示例#1
0
    def forward(self, k_re, k_im):
        k_re, k_im = make_contiguous(k_re, k_im)
        x_re, x_im = ifft(k_re, k_im)

        if self.norm == 'ortho':
            N = np.sqrt(x_re.size(-1))
            x_re *= N
            x_im *= N

        return x_re, x_im
示例#2
0
    def backward(self, grad_output_re, grad_output_im):
        grad_output_re, grad_output_im = make_contiguous(
            grad_output_re, grad_output_im)
        gi, gr = ifft(grad_output_im, grad_output_re)

        if self.norm == 'ortho':
            N = np.sqrt(gi.size(-1))
            gi *= N
            gr *= N

        return gr, gi
示例#3
0
    def conv(self, x, y):
        batchSize = x.size(0)
        dim = x.size(1)

        x_i = torch.FloatTensor(x.size()).cuda().zero_()
        y_i = torch.FloatTensor(x.size()).cuda().zero_()

        x1_r, x1_i = cfft.fft(x, x_i)
        y1_r, y1_i = cfft.fft(y, y_i)

        return cfft.ifft(x1_r * y1_r, x1_i * y1_i)
 def step(self, closure=None):
     """
     Performs a single optimization step.
     Arguments:
         closure (callable, optional): A closure that reevaluates the model and returns the loss.
     """
     loss = None
     if closure is not None:
         loss = closure()
     
     #import ipdb; ipdb.set_trace()
     for group in self.param_groups:
         weight_decay = group['weight_decay']
         momentum = group['momentum']
         dampening = group['dampening']
         nesterov = group['nesterov']
         
         # Update the parameters
         idx = 0
         for param in group['params']:
             if param.grad is None:
                 continue
             tmp = param.grad.view(-1, self.sizes[idx])
             tmp = tmp.data
             re, im = fft.fft(tmp, self.zero_Ns[idx])
             re = re*self.coeffs[idx]
             im = im*self.coeffs[idx]
             tmp = fft.ifft(re, im)[0]
             tmp = tmp.view(param.grad.size())
             param.grad.data = tmp
             idx += 1
             
             d_p = param.grad.data
             
             if weight_decay != 0:
                 d_p.add_(weight_decay, param.data)
             
             if momentum != 0:
                 param_state = self.state[param]
                 if 'momentum_buffer' not in param_state:
                     buf = param_state['momentum_buffer'] = torch.zeros_like(param.data)
                     buf.mul_(momentum).add_(d_p)
                 else:
                     buf = param_state['momentum_buffer']
                     buf.mul_(momentum).add_(1 - dampening, d_p)
                 
                 if nesterov:
                     d_p = d_p.add(momentum, buf)
                 else:
                     d_p = buf
             
             param.data.add_(-group['lr'], d_p)
     
     return loss
示例#5
0
def run_fft1(x, z):
    if torch.cuda.is_available():
        y1, y2 = cfft.fft(x, z)
        x_np = x.cpu().numpy().squeeze()
        y_np = nfft.fft(x_np)

        # print(y1.cpu().numpy())
        # print(y_np.real)

        assert np.allclose(y1.cpu().numpy(), y_np.real)
        assert np.allclose(y2.cpu().numpy(), y_np.imag)

        # assert np.allclose(y1[1,0].cpu().numpy(), nfft.fft2(x_np[1,0]).real)

        x0, z0 = cfft.ifft(y1, y2)
        x0_np = nfft.ifft(y_np)
        assert np.allclose(x0.cpu().numpy(), x0_np.real)
        assert np.allclose(z0.cpu().numpy(), x0_np.imag)

    else:
        print("Cuda not available, cannot test.")
示例#6
0
def test_acc3():
    batch = 3
    nch = 4
    n = 5

    x = torch.randn(batch * nch * n).view(batch, nch, n).cuda()
    y = torch.randn(batch * nch * n).view(batch, nch, n).cuda()

    x_i = torch.zeros(batch, nch, n).cuda()
    y_i = torch.zeros(batch, nch, n).cuda()

    if torch.cuda.is_available():

        x1_r, x1_i = cfft.fft(x, x_i)
        y1_r, y1_i = cfft.fft(y, y_i)

        print(x1_i)

        x0, z0 = cfft.ifft(x1_r * y1_r, x1_i * y1_i)

        print(z0)

    else:
        print("Cuda not available, cannot test.")
示例#7
0
    def step(self, closure=None):
        """
        Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            dampening = group['dampening']
            nesterov = group['nesterov']

