示例#1
0
    def __init__(
        self,
        num_classes: int,
        ignore_index: Optional[int] = None,
        absent_score: float = 0.0,
        threshold: float = 0.5,
        reduction: str = "elementwise_mean",
        compute_on_step: bool = True,
        dist_sync_on_step: bool = False,
        process_group: Optional[Any] = None,
    ):
        """
        This implementation refers to :class:`~torchmetrics.IoU`.

        .. deprecated::
            Use :class:`~torchmetrics.IoU`. Will be removed in v1.5.0.
        """
        void(
            num_classes,
            ignore_index,
            absent_score,
            threshold,
            reduction,
            compute_on_step,
            dist_sync_on_step,
            process_group,
        )
    def __init__(
        self,
        threshold: float = 0.5,
        top_k: Optional[int] = None,
        reduce: str = "micro",
        num_classes: Optional[int] = None,
        ignore_index: Optional[int] = None,
        mdmc_reduce: Optional[str] = None,
        is_multiclass: Optional[bool] = None,
        compute_on_step: bool = True,
        dist_sync_on_step: bool = False,
        process_group: Optional[Any] = None,
        dist_sync_fn: Callable = None,
    ):
        """
        This implementation refers to :class:`~torchmetrics.StatScores`.

        .. deprecated::
            Use :class:`~torchmetrics.StatScores`. Will be removed in v1.5.0.
        """
        void(
            threshold,
            top_k,
            reduce,
            num_classes,
            ignore_index,
            mdmc_reduce,
            is_multiclass,
            compute_on_step,
            dist_sync_on_step,
            process_group,
            dist_sync_fn,
        )
示例#3
0
 def __init__(self, metrics: Union[List[Metric], Tuple[Metric],
                                   Dict[str, Metric]]):
     """
     .. deprecated::
         Use :class:`torchmetrics.MetricCollection`. Will be removed in v1.5.0.
     """
     void(metrics)
示例#4
0
 def __init__(
     self,
     operator: Callable,
     metric_a: Union[Metric, int, float, torch.Tensor],
     metric_b: Union[Metric, int, float, torch.Tensor, None],
 ):
     """
     .. deprecated::
         Use :class:`torchmetrics.metric.CompositionalMetric`. Will be removed in v1.5.0.
     """
     void(operator, metric_a, metric_b)
示例#5
0
 def __init__(
     self,
     compute_on_step: bool = True,
     dist_sync_on_step: bool = False,
     process_group: Optional[Any] = None,
     dist_sync_fn: Callable = None,
 ):
     r"""
     .. deprecated::
         Use :class:`torchmetrics.Metric`. Will be removed in v1.5.0.
     """
     void(compute_on_step, dist_sync_on_step, process_group, dist_sync_fn)
示例#6
0
    def __init__(
        self,
        compute_on_step: bool = True,
        dist_sync_on_step: bool = False,
        process_group: Optional[Any] = None,
        dist_sync_fn: Callable = None,
    ):
        """
        This implementation refers to :class:`~torchmetrics.MeanAbsoluteError`.

        .. deprecated::
            Use :class:`~torchmetrics.MeanAbsoluteError`. Will be removed in v1.5.0.
        """
        void(compute_on_step, dist_sync_on_step, process_group, dist_sync_fn)
示例#7
0
    def __init__(
        self,
        num_classes: Optional[int] = None,
        pos_label: Optional[int] = None,
        compute_on_step: bool = True,
        dist_sync_on_step: bool = False,
        process_group: Optional[Any] = None,
    ):
        """
        This implementation refers to :class:`~torchmetrics.ROC`.

        .. deprecated::
            Use :class:`~torchmetrics.ROC`. Will be removed in v1.5.0.
        """
        void(num_classes, pos_label, compute_on_step, dist_sync_on_step, process_group)
    def __init__(
        self,
        threshold: float = 0.5,
        compute_on_step: bool = True,
        dist_sync_on_step: bool = False,
        process_group: Optional[Any] = None,
        dist_sync_fn: Callable = None,
    ):
        """
        This implementation refers to :class:`~torchmetrics.HammingDistance`.

        .. deprecated::
            Use :class:`~torchmetrics.HammingDistance`. Will be removed in v1.5.0.
        """
        void(threshold, compute_on_step, dist_sync_on_step, process_group, dist_sync_fn)
def mean_squared_log_error(preds: torch.Tensor,
                           target: torch.Tensor) -> torch.Tensor:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.mean_squared_log_error`. Will be removed in v1.5.0.
    """
    return void(preds, target)
    def __init__(
        self,
        multioutput: str = "uniform_average",
        compute_on_step: bool = True,
        dist_sync_on_step: bool = False,
        process_group: Optional[Any] = None,
        dist_sync_fn: Callable = None,
    ):
        """
        This implementation refers to :class:`~torchmetrics.ExplainedVariance`.

