示例#1
0
 def load_model(self, model_dir: str, model_config: str = "model_config.json"):
     model_config = os.path.join(model_dir,model_config)
     model_config = json.load(open(model_config))
     output_config_file = os.path.join(model_dir, CONFIG_NAME)
     output_model_file = os.path.join(model_dir, WEIGHTS_NAME)
     config = BertConfig(output_config_file)
     model = BertForTokenClassification(config, num_labels=model_config["num_labels"])
     model.load_state_dict(torch.load(output_model_file))
     tokenizer = FullTokenizer(model_file='cased_bert_base_pytorch/mn_cased.model', vocab_file='cased_bert_base_pytorch/mn_cased.vocab', do_lower_case=False)
     return model, tokenizer, model_config
示例#2
0
 def load_model(self, model_dir: str, model_config: str = "model_config.json"):
     model_config = os.path.join(model_dir,model_config)
     model_config = json.load(open(model_config))
     output_config_file = os.path.join(model_dir, CONFIG_NAME)
     output_model_file = os.path.join(model_dir, WEIGHTS_NAME)
     config = BertConfig(output_config_file)
     model = BertForTokenClassification(config, num_labels=model_config["num_labels"])
     model.load_state_dict(torch.load(output_model_file))
     tokenizer = BertTokenizer.from_pretrained(model_config["bert_model"],do_lower_case=False)
     return model, tokenizer, model_config
示例#3
0
    def __init__(self, language=Language.ENGLISH, num_labels=2, cache_dir="."):
        """
        Initializes the classifier and the underlying pre-trained model.

        Args:
            language (Language, optional): The pre-trained model's language.
                The value of this argument determines which BERT model is
                used:
                    Language.ENGLISH: "bert-base-uncased"
                    Language.ENGLISHCASED: "bert-base-cased"
                    Language.ENGLISHLARGE: "bert-large-uncased"
                    Language.ENGLISHLARGECASED: "bert-large-cased"
                    Language.CHINESE: "bert-base-chinese"
                    Language.MULTILINGUAL: "bert-base-multilingual-cased"
                Defaults to Language.ENGLISH.
            num_labels (int, optional): The number of unique labels in the
                data. Defaults to 2.
            cache_dir (str, optional): Location of BERT's cache directory.
                Defaults to ".".
        """

        if num_labels < 2:
            raise ValueError("Number of labels should be at least 2.")

        self.language = language
        self.num_labels = num_labels
        self.cache_dir = cache_dir

        self.model = BertForTokenClassification.from_pretrained(
            language, cache_dir=cache_dir, num_labels=num_labels)
        self.has_cuda = self.cuda
示例#4
0
def bertForTokenClassification(*args, **kwargs):
    """
    BertForTokenClassification is a fine-tuning model that includes BertModel
    and a token-level classifier on top of the BertModel. Note that the classification
    head is only initialized and has to be trained.

    The token-level classifier is a linear layer that takes as input the last
    hidden state of the sequence.

    Args:
    num_labels: the number (>=2) of classes for the classifier.

    Example:
        # Load the tokenizer
        >>> import torch
        >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
        #  Prepare tokenized input
        >>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
        >>> tokenized_text = tokenizer.tokenize(text)
        >>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
        >>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
        >>> tokens_tensor = torch.tensor([indexed_tokens])
        >>> segments_tensors = torch.tensor([segments_ids])
        # Load bertForTokenClassification
        >>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForTokenClassification', 'bert-base-cased', num_labels=2)
        >>> model.eval()
        # Predict the token classification logits
        >>> with torch.no_grad():
                classif_logits = model(tokens_tensor, segments_tensors)
        # Or get the token classification loss
        >>> labels = torch.tensor([[0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0]])
        >>> classif_loss = model(tokens_tensor, segments_tensors, labels=labels) # set model.train() before if training this loss
    """
    model = BertForTokenClassification.from_pretrained(*args, **kwargs)
    return model
示例#5
0
    def __init__(self,
                 model_dir,
                 batch_size,
                 epoch,
                 max_seq_length=128,
                 local_rank=-1,
                 no_cuda=False):

        self._batch_size = batch_size
        self._local_rank = local_rank
        self._max_seq_length = max_seq_length

        self._device, self._n_gpu = get_device(no_cuda=no_cuda)

        self._model_config = json.load(
            open(os.path.join(model_dir, "model_config.json"), "r"))

        self._label_to_id = self._model_config['label_map']

        self._label_map = {
            v: k
            for k, v in self._model_config['label_map'].items()
        }

        self._bert_tokenizer = \
            BertTokenizer.from_pretrained(model_dir,
                                          do_lower_case=self._model_config['do_lower'])

        output_config_file = os.path.join(model_dir, CONFIG_NAME)

        output_model_file = os.path.join(
            model_dir, "pytorch_model_ep{}.bin".format(epoch))

        config = BertConfig(output_config_file)

