def generate_visualization(viz_params: dict): #pylint: disable=redefined-outer-name """Generates the visualization object. Returns: output_dict : output dict of vizualization obj. """ viz_obj = Visualization( mlpipeline_ui_metadata=viz_params["mlpipeline_ui_metadata"], mlpipeline_metrics=viz_params["mlpipeline_metrics"], confusion_matrix_dict=viz_params["confusion_matrix_dict"], test_accuracy=viz_params["test_accuracy"], markdown=viz_params["markdown"], ) return viz_obj.output_dict
run_code = subprocess.run(entry_point, stdout=subprocess.PIPE) print(run_code.stdout) visualization_arguments = { "output": { "mlpipeline_ui_metadata": args["mlpipeline_ui_metadata"], "dataset_download_path": args["output_data"], }, } markdown_dict = {"storage": "inline", "source": visualization_arguments} print("Visualization arguments: ", markdown_dict) visualization = Visualization( mlpipeline_ui_metadata=args["mlpipeline_ui_metadata"], markdown=markdown_dict, ) y_array = np.array(y) label_names = [ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck",
fp.write(json.dumps(data)) visualization_arguments = { "input": { "tensorboard_root": TENSORBOARD_ROOT, "checkpoint_dir": CHECKPOINT_DIR, "dataset_path": DATASET_PATH, "model_name": script_dict["model_name"], "confusion_matrix_url": script_dict["confusion_matrix_url"], }, "output": { "mlpipeline_ui_metadata": args["mlpipeline_ui_metadata"], "mlpipeline_metrics": args["mlpipeline_metrics"], }, } markdown_dict = {"storage": "inline", "source": visualization_arguments} print("Visualization Arguments: ", markdown_dict) visualization = Visualization( test_accuracy=test_accuracy, confusion_matrix_dict=confusion_matrix_dict, mlpipeline_ui_metadata=args["mlpipeline_ui_metadata"], mlpipeline_metrics=args["mlpipeline_metrics"], markdown=markdown_dict, ) checpoint_dir_contents = os.listdir(CHECKPOINT_DIR) print(f"Checkpoint Directory Contents: {checpoint_dir_contents}")