def main(): # Load configuration config = load_config() # Create the model model = get_model(config) # Load model state model_path = config['model_path'] logger.info(f'Loading model from {model_path}...') utils.load_checkpoint(model_path, model) # use DataParallel if more than 1 GPU available device = config['device'] if torch.cuda.device_count() > 1 and not device.type == 'cpu': model = nn.DataParallel(model) logger.info(f'Using {torch.cuda.device_count()} GPUs for prediction') logger.info(f"Sending the model to '{device}'") model = model.to(device) output_dir = config['loaders'].get('output_dir', None) if output_dir is not None: os.makedirs(output_dir, exist_ok=True) logger.info(f'Saving predictions to: {output_dir}') for test_loader in get_test_loaders(config): logger.info(f"Processing '{test_loader.dataset.file_path}'...") output_file = _get_output_file(dataset=test_loader.dataset, output_dir=output_dir) predictor = _get_predictor(model, test_loader, output_file, config) # run the model prediction on the entire dataset and save to the 'output_file' H5 predictor.predict()
def main(): # Load configuration config = load_config() # Create the model model = get_model(config['model']) # Load model state model_path = config['model_path'] logger.info(f'Loading model from {model_path}...') utils.load_checkpoint(model_path, model) # use DataParallel if more than 1 GPU available device = config['device'] if torch.cuda.device_count() > 1 and not device.type == 'cpu': model = nn.DataParallel(model) logger.info(f'Using {torch.cuda.device_count()} GPUs for prediction') logger.info(f"Sending the model to '{device}'") model = model.to(device) output_dir = config['loaders'].get('output_dir', None) if output_dir is not None: os.makedirs(output_dir, exist_ok=True) logger.info(f'Saving predictions to: {output_dir}') # create predictor instance predictor = _get_predictor(model, output_dir, config) for test_loader in get_test_loaders(config): # run the model prediction on the test_loader and save the results in the output_dir predictor(test_loader)
def __call__(self): logger = utils.get_logger('UNet3DPredictor') if not self.state: # skip network predictions and return input_paths gui_logger.info( f"Skipping '{self.__class__.__name__}'. Disabled by the user.") return self.paths else: # create config/download models only when cnn_prediction enabled config = create_predict_config(self.paths, self.cnn_config) # Create the model model = get_model(config) # Load model state model_path = config['model_path'] model_name = config["model_name"] logger.info(f"Loading model '{model_name}' from {model_path}") utils.load_checkpoint(model_path, model) logger.info(f"Sending the model to '{config['device']}'") model = model.to(config['device']) logger.info('Loading HDF5 datasets...') # Run prediction output_paths = [] for test_loader in get_test_loaders(config): gui_logger.info( f"Running network prediction on {test_loader.dataset.file_path}..." ) runtime = time.time() logger.info(f"Processing '{test_loader.dataset.file_path}'...") output_file = _get_output_file(test_loader.dataset, model_name) predictor = _get_predictor(model, test_loader, output_file, config) # run the model prediction on the entire dataset and save to the 'output_file' H5 predictor.predict() # save resulting output path output_paths.append(output_file) runtime = time.time() - runtime gui_logger.info(f"Network prediction took {runtime:.2f} s") self._update_voxel_size(self.paths, output_paths) # free GPU memory after the inference is finished if torch.cuda.is_available(): torch.cuda.empty_cache() return output_paths
def main(): parser = ArgumentParser() parser.add_argument("-r", "--runconfig", dest='runconfig', type=str, required=True, help=f"The run config yaml file") parser.add_argument("-n", "--numworkers", dest='numworkers', type=int, required=True, help=f"Number of workers") parser.add_argument("-d", "--device", dest='device', type=str, required=False, help=f"Device") args = parser.parse_args() runconfig = args.runconfig nworkers = int(args.numworkers) # Load configuration config = load_config(runconfig, nworkers, args.device) # Create the model model = get_model(config['model']) # Load model state model_path = config['model_path'] logger.info(f'Loading model from {model_path}...') utils.load_checkpoint(model_path, model) # use DataParallel if more than 1 GPU available device = config['device'] if torch.cuda.device_count() > 1 and not device.type == 'cpu': model = nn.DataParallel(model) logger.info(f'Using {torch.cuda.device_count()} GPUs for prediction') logger.info(f"Sending the model to '{device}'") model = model.to(device) output_dir = config['loaders'].get('output_dir', None) if output_dir is not None: os.makedirs(output_dir, exist_ok=True) logger.info(f'Saving predictions to: {output_dir}') # create predictor instance predictor = _get_predictor(model, output_dir, config) for test_loader in get_test_loaders(config): # run the model prediction on the test_loader and save the results in the output_dir predictor(test_loader)
def load_model(config): # create the model model = get_model(config) # load model state model_path = config["model_path"] logger.info(f"Loading model from {model_path}...") utils.load_checkpoint(model_path, model) device = config["device"] logger.info(f"Sending the model to '{device}'") model = model.to(device) return model
def main(): # Load configuration config = load_config() # Create the model model = get_model(config) # Load model state model_path = config['model_path'] logger.info(f'Loading model from {model_path}...') utils.load_checkpoint(model_path, model) logger.info(f"Sending the model to '{config['device']}'") model = model.to(config['device']) logger.info('Loading HDF5 datasets...') for test_loader in get_test_loaders(config): logger.info(f"Processing '{test_loader.dataset.file_path}'...") output_file = _get_output_file(test_loader.dataset) predictor = _get_predictor(model, test_loader, output_file, config) # run the model prediction on the entire dataset and save to the 'output_file' H5 predictor.predict()