示例#1
0
    def forward(self, pts3D, src):
        bs = src.size(0)
        if len(src.size()) > 3:
            bs, c, w, _ = src.size()
            image_size = w

            pts3D = pts3D.permute(0, 2, 1)
            src = src.unsqueeze(2).repeat(1, 1, w, 1, 1).view(bs, c, -1)
        else:
            bs = src.size(0)
            image_size = self.size

        # Make sure these have been arranged in the same way
        assert pts3D.size(2) == 3
        assert pts3D.size(1) == src.size(2)

        pts3D[:, :, 1] = -pts3D[:, :, 1]
        pts3D[:, :, 0] = -pts3D[:, :, 0]

        # Add on the default feature to the end of the src
        # src = torch.cat((src, self.default_feature.repeat(bs, 1, 1)), 2)

        radius = float(self.radius) / float(image_size) * 2.0

        pts3D = Pointclouds(points=pts3D, features=src.permute(0, 2, 1))
        points_idx, _, dist = rasterize_points(pts3D, image_size, radius,
                                               self.points_per_pixel)

        if os.environ["DEBUG"]:
            print("Max dist: ", dist.max(), pow(radius, self.opts.rad_pow))

        dist = dist / pow(radius, self.opts.rad_pow)

        if os.environ["DEBUG"]:
            print("Max dist: ", dist.max())

        alphas = ((1 - dist.clamp(max=1, min=1e-3).pow(0.5)).pow(
            self.opts.tau).permute(0, 3, 1, 2))

        if self.opts.accumulation == 'alphacomposite':
            transformed_src_alphas = compositing.alpha_composite(
                points_idx.permute(0, 3, 1, 2).long(),
                alphas,
                pts3D.features_packed().permute(1, 0),
            )
        elif self.opts.accumulation == 'wsum':
            transformed_src_alphas = compositing.weighted_sum(
                points_idx.permute(0, 3, 1, 2).long(),
                alphas,
                pts3D.features_packed().permute(1, 0),
            )
        elif self.opts.accumulation == 'wsumnorm':
            transformed_src_alphas = compositing.weighted_sum_norm(
                points_idx.permute(0, 3, 1, 2).long(),
                alphas,
                pts3D.features_packed().permute(1, 0),
            )

        return transformed_src_alphas
示例#2
0
    def save(
        self,
        data: Pointclouds,
        path: Union[str, Path],
        path_manager: PathManager,
        binary: Optional[bool],
        decimal_places: Optional[int] = None,
        **kwargs,
    ) -> bool:
        if not endswith(path, self.known_suffixes):
            return False

        points = data.points_list()[0]
        features = data.features_packed()
        normals = data.normals_packed()

        with _open_file(path, path_manager, "wb") as f:
            _save_ply(
                f=f,
                verts=points,
                verts_colors=features,
                verts_normals=normals,
                faces=None,
                ascii=binary is False,
                decimal_places=decimal_places,
            )
        return True
示例#3
0
    def forward(self, pts, features):
        # Make sure pts and features are equal
        assert pts.size(2) == 3
        assert pts.size(1) == features.size(1)

        pts[:, :, 0] = -pts[:, :, 0]
        pts[:, :, 1] = -pts[:, :, 1]

        radius = float(self.radius) / float(self.img_size) * 2.0
        params = compositing.CompositeParams(radius=radius)

        pointcloud = Pointclouds(points=pts, features=features)
        points_idx, _, dist = rasterize_points(pointcloud, self.img_size,
                                               radius, self.points_per_pixel)

        dist = dist / pow(radius, 2)

        alphas = (1 - dist.clamp(max=1, min=1e-3).pow(0.5).pow(
            self.gamma).permute(0, 3, 1, 2))

        transformed_feature_alphas = compositing.alpha_composite(
            points_idx.permute(0, 3, 1, 2).long(), alphas,
            pointcloud.features_packed().permute(1, 0), params)

        return transformed_feature_alphas
示例#4
0
def _add_pointcloud_trace(
    fig: go.Figure,
    pointclouds: Pointclouds,
    trace_name: str,
    subplot_idx: int,
    ncols: int,
    max_points_per_pointcloud: int,
    marker_size: int,
):  # pragma: no cover
    """
    Adds a trace rendering a Pointclouds object to the passed in figure, with
    a given name and in a specific subplot.