        .. deprecated::
            Use :class:`~torchmetrics.ExplainedVariance`. Will be removed in v1.5.0.
        """
        void(multioutput, compute_on_step, dist_sync_on_step, process_group,
             dist_sync_fn)
def hamming_distance(preds: torch.Tensor,
                     target: torch.Tensor,
                     threshold: float = 0.5) -> torch.Tensor:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.hamming_distance`. Will be removed in v1.5.0.
    """
    return void(preds, target, threshold)
示例#12
0
    def __init__(
        self,
        data_range: Optional[float] = None,
        base: float = 10.0,
        reduction: str = "elementwise_mean",
        dim: Optional[Union[int, Tuple[int, ...]]] = None,
        compute_on_step: bool = True,
        dist_sync_on_step: bool = False,
        process_group: Optional[Any] = None,
    ):
        """
        This implementation refers to :class:`~torchmetrics.PSNR`.

        .. deprecated::
            Use :class:`~torchmetrics.PSNR`. Will be removed in v1.5.0.
        """
        void(data_range, base, reduction, dim, compute_on_step, dist_sync_on_step, process_group)
示例#13
0
def auc(x: torch.Tensor,
        y: torch.Tensor,
        reorder: bool = False) -> torch.Tensor:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.auc`. Will be removed in v1.5.0.
    """
    return void(x, y, reorder)
示例#14
0
    def __init__(
        self,
        num_classes: int,
        normalize: Optional[str] = None,
        threshold: float = 0.5,
        compute_on_step: bool = True,
        dist_sync_on_step: bool = False,
        process_group: Optional[Any] = None,
    ):
        """
        This implementation refers to :class:`~torchmetrics.ConfusionMatrix`.

        .. deprecated::
            Use :class:`~torchmetrics.ConfusionMatrix`. Will be removed in v1.5.0.
        """
        void(num_classes, normalize, threshold, compute_on_step,
             dist_sync_on_step, process_group)
示例#15
0
def r2score(preds: torch.Tensor,
            target: torch.Tensor,
            adjusted: int = 0,
            multioutput: str = "uniform_average") -> torch.Tensor:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.r2score`. Will be removed in v1.5.0.
    """
    return void(preds, target, adjusted, multioutput)
示例#16
0
    def __init__(
        self,
        threshold: float = 0.5,
        top_k: Optional[int] = None,
        subset_accuracy: bool = False,
        compute_on_step: bool = True,
        dist_sync_on_step: bool = False,
        process_group: Optional[Any] = None,
        dist_sync_fn: Callable = None,
    ):
        """
        This implementation refers to :class:`~torchmetrics.Accuracy`.

        .. deprecated::
            Use :class:`~torchmetrics.Accuracy`. Will be removed in v1.5.0.
        """
        void(threshold, top_k, subset_accuracy, compute_on_step,
             dist_sync_on_step, process_group, dist_sync_fn)
示例#17
0
    def __init__(
        self,
        num_classes: int,
        threshold: float = 0.5,
        average: str = "micro",
        multilabel: bool = False,
        compute_on_step: bool = True,
        dist_sync_on_step: bool = False,
        process_group: Optional[Any] = None,
    ):
        """
        This implementation refers to :class:`~torchmetrics.F1`.

        .. deprecated::
            Use :class:`~torchmetrics.F1`. Will be removed in v1.5.0.
        """
        void(num_classes, threshold, average, multilabel, compute_on_step,
             dist_sync_on_step, process_group)
示例#18
0
def embedding_similarity(batch: torch.Tensor,
                         similarity: str = "cosine",
                         reduction: str = "none",
                         zero_diagonal: bool = True) -> torch.Tensor:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.embedding_similarity`. Will be removed in v1.5.0.
    """
    return void(batch, similarity, reduction, zero_diagonal)
示例#19
0
def bleu_score(translate_corpus: Sequence[str],
               reference_corpus: Sequence[str],
               n_gram: int = 4,
               smooth: bool = False) -> torch.Tensor:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.bleu_score`. Will be removed in v1.5.0.
    """
    return void(translate_corpus, reference_corpus, n_gram, smooth)
示例#20
0
    def __init__(
        self,
        num_classes: Optional[int] = None,
        pos_label: Optional[int] = None,
        average: Optional[str] = 'macro',
        max_fpr: Optional[float] = None,
        compute_on_step: bool = True,
        dist_sync_on_step: bool = False,
        process_group: Optional[Any] = None,
        dist_sync_fn: Callable = None,
    ):
        """
        This implementation refers to :class:`~torchmetrics.AUROC`.

