def __init__( self, num_classes: int, ignore_index: Optional[int] = None, absent_score: float = 0.0, threshold: float = 0.5, reduction: str = "elementwise_mean", compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, ): """ This implementation refers to :class:`~torchmetrics.IoU`. .. deprecated:: Use :class:`~torchmetrics.IoU`. Will be removed in v1.5.0. """ void( num_classes, ignore_index, absent_score, threshold, reduction, compute_on_step, dist_sync_on_step, process_group, )
def __init__( self, threshold: float = 0.5, top_k: Optional[int] = None, reduce: str = "micro", num_classes: Optional[int] = None, ignore_index: Optional[int] = None, mdmc_reduce: Optional[str] = None, is_multiclass: Optional[bool] = None, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): """ This implementation refers to :class:`~torchmetrics.StatScores`. .. deprecated:: Use :class:`~torchmetrics.StatScores`. Will be removed in v1.5.0. """ void( threshold, top_k, reduce, num_classes, ignore_index, mdmc_reduce, is_multiclass, compute_on_step, dist_sync_on_step, process_group, dist_sync_fn, )
def __init__(self, metrics: Union[List[Metric], Tuple[Metric], Dict[str, Metric]]): """ .. deprecated:: Use :class:`torchmetrics.MetricCollection`. Will be removed in v1.5.0. """ void(metrics)
def __init__( self, operator: Callable, metric_a: Union[Metric, int, float, torch.Tensor], metric_b: Union[Metric, int, float, torch.Tensor, None], ): """ .. deprecated:: Use :class:`torchmetrics.metric.CompositionalMetric`. Will be removed in v1.5.0. """ void(operator, metric_a, metric_b)
def __init__( self, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): r""" .. deprecated:: Use :class:`torchmetrics.Metric`. Will be removed in v1.5.0. """ void(compute_on_step, dist_sync_on_step, process_group, dist_sync_fn)
def __init__( self, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): """ This implementation refers to :class:`~torchmetrics.MeanAbsoluteError`. .. deprecated:: Use :class:`~torchmetrics.MeanAbsoluteError`. Will be removed in v1.5.0. """ void(compute_on_step, dist_sync_on_step, process_group, dist_sync_fn)
def __init__( self, num_classes: Optional[int] = None, pos_label: Optional[int] = None, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, ): """ This implementation refers to :class:`~torchmetrics.ROC`. .. deprecated:: Use :class:`~torchmetrics.ROC`. Will be removed in v1.5.0. """ void(num_classes, pos_label, compute_on_step, dist_sync_on_step, process_group)
def __init__( self, threshold: float = 0.5, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): """ This implementation refers to :class:`~torchmetrics.HammingDistance`. .. deprecated:: Use :class:`~torchmetrics.HammingDistance`. Will be removed in v1.5.0. """ void(threshold, compute_on_step, dist_sync_on_step, process_group, dist_sync_fn)
def mean_squared_log_error(preds: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """ .. deprecated:: Use :func:`torchmetrics.functional.mean_squared_log_error`. Will be removed in v1.5.0. """ return void(preds, target)
def __init__( self, multioutput: str = "uniform_average", compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): """ This implementation refers to :class:`~torchmetrics.ExplainedVariance`. .. deprecated:: Use :class:`~torchmetrics.ExplainedVariance`. Will be removed in v1.5.0. """ void(multioutput, compute_on_step, dist_sync_on_step, process_group, dist_sync_fn)
def hamming_distance(preds: torch.Tensor, target: torch.Tensor, threshold: float = 0.5) -> torch.Tensor: """ .. deprecated:: Use :func:`torchmetrics.functional.hamming_distance`. Will be removed in v1.5.0. """ return void(preds, target, threshold)
def __init__( self, data_range: Optional[float] = None, base: float = 10.0, reduction: str = "elementwise_mean", dim: Optional[Union[int, Tuple[int, ...]]] = None, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, ): """ This implementation refers to :class:`~torchmetrics.PSNR`. .. deprecated:: Use :class:`~torchmetrics.PSNR`. Will be removed in v1.5.0. """ void(data_range, base, reduction, dim, compute_on_step, dist_sync_on_step, process_group)
def auc(x: torch.Tensor, y: torch.Tensor, reorder: bool = False) -> torch.Tensor: """ .. deprecated:: Use :func:`torchmetrics.functional.auc`. Will be removed in v1.5.0. """ return void(x, y, reorder)
def __init__( self, num_classes: int, normalize: Optional[str] = None, threshold: float = 0.5, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, ): """ This implementation refers to :class:`~torchmetrics.ConfusionMatrix`. .. deprecated:: Use :class:`~torchmetrics.ConfusionMatrix`. Will be removed in v1.5.0. """ void(num_classes, normalize, threshold, compute_on_step, dist_sync_on_step, process_group)
def r2score(preds: torch.Tensor, target: torch.Tensor, adjusted: int = 0, multioutput: str = "uniform_average") -> torch.Tensor: """ .. deprecated:: Use :func:`torchmetrics.functional.r2score`. Will be removed in v1.5.0. """ return void(preds, target, adjusted, multioutput)
def __init__( self, threshold: float = 0.5, top_k: Optional[int] = None, subset_accuracy: bool = False, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): """ This implementation refers to :class:`~torchmetrics.Accuracy`. .. deprecated:: Use :class:`~torchmetrics.Accuracy`. Will be removed in v1.5.0. """ void(threshold, top_k, subset_accuracy, compute_on_step, dist_sync_on_step, process_group, dist_sync_fn)