            # Update the parameters
            idx = 0
            for param in group['params']:
                if self.sizes[idx] > 2:
                    #if idx < 1:
                    if param.grad is None:
                        continue
                    tmp = param.grad.view(-1, self.sizes[idx])

                    # The standard deviation of the injected noise
                    eps = math.sqrt(2. * self.lr)

                    tmp1 = tmp.data
                    tmp2 = eps * torch.randn(tmp.shape).cuda()

                    re, im = fft.fft(tmp1, self.zero_Ns[idx])
                    re, im = re * self.coeffs[idx], im * self.coeffs[idx]
                    tmp1 = fft.ifft(re, im)[0]

                    re, im = fft.fft(tmp2, self.zero_Ns[idx])
                    re, im = re * self.coeffs_noise[
                        idx], im * self.coeffs_noise[idx]
                    tmp2 = fft.ifft(re, im)[0]

                    tmp = tmp1 + tmp2
                    tmp = tmp.view(param.grad.size())

                    param.grad.data = tmp
                    #print(p.grad)
                    idx += 1

                    d_p = param.grad.data

                    if weight_decay != 0:
                        d_p.add_(weight_decay, param.data)

                    if momentum != 0:
                        param_state = self.state[param]
                        if 'momentum_buffer' not in param_state:
                            buf = param_state[
                                'momentum_buffer'] = torch.zeros_like(
                                    param.data)
                            buf.mul_(momentum).add_(d_p)
                        else:
                            buf = param_state['momentum_buffer']
                            buf.mul_(momentum).add_(1 - dampening, d_p)

                        if nesterov:
                            d_p = d_p.add(momentum, buf)
                        else:
                            d_p = buf

                    param.data.add_(-group['lr'], d_p)

        return loss
示例#8
0
def compact_bilinear_pooling_layer(bottom1, bottom2, output_dim, not_variable=True, sum_pool=False,
    rand_h_1=None, rand_s_1=None, rand_h_2=None, rand_s_2=None,
    seed_h_1=1, seed_s_1=3, seed_h_2=5, seed_s_2=7, sequential=True,
    compute_size=128):
    """
    Compute compact bilinear pooling over two bottom inputs. Reference:
    Yang Gao, et al. "Compact Bilinear Pooling." in Proceedings of IEEE
    Conference on Computer Vision and Pattern Recognition (2016).
    Akira Fukui, et al. "Multimodal Compact Bilinear Pooling for Visual Question
    Answering and Visual Grounding." arXiv preprint arXiv:1606.01847 (2016).
    Args:
        bottom1: 1st input, 4D Tensor of shape [batch_size, height, width, input_dim1].
        bottom2: 2nd input, 4D Tensor of shape [batch_size, height, width, input_dim2].
        output_dim: output dimension for compact bilinear pooling.
        sum_pool: (Optional) If True, sum the output along height and width
                  dimensions and return output shape [batch_size, output_dim].
                  Otherwise return [batch_size, height, width, output_dim].
                  Default: True.
        rand_h_1: (Optional) an 1D numpy array containing indices in interval
                  `[0, output_dim)`. Automatically generated from `seed_h_1`
                  if is None.
        rand_s_1: (Optional) an 1D numpy array of 1 and -1, having the same shape
                  as `rand_h_1`. Automatically generated from `seed_s_1` if is
                  None.
        rand_h_2: (Optional) an 1D numpy array containing indices in interval
                  `[0, output_dim)`. Automatically generated from `seed_h_2`
                  if is None.
        rand_s_2: (Optional) an 1D numpy array of 1 and -1, having the same shape
                  as `rand_h_2`. Automatically generated from `seed_s_2` if is
                  None.
        sequential: (Optional) if True, use the sequential FFT and IFFT
                    instead of tf.batch_fft or tf.batch_ifft to avoid
                    out-of-memory (OOM) error.
                    Note: sequential FFT and IFFT are only available on GPU
                    Default: True.
        compute_size: (Optional) The maximum size of sub-batch to be forwarded
                      through FFT or IFFT in one time. Large compute_size may
                      be faster but can cause OOM and FFT failure. This
                      parameter is only effective when sequential == True.
                      Default: 128.
    Returns:
        Compact bilinear pooled results of shape [batch_size, output_dim] or
        [batch_size, height, width, output_dim], depending on `sum_pool`.
    """

