finalise()
def findParticles(self, sizeParticle, maxNumParticle=0, minScore=-1, write2disk=0, margin=None, offset=[0, 0, 0]): """ findParticles: Find particles in target volume according to the result volume. @param sizeParticle: size or radius of searched particle @type sizeParticle: [x,y,z] or integer @param maxNumParticle: maximal number of particles you want to pick @type maxNumParticle: integer @param minScore: minimal score as threshold @type minScore: float @param write2disk: write the found particles to the disk or not (0: do not write, otherwise the length of each dimension) @type write2disk: integer @param margin: set the margin of the score volume @param margin: [x,y,z] or integer @return: list of found particles @rtype: L{pytom.localization.structures.FoundParticle} """ from pytom_volume import vol, peak, putSubVolume, read from pytom.localization.structures import FoundParticle # prepare the mask x = self.result.sizeX() y = self.result.sizeY() z = self.result.sizeZ() if sizeParticle.__class__ == list: xP = sizeParticle[0] yP = sizeParticle[1] zP = sizeParticle[2] elif sizeParticle.__class__ == vol: xP = sizeParticle.sizeX() yP = sizeParticle.sizeY() zP = sizeParticle.sizeZ() else: radius = sizeParticle xP = 2 * sizeParticle yP = 2 * sizeParticle zP = 2 * sizeParticle if margin: if margin.__class__ == list: marginX, marginY, marginZ = margin else: marginX = marginY = marginZ = margin else: # no margin given, set automatically marginX = int(xP / 2) marginY = int(yP / 2) marginZ = int(zP / 2) mask = vol(x, y, z) mask.setAll(0) maskIn = vol(x - 2 * marginX, y - 2 * marginY, z - 2 * marginZ) maskIn.setAll(1) putSubVolume(maskIn, mask, marginX, marginY, marginZ) # progress bar from pytom.tools.ProgressBar import FixedProgBar prog = FixedProgBar(0, maxNumParticle - 1, '') # find the particles resList = [] for i in range(maxNumParticle): prog.update(i) try: posV = peak(self.result, mask) except: break # the mask is all zero [scoreV, orientV] = self.get(posV[0], posV[1], posV[2]) # test if the peak score is bigger than minimal threshold if scoreV > minScore: particleFilename = 'particle_' + str(i) + '.em' if write2disk: # write the found particle to the disk l = write2disk v = read(self.volFilename, posV[0] - l / 2, posV[1] - l / 2, posV[2] - l / 2, l, l, l, 0, 0, 0, 0, 0, 0) v.write(particleFilename) score = self.score() score.setValue(scoreV) from pytom.basic.structures import PickPosition, Rotation pos = PickPosition(posV, originFilename=self.volFilename) pos + offset orientation = Rotation(orientV) p = FoundParticle(pos, orientation, score, particleFilename) resList.append(p) if sizeParticle.__class__ == list: self.maskOut(mask, posV, [xP, yP, zP]) elif sizeParticle.__class__ == vol: self.maskOut(mask, posV, sizeParticle) else: self.maskOut(mask, posV, radius) else: break return resList
def run(self, verbose=False): from sh_alignment.frm import frm_align from pytom.basic.structures import Shift, Rotation from pytom.tools.ProgressBar import FixedProgBar from pytom.basic.fourier import convolute from pytom_volume import read, power while True: # get the job try: job = self.get_job() except: if verbose: print(self.node_name + ': end') break # get some non-job message, break it if verbose: prog = FixedProgBar(0, len(job.particleList) - 1, self.node_name + ':') i = 0 ref = [] ref.append(job.reference[0].getVolume()) ref.append(job.reference[1].getVolume()) # convolute with the approximation of the CTF if job.sum_ctf_sqr: ctf = read(job.sum_ctf_sqr) power(ctf, 0.5) # the number of CTFs should not matter, should it? ref0 = ref[0] ref1 = ref[1] ref0 = convolute(ref0, ctf, True) ref1 = convolute(ref1, ctf, True) ref = [ref0, ref1] if job.bfactor and job.bfactor != 'None': # restore_kernel = create_bfactor_restore_vol(ref.sizeX(), job.sampleInformation.getPixelSize(), job.bfactor) from pytom_volume import vol, read bfactor_kernel = read(job.bfactor) unit = vol(bfactor_kernel) unit.setAll(1) restore_kernel = unit / bfactor_kernel # run the job for p in job.particleList: if verbose: prog.update(i) i += 1 v = p.getVolume() # if weights is None: # create the weights according to the bfactor # if job.bfactor == 0: # weights = [1 for k in xrange(job.freq)] # else: # restore_fnc = create_bfactor_restore_fnc(ref.sizeX(), job.sampleInformation.getPixelSize(), job.bfactor) # # cut out the corresponding part and square it to get the weights! # weights = restore_fnc[1:job.freq+1]**2 if job.bfactor and job.bfactor != 'None': v = convolute(v, restore_kernel, True) # if bfactor is set, restore it pos, angle, score = frm_align(v, p.getWedge(), ref[int(p.getClass())], None, job.bw_range, job.freq, job.peak_offset, job.mask.getVolume()) p.setShift( Shift([ pos[0] - v.sizeX() / 2, pos[1] - v.sizeY() / 2, pos[2] - v.sizeZ() / 2 ])) p.setRotation(Rotation(angle)) p.setScore(FRMScore(score)) # average the particle list name_prefix = self.node_name + '_' + str(job.max_iter) pair = ParticleListPair('', job.ctf_conv_pl, None, None) pair.set_phase_flip_pl(job.particleList) self.average_sub_pl( pair.get_ctf_conv_pl(), name_prefix) # operate on the CTF convoluted projection! # send back the result self.send_result( FRMResult(name_prefix, job.particleList, self.mpi_id)) pytom_mpi.finalise()
# read all the projections in tompy import numpy as np from pytom.tompy.io import read, write proj = [] tilt_angles = [] for p in projections: proj.append(read(p.getFilename())) tilt_angles.append(p.getTiltAngle()) # reconstruct each particles from math import cos, sin, pi, ceil from pytom.tompy.transform import cut_from_projection from nufft.reconstruction import fourier_2d1d_iter_reconstruct, fourier_2d1d_gridding_reconstruct from pytom.tools.ProgressBar import FixedProgBar prog = FixedProgBar(0, len(pl) - 1, '') i = 0 for p in pl: prog.update(i) i += 1 # transfer the coordinate system x, y, z = p.getPickPosition().toVector() x = (x + offset[0]) * binning y = (y + offset[1]) * binning z = (z + offset[2]) * binning # cut out corresponding parts from projections subregions = [] l = (vol_size / 2) * 2**0.5