def __init__( self, num_classes: int, threshold: float = 0.5, average: str = "micro", multilabel: bool = False, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, ): """ This implementation refers to :class:`~torchmetrics.F1`. .. deprecated:: Use :class:`~torchmetrics.F1`. Will be removed in v1.5.0. """ void(num_classes, threshold, average, multilabel, compute_on_step, dist_sync_on_step, process_group)
def embedding_similarity(batch: torch.Tensor, similarity: str = "cosine", reduction: str = "none", zero_diagonal: bool = True) -> torch.Tensor: """ .. deprecated:: Use :func:`torchmetrics.functional.embedding_similarity`. Will be removed in v1.5.0. """ return void(batch, similarity, reduction, zero_diagonal)
def bleu_score(translate_corpus: Sequence[str], reference_corpus: Sequence[str], n_gram: int = 4, smooth: bool = False) -> torch.Tensor: """ .. deprecated:: Use :func:`torchmetrics.functional.bleu_score`. Will be removed in v1.5.0. """ return void(translate_corpus, reference_corpus, n_gram, smooth)
def __init__( self, num_classes: Optional[int] = None, pos_label: Optional[int] = None, average: Optional[str] = 'macro', max_fpr: Optional[float] = None, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): """ This implementation refers to :class:`~torchmetrics.AUROC`. .. deprecated:: Use :class:`~torchmetrics.AUROC`. Will be removed in v1.5.0. """ void(num_classes, pos_label, average, max_fpr, compute_on_step, dist_sync_on_step, process_group, dist_sync_fn)
def explained_variance( preds: torch.Tensor, target: torch.Tensor, multioutput: str = 'uniform_average', ) -> Union[torch.Tensor, Sequence[torch.Tensor]]: """ .. deprecated:: Use :func:`torchmetrics.functional.explained_variance`. Will be removed in v1.5.0. """ return void(preds, target, multioutput)
def confusion_matrix(preds: torch.Tensor, target: torch.Tensor, num_classes: int, normalize: Optional[str] = None, threshold: float = 0.5) -> torch.Tensor: """ .. deprecated:: Use :func:`torchmetrics.functional.confusion_matrix`. Will be removed in v1.5.0. """ return void(preds, target, num_classes, normalize, threshold)
def __init__( self, kernel_size: Sequence[int] = (11, 11), sigma: Sequence[float] = (1.5, 1.5), reduction: str = "elementwise_mean", data_range: Optional[float] = None, k1: float = 0.01, k2: float = 0.03, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, ): """ This implementation refers to :class:`~torchmetrics.SSIM`. .. deprecated:: Use :class:`~torchmetrics.SSIM`. Will be removed in v1.5.0. """ void(kernel_size, sigma, reduction, data_range, k1, k2, compute_on_step, dist_sync_on_step, process_group)
def f1(preds: torch.Tensor, target: torch.Tensor, num_classes: int, threshold: float = 0.5, average: str = "micro", multilabel: Optional[bool] = None) -> torch.Tensor: """ .. deprecated:: Use :func:`torchmetrics.functional.f1`. Will be removed in v1.5.0. """ return void(preds, target, num_classes, threshold, average, multilabel)
def average_precision( preds: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, pos_label: Optional[int] = None, sample_weights: Optional[Sequence] = None, ) -> Union[List[torch.Tensor], torch.Tensor]: """ .. deprecated:: Use :func:`torchmetrics.functional.average_precision`. Will be removed in v1.5.0. """ return void(preds, target, num_classes, pos_label, sample_weights)
def accuracy( preds: torch.Tensor, target: torch.Tensor, threshold: float = 0.5, top_k: Optional[int] = None, subset_accuracy: bool = False, ) -> torch.Tensor: """ .. deprecated:: Use :func:`torchmetrics.functional.accuracy`. Will be removed in v1.5.0. """ return void(preds, target, threshold, top_k, subset_accuracy)
def precision_recall_curve( preds: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, pos_label: Optional[int] = None, sample_weights: Optional[Sequence] = None, ) -> Union[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], Tuple[List[torch.Tensor], List[torch.Tensor], List[torch.Tensor]], ]: """ .. deprecated:: Use :func:`torchmetrics.functional.accuracy`. Will be removed in v1.5.0. """ return void(preds, target, num_classes, pos_label, sample_weights)
def roc( preds: Tensor, target: Tensor, num_classes: Optional[int] = None, pos_label: Optional[int] = None, sample_weights: Optional[Sequence] = None, ) -> Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor], List[Tensor]]]: """ .. deprecated:: Use :func:`torchmetrics.functional.roc`. Will be removed in v1.5.0. """ return void(preds, target, num_classes, pos_label, sample_weights)
def psnr( preds: torch.Tensor, target: torch.Tensor, data_range: Optional[float] = None, base: float = 10.0, reduction: str = 'elementwise_mean', dim: Optional[Union[int, Tuple[int, ...]]] = None, ) -> torch.Tensor: """ .. deprecated:: Use :func:`torchmetrics.functional.psnr`. Will be removed in v1.5.0. """ return void(preds, target, data_range, base, reduction, dim)
def iou( pred: torch.Tensor, target: torch.Tensor, ignore_index: Optional[int] = None, absent_score: float = 0.0, threshold: float = 0.5, num_classes: Optional[int] = None, reduction: str = "elementwise_mean", ) -> torch.Tensor: """ .. deprecated:: Use :func:`torchmetrics.functional.iou`. Will be removed in v1.5.0. """ return void(pred, target, ignore_index, absent_score, threshold, num_classes, reduction)