    # Static shapes are needed to construction count sketch matrix
    input_dim1 = bottom1.size()[-1]
    input_dim2 = bottom2.size()[-1]

    # Step 0: Generate vectors and sketch matrix for tensor count sketch
    # This is only done once during graph construction, and fixed during each
    # operation
    if rand_h_1 is None:
        np.random.seed(seed_h_1)
        rand_h_1 = np.random.randint(output_dim, size=input_dim1)
    if rand_s_1 is None:
        np.random.seed(seed_s_1)
        rand_s_1 = 2*np.random.randint(2, size=input_dim1) - 1
    sparse_sketch_matrix1 = _generate_sketch_matrix_pyt(rand_h_1, rand_s_1, output_dim)
    if rand_h_2 is None:
        np.random.seed(seed_h_2)
        rand_h_2 = np.random.randint(output_dim, size=input_dim2)
    if rand_s_2 is None:
        np.random.seed(seed_s_2)
        rand_s_2 = 2*np.random.randint(2, size=input_dim2) - 1
    sparse_sketch_matrix2 = _generate_sketch_matrix_pyt(rand_h_2, rand_s_2, output_dim)

    # Step 1: Flatten the input tensors and count sketch
    bottom1_flat = bottom1_pyt.view(-1, input_dim1).float()
    bottom2_flat = bottom2_pyt.view(-1, input_dim2).float()

    
   

    # Essentially:_
    #   sketch1 = bottom1 * sparse_sketch_matrix
    #   sketch2 = bottom2 * sparse_sketch_matrix
    # But tensorflow only supports left multiplying a sparse matrix, so:
    #   sketch1 = (sparse_sketch_matrix.T * bottom1.T).T
    #   sketch2 = (sparse_sketch_matrix.T * bottom2.T).T
    if not_variable == True:
	sketch1 = T.mm(sparse_sketch_matrix1.t().cuda(), bottom1_flat.t()).t()
	sketch2 = T.mm(sparse_sketch_matrix2.t().cuda(), bottom2_flat.t()).t()
    else:
	dense1 = Variable(sparse_sketch_matrix1.to_dense(), requires_grad = True).cuda()
	dense2 = Variable(sparse_sketch_matrix2.to_dense(), requires_grad = True).cuda()
	sketch1 = T.matmul(bottom1_flat, dense1).cuda()
	sketch2 = T.matmul(bottom2_flat, dense2).cuda()
	
    # Step 2: FFT
    if not_variable == True:
        fft1_real, fft1_img = fft.fft(sketch1, T.zeros(sketch1.size()).cuda())
        fft2_real, fft2_img  = fft.fft(sketch2, T.zeros(sketch2.size()).cuda())
    else:
	f = Fft.Fft()
        fft1_real, fft1_img = f(sketch1, Variable(T.zeros(sketch1.size())).cuda())
        fft2_real, fft2_img  = f(sketch2, Variable(T.zeros(sketch2.size())).cuda())

    # Step 3: Elementwise product
    fft_product_real = fft1_real * fft2_real -  fft1_img * fft2_img # The result of only real number part

    fft_product_img = fft1_real * fft2_img + fft2_real * fft1_img # The result of only real number part
    # Step 4: Inverse FFT and reshape back
    # Compute output shape dynamically: [batch_size, height, width, output_dim]
    #cbp_flat = tf.real(_ifft(fft_product, sequential, compute_size))

    if not_variable == True:
        cbp_flat, _ = fft.ifft(fft_product_real, fft_product_img)	
    else:
	fi = Fft.Ifft()
        cbp_flat, _ = fi(fft_product_real, fft_product_img)	

    output_shape = T.Size([bottom1.size()[0], bottom1.size()[1],bottom1.size()[2], output_dim])
    cbp = cbp_flat.view(output_shape)

    # Step 5: Sum pool over spatial dimensions, if specified
    if sum_pool:
        cbp = T.sum(T.sum(cbp, dim=1),dim=2)

    return cbp