    Args:
        fig: plotly figure to add the trace within.
        pointclouds: Pointclouds object to render. It can be batched.
        trace_name: name to label the trace with.
        subplot_idx: identifies the subplot, with 0 being the top left.
        ncols: the number of subplots per row.
        max_points_per_pointcloud: the number of points to render, which are randomly sampled.
        marker_size: the size of the rendered points
    """
    pointclouds = pointclouds.detach().cpu().subsample(
        max_points_per_pointcloud)
    verts = pointclouds.points_packed()
    features = pointclouds.features_packed()

    color = None
    if features is not None:
        if features.shape[1] == 4:  # rgba
            template = "rgb(%d, %d, %d, %f)"
            rgb = (features[:, :3].clamp(0.0, 1.0) * 255).int()
            color = [
                template % (*rgb_, a_)
                for rgb_, a_ in zip(rgb, features[:, 3])
            ]

        if features.shape[1] == 3:
            template = "rgb(%d, %d, %d)"
            rgb = (features.clamp(0.0, 1.0) * 255).int()
            color = [template % (r, g, b) for r, g, b in rgb]

    row = subplot_idx // ncols + 1
    col = subplot_idx % ncols + 1
    fig.add_trace(
        go.Scatter3d(
            x=verts[:, 0],
            y=verts[:, 1],
            z=verts[:, 2],
            marker={
                "color": color,
                "size": marker_size
            },
            mode="markers",
            name=trace_name,
        ),
        row=row,
        col=col,
    )

    # Access the current subplot's scene configuration
    plot_scene = "scene" + str(subplot_idx + 1)
    current_layout = fig["layout"][plot_scene]

    # update the bounds of the axes for the current trace
    verts_center = verts.mean(0)
    max_expand = (verts.max(0)[0] - verts.min(0)[0]).max()
    _update_axes_bounds(verts_center, max_expand, current_layout)
    def forward(self, pts3D, src):
        bs = src.size(0)
        if len(src.size()) > 3:
            bs, c, w, _ = src.size()
            image_size = w

            pts3D = pts3D.permute(0, 2, 1)
            src = src.unsqueeze(2).repeat(1, 1, w, 1, 1).view(bs, c, -1)
        else:
            bs = src.size(0)
            image_size = self.size

        # Make sure these have been arranged in the same way
        assert pts3D.size(2) == 3
        assert pts3D.size(1) == src.size(2)

        # pts3D.shape = (bs, w*h, 3) --> (x,y,z) coordinate for ever element in the image raster
        # Because we have done re-projection, the i-th coordinate in the image raster must no longer be identical to (x,y)!
        # src.shape = (bs, c, w*h) --> c features for every element in the image raster (w*h)

        #print("Features: {}".format(src.shape))
        #print("3D Pointcloud: {}".format(pts3D.shape))

        # flips the x and y coordinate
        pts3D[:, :, 1] = -pts3D[:, :, 1]
        pts3D[:, :, 0] = -pts3D[:, :, 0]

        # Add on the default feature to the end of the src
        #src = torch.cat((src, self.default_feature.repeat(bs, 1, 1)), 2)

        radius = float(self.radius) / float(
            image_size
        ) * 2.0  # convert radius to fit the [-1,1] NDC ?? Or is this just arbitrary scaling s.t. radius as meaningful size?
        params = compositing.CompositeParams(radius=radius)

        #print("Radius - before: {}, converted: {}".format(self.radius, radius))

        pts3D = Pointclouds(points=pts3D, features=src.permute(0, 2, 1))
        points_idx, _, dist = rasterize_points(
            pts3D, image_size, radius, self.points_per_pixel
        )  # see method signature for meaning of these output values

        #print("points_idx: {}".format(points_idx.shape))
        #print("dist: {}".format(points_idx.shape))

        #print("Max dist: ", dist.max(), pow(radius, self.rad_pow))

        dist = dist / pow(
            radius, self.rad_pow
        )  # equation 1 from the paper (3.2): this calculates N(p_i, l_mn) from the d2 dist

        #print("Max dist: ", dist.max())

        alphas = (
            (1 - dist.clamp(max=1, min=1e-3).pow(0.5)).pow(
                self.accumulation_tau).permute(0, 3, 1, 2)
        )  # equation 2 from the paper (3.2): prepares alpha values for composition of the feature vectors

