示例#1
0
def precision_recall_curve(
    pred: torch.Tensor,
    target: torch.Tensor,
    sample_weight: Optional[Sequence] = None,
    pos_label: int = 1.,
):
    """
    Computes precision-recall pairs for different thresholds.

    .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.functional.precision_recall_curve.precision_recall_curve`
    """
    rank_zero_warn(
        "This `precision_recall_curve` was deprecated in v1.1.0 in favor of"
        " `from pytorch_lightning.metrics.functional.precision_recall_curve import precision_recall_curve`."
        " It will be removed in v1.3.0", DeprecationWarning)
    return __prc(preds=pred,
                 target=target,
                 sample_weights=sample_weight,
                 pos_label=pos_label)
示例#2
0
def multiclass_precision_recall_curve(
    pred: torch.Tensor,
    target: torch.Tensor,
    sample_weight: Optional[Sequence] = None,
    num_classes: Optional[int] = None,
):
    """
    Computes precision-recall pairs for different thresholds given a multiclass scores.

    .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.functional.precision_recall_curve.precision_recall_curve`
    """
    rank_zero_warn(
        "This `multiclass_precision_recall_curve` was deprecated in v1.1.0 in favor of"
        " `from pytorch_lightning.metrics.functional.precision_recall_curve import precision_recall_curve`."
        " It will be removed in v1.3.0", DeprecationWarning)
    if num_classes is None:
        num_classes = get_num_classes(pred, target, num_classes)
    return __prc(preds=pred,
                 target=target,
                 sample_weights=sample_weight,
                 num_classes=num_classes)