        .. deprecated::
            Use :class:`~torchmetrics.AUROC`. Will be removed in v1.5.0.
        """
        void(num_classes, pos_label, average, max_fpr, compute_on_step, dist_sync_on_step, process_group, dist_sync_fn)
示例#21
0
def explained_variance(
    preds: torch.Tensor,
    target: torch.Tensor,
    multioutput: str = 'uniform_average',
) -> Union[torch.Tensor, Sequence[torch.Tensor]]:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.explained_variance`. Will be removed in v1.5.0.
    """
    return void(preds, target, multioutput)
示例#22
0
def confusion_matrix(preds: torch.Tensor,
                     target: torch.Tensor,
                     num_classes: int,
                     normalize: Optional[str] = None,
                     threshold: float = 0.5) -> torch.Tensor:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.confusion_matrix`. Will be removed in v1.5.0.
    """
    return void(preds, target, num_classes, normalize, threshold)
示例#23
0
    def __init__(
        self,
        kernel_size: Sequence[int] = (11, 11),
        sigma: Sequence[float] = (1.5, 1.5),
        reduction: str = "elementwise_mean",
        data_range: Optional[float] = None,
        k1: float = 0.01,
        k2: float = 0.03,
        compute_on_step: bool = True,
        dist_sync_on_step: bool = False,
        process_group: Optional[Any] = None,
    ):
        """
        This implementation refers to :class:`~torchmetrics.SSIM`.

        .. deprecated::
            Use :class:`~torchmetrics.SSIM`. Will be removed in v1.5.0.
        """
        void(kernel_size, sigma, reduction, data_range, k1, k2,
             compute_on_step, dist_sync_on_step, process_group)
示例#24
0
def f1(preds: torch.Tensor,
       target: torch.Tensor,
       num_classes: int,
       threshold: float = 0.5,
       average: str = "micro",
       multilabel: Optional[bool] = None) -> torch.Tensor:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.f1`. Will be removed in v1.5.0.
    """
    return void(preds, target, num_classes, threshold, average, multilabel)
def average_precision(
    preds: torch.Tensor,
    target: torch.Tensor,
    num_classes: Optional[int] = None,
    pos_label: Optional[int] = None,
    sample_weights: Optional[Sequence] = None,
) -> Union[List[torch.Tensor], torch.Tensor]:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.average_precision`. Will be removed in v1.5.0.
    """
    return void(preds, target, num_classes, pos_label, sample_weights)
示例#26
0
def accuracy(
    preds: torch.Tensor,
    target: torch.Tensor,
    threshold: float = 0.5,
    top_k: Optional[int] = None,
    subset_accuracy: bool = False,
) -> torch.Tensor:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.accuracy`. Will be removed in v1.5.0.
    """
    return void(preds, target, threshold, top_k, subset_accuracy)
def precision_recall_curve(
    preds: torch.Tensor,
    target: torch.Tensor,
    num_classes: Optional[int] = None,
    pos_label: Optional[int] = None,
    sample_weights: Optional[Sequence] = None,
) -> Union[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], Tuple[List[torch.Tensor], List[torch.Tensor],
                                                                  List[torch.Tensor]], ]:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.accuracy`. Will be removed in v1.5.0.
    """
    return void(preds, target, num_classes, pos_label, sample_weights)
示例#28
0
def roc(
    preds: Tensor,
    target: Tensor,
    num_classes: Optional[int] = None,
    pos_label: Optional[int] = None,
    sample_weights: Optional[Sequence] = None,
) -> Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor],
                                                List[Tensor]]]:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.roc`. Will be removed in v1.5.0.
    """
    return void(preds, target, num_classes, pos_label, sample_weights)
示例#29
0
def psnr(
    preds: torch.Tensor,
    target: torch.Tensor,
    data_range: Optional[float] = None,
    base: float = 10.0,
    reduction: str = 'elementwise_mean',
    dim: Optional[Union[int, Tuple[int, ...]]] = None,
) -> torch.Tensor:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.psnr`. Will be removed in v1.5.0.
    """
    return void(preds, target, data_range, base, reduction, dim)
示例#30
0
def iou(
    pred: torch.Tensor,
    target: torch.Tensor,
    ignore_index: Optional[int] = None,
    absent_score: float = 0.0,
    threshold: float = 0.5,
    num_classes: Optional[int] = None,
    reduction: str = "elementwise_mean",
) -> torch.Tensor:
    """
    .. deprecated::
        Use :func:`torchmetrics.functional.iou`. Will be removed in v1.5.0.
    """
    return void(pred, target, ignore_index, absent_score, threshold,
                num_classes, reduction)