        #print("alphas: ", alphas.shape)
        #print("pointclouds object: {}".format(pts3D.features_packed().shape))
        #print("alphas: ", alphas)

        if self.accumulation == 'alphacomposite':
            transformed_src_alphas = compositing.alpha_composite(
                points_idx.permute(0, 3, 1, 2).long(),
                alphas,
                pts3D.features_packed().permute(
                    1, 0
                ),  # pts3D also contains features here, because this is now a Pointclouds object
                params,
            )
        elif self.accumulation == 'wsum':
            transformed_src_alphas = compositing.weighted_sum(
                points_idx.permute(0, 3, 1, 2).long(),
                alphas,
                pts3D.features_packed().permute(1, 0),
                params,
            )
        elif self.accumulation == 'wsumnorm':
            transformed_src_alphas = compositing.weighted_sum_norm(
                points_idx.permute(0, 3, 1, 2).long(),
                alphas,
                pts3D.features_packed().permute(1, 0),
                params,
            )
        else:
            raise NotImplementedError('Unsupported accumulation type: ' +
                                      self.accumulation)

        return transformed_src_alphas
示例#6
0
def _add_pointcloud_trace(
    fig: go.Figure,
    pointclouds: Pointclouds,
    trace_name: str,
    subplot_idx: int,
    ncols: int,
    max_points_per_pointcloud: int,
    marker_size: int,
):
    """
    Adds a trace rendering a Pointclouds object to the passed in figure, with
    a given name and in a specific subplot.

    Args:
        fig: plotly figure to add the trace within.
        pointclouds: Pointclouds object to render. It can be batched.
        trace_name: name to label the trace with.
        subplot_idx: identifies the subplot, with 0 being the top left.
        ncols: the number of sublpots per row.
        max_points_per_pointcloud: the number of points to render, which are randomly sampled.
        marker_size: the size of the rendered points
    """
    pointclouds = pointclouds.detach().cpu()
    verts = pointclouds.points_packed()
    features = pointclouds.features_packed()

    indices = None
    if pointclouds.num_points_per_cloud().max() > max_points_per_pointcloud:
        start_index = 0
        index_list = []
        for num_points in pointclouds.num_points_per_cloud():
            if num_points > max_points_per_pointcloud:
                indices_cloud = np.random.choice(num_points,
                                                 max_points_per_pointcloud,
                                                 replace=False)
                index_list.append(start_index + indices_cloud)
            else:
                index_list.append(start_index + np.arange(num_points))
            start_index += num_points
        indices = np.concatenate(index_list)
        verts = verts[indices]

    color = None
    if features is not None:
        if indices is not None:
            # Only select features if we selected vertices above
            features = features[indices]
        if features.shape[1] == 4:  # rgba
            template = "rgb(%d, %d, %d, %f)"
            rgb = (features[:, :3].clamp(0.0, 1.0) * 255).int()
            color = [
                template % (*rgb_, a_)
                for rgb_, a_ in zip(rgb, features[:, 3])
            ]

        if features.shape[1] == 3:
            template = "rgb(%d, %d, %d)"
            rgb = (features.clamp(0.0, 1.0) * 255).int()
            color = [template % (r, g, b) for r, g, b in rgb]

    row = subplot_idx // ncols + 1
    col = subplot_idx % ncols + 1
    fig.add_trace(
        go.Scatter3d(  # pyre-ignore[16]
            x=verts[:, 0],
            y=verts[:, 1],
            z=verts[:, 2],
            marker={
                "color": color,
                "size": marker_size
            },
            mode="markers",
            name=trace_name,
        ),
        row=row,
        col=col,
    )

    # Access the current subplot's scene configuration
    plot_scene = "scene" + str(subplot_idx + 1)
    current_layout = fig["layout"][plot_scene]

