def export2caffe(weights, num_classes, img_size): model = UNet(num_classes) weights = torch.load(weights, map_location='cpu') model.load_state_dict(weights['model']) model.eval() fuse(model) name = 'DeepLabV3Plus' dummy_input = torch.ones([1, 3, img_size[1], img_size[0]]) pytorch2caffe.trans_net(model, dummy_input, name) pytorch2caffe.save_prototxt('{}.prototxt'.format(name)) pytorch2caffe.save_caffemodel('{}.caffemodel'.format(name))
def export2caffe(weights, num_classes, img_size): os.environ['MODEL_EXPORT'] = '1' model = YOLOV3(num_classes) weights = torch.load(weights, map_location='cpu') model.load_state_dict(weights['model']) model.eval() fuse(model) name = 'RYOLOV3' dummy_input = torch.ones([1, 3, img_size[1], img_size[0]]) pytorch2caffe.trans_net(model, dummy_input, name) pytorch2caffe.save_prototxt('{}.prototxt'.format(name)) pytorch2caffe.save_caffemodel('{}.caffemodel'.format(name))
def export2caffe(weights, num_classes, img_size): model = MobileNetV2(num_classes) weights = torch.load(weights, map_location='cpu') model.load_state_dict(weights['model']) model.eval() fuse(model) dummy_input = torch.ones([1, 3, img_size[1], img_size[0]]) torch.onnx.export(model, dummy_input, 'MobileNetV2.onnx', input_names=['input'], output_names=['output'], opset_version=7)