    # update the bounds of the axes for the current trace
    verts_center = verts.mean(0)
    max_expand = (verts.max(0)[0] - verts.min(0)[0]).max()
    _update_axes_bounds(verts_center, max_expand, current_layout)
示例#7
0
def generate_video(im_name, normalise):
    # Load in the correspondences and images
    im1 = Image.open(os.environ['BASE_PATH'] + '/imL/%s.jpg' % im_name)
    im2 = Image.open(os.environ['BASE_PATH'] + '/imR/%s.jpg' % im_name)

    if normalise:
        np_tempwarp = np.load(os.environ['BASE_PATH'] +
                              '/warps/temp_sampler%s_2_grad_norm.npz' %
                              im_name)
        H = np_tempwarp['H']
        np_tempwarp = np_tempwarp['sampler']
    else:
        np_tempwarp = np.load(os.environ['BASE_PATH'] +
                              '/warps/temp_sampler%s_2_grad_coarse.npz.npy' %
                              im_name)

    if normalise:
        im1_arr = np.array(im1)
        im2_arr = np.array(im2)

        K1 = np.eye(3)
        K1[0, 0] = 2 / im1_arr.shape[1]
        K1[1, 1] = 2 / im1_arr.shape[0]
        K1[0:2, 2] = -1
        K2 = np.eye(3)
        K2[0, 0] = 2 / im2_arr.shape[1]
        K2[1, 1] = 2 / im2_arr.shape[0]
        K2[0:2, 2] = -1

        aff_mat = (np.linalg.inv(K2) @ H @ K1)

        # Now transform the image and return
        warp_im1 = cv2.warpAffine(im1_arr, aff_mat[0:2],
                                  (im2_arr.shape[1], im2_arr.shape[0]))

        im1 = warp_im1
        im1 = Image.fromarray(im1)

    warp = torch.Tensor(np_tempwarp).unsqueeze(0)

    im1_torch = tr.ToTensor()(im1).unsqueeze(0)
    im2_torch = tr.ToTensor()(im2).unsqueeze(0)

    gen_img = F.grid_sample(im1_torch, warp)

    sampler = F.upsample(warp.permute(0, 3, 1, 2),
                         size=(im2_torch.size(2), im2_torch.size(3)))
    gen_imglarge = F.grid_sample(im1_torch, sampler.permute(0, 2, 3, 1))

    W1, W2, _ = np_tempwarp.shape
    orig_warp = torch.meshgrid(torch.linspace(-1, 1, W1),
                               torch.linspace(-1, 1, W2))
    orig_warp = torch.cat(
        (orig_warp[1].unsqueeze(2), orig_warp[0].unsqueeze(2)), 2)

    orig_warp = orig_warp.unsqueeze(0)
    warp = torch.Tensor(np_tempwarp).unsqueeze(0)

    new_imgs = []

    if not os.path.exists('./temp%s/%s' % (im_name, im_name)):
        os.makedirs('./temp%s/%s' % (im_name, im_name))

    radius = 2 * 2 / 1024.

    for i in tqdm(range(-10, 30)):
        resample = (orig_warp * float(i) / 20. + warp * float(20 - i) / 20.)
        pts3D = resample.view(1, -1, 2)

        pts_mask = (warp.view(-1, 2)[:, 0] > -1) & (warp.view(-1, 2)[:, 0] < 1)

        pts3D = pts3D[:, pts_mask, :]
        pts3D = -pts3D
        pts3D = torch.cat((pts3D.cuda(), torch.ones(
            (1, pts3D.size(1), 1)).cuda()), 2)

        rgb = F.grid_sample(im2_torch,
                            orig_warp).permute(0, 2, 3, 1).view(1, -1,
                                                                3)[:,
                                                                   pts_mask, :]
        mask = torch.ones((1, rgb.size(1), 1)).cuda()

        pts3DRGB = Pointclouds(points=pts3D, features=rgb)
        points_idx, _, dist = rasterize_points(pts3DRGB, 1024, radius, 1)
        gen_img = pts3DRGB.features_packed()[
            points_idx.permute(0, 3, 1, 2).long()[0], :].permute(
                0, 3, 1, 2).mean(dim=0, keepdim=True)
        new_imgs += [gen_img.squeeze().permute(1, 2, 0)]

        torchvision.utils.save_image(
            gen_img, './temp%s/%s/im-%03d.png' % (im_name, im_name, i + 10))

        mask = (points_idx.permute(0, 3, 1, 2) < 0).float()

        torchvision.utils.save_image(
            mask, './temp%s/%s/mask-%03d.png' % (im_name, im_name, i + 10))