        self._model = BertForTokenClassification(config,
                                                 num_labels=len(
                                                     self._label_map))
        self._model.load_state_dict(
            torch.load(output_model_file,
                       map_location=lambda storage, loc: storage
                       if no_cuda else None))
        self._model.to(self._device)
        self._model.eval()

        return
示例#6
0
    def __init__(self):
        super(Bert_CRF, self).__init__()
        self.bert = BertForTokenClassification.from_pretrained(
            args.bert_model,
            cache_dir=PYTORCH_PRETRAINED_BERT_CACHE,
            num_labels=len(args.labels))

        self.crf = CRF(len(args.labels))
def bertForTokenClassification(*args, **kwargs):
    """
    BertForTokenClassification is a fine-tuning model that includes BertModel
    and a token-level classifier on top of the BertModel.

    The token-level classifier is a linear layer that takes as input the last
    hidden state of the sequence.
    """
    model = BertForTokenClassification.from_pretrained(*args, **kwargs)
    return model
def test_BertForTokenClassification():
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
    config = BertConfig(vocab_size_or_config_json_file=32000,
                        hidden_size=768,
                        num_hidden_layers=12,
                        num_attention_heads=12,
                        intermediate_size=3072)
    num_labels = 2
    model = BertForTokenClassification(config, num_labels)
    print(model(input_ids, token_type_ids, input_mask))
示例#9
0
 def load_model(self,
                model_dir: str,
                model_config: str = "model_config.json"):
     model_config = os.path.join(model_dir, model_config)
     model_config = json.load(open(model_config))
     output_config_file = os.path.join(model_dir, CONFIG_NAME)
     output_model_file = os.path.join(model_dir, WEIGHTS_NAME)
     config = BertConfig(output_config_file)
     model = BertForTokenClassification(
         config, num_labels=model_config["num_labels"])
     model.load_state_dict(
         torch.load(output_model_file, map_location=self.device))
     if self.docker:
         fn = os.path.join('/root/.pytorch_pretrained_bert', TMF)
         tokenizer = BertTokenizer.from_pretrained(fn,
                                                   cache_dir=None,
                                                   do_lower_case=False)
     else:
         tokenizer = BertTokenizer.from_pretrained(
             model_config["bert_model"], do_lower_case=False)
     return model, tokenizer, model_config
示例#10
0
def bertForTokenClassification(*args, **kwargs):
    """
    BertForTokenClassification is a fine-tuning model that includes BertModel
    and a token-level classifier on top of the BertModel.

    The token-level classifier is a linear layer that takes as input the last
    hidden state of the sequence.

    Args:
    num_labels: the number (>=2) of classes for the classifier.

    Example:
        >>> torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForTokenClassification', 'bert-base-cased', num_labels=2, force_reload=True)
    """
    model = BertForTokenClassification.from_pretrained(*args, **kwargs)
    return model
示例#11
0
    def __init__(self, data_dir, bert_model_dir, fine_tuning_model_dir):
        self.max_seq_length = 128
        task_name = "MSRANER"
        eval_batch_size = 32
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        processor = DataProcessor(os.path.join(data_dir, task_name), do_lower_case=True)
        processor.get_train_examples()
        self.label_list = processor.all_labels
        num_labels = len(self.label_list)

        self.tokenizer = BertTokenizer.from_pretrained(bert_model_dir, do_lower_case=True)

        output_model_file = os.path.join(fine_tuning_model_dir, task_name, "pytorch_model.bin")

        # Load a trained model that you have fine-tuned
        model_state_dict = torch.load(output_model_file)
        self.model = BertForTokenClassification.from_pretrained(bert_model_dir, state_dict=model_state_dict,
                                                                num_labels=num_labels)
        self.model.to(self.device)
        self.model.eval()
        self.all_labels = processor.all_labels
示例#12
0
    def load_model(self,
                   model_dir: str,
                   model_config: str = "model_config.json"):
        model_config = os.path.join(model_dir, model_config)
        model_config = json.load(open(model_config))
        output_config_file = os.path.join(model_dir, CONFIG_NAME)
        output_model_file = os.path.join(model_dir, WEIGHTS_NAME)
        config = BertConfig(output_config_file)
        model = BertForTokenClassification(
            config, num_labels=model_config["num_labels"])
        if torch.cuda.is_available() and not self.no_cuda:
            model.load_state_dict(torch.load(output_model_file))
        else:
            model.load_state_dict(
                torch.load(output_model_file, map_location='cpu'))

        return model, model_config
示例#13
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written."
    )

    # Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. \n"
             "Sequences longer than this will be truncated, and sequences shorter \n"
             "than this will be padded.")
    parser.add_argument(
        "--do_train",
        action='store_true',
        help="Whether to run training.")
    parser.add_argument(
        "--do_eval",
        action='store_true',
        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument(
        "--train_batch_size",
        default=32,
        type=int,
        help="Total batch size for training.")
    parser.add_argument(
        "--eval_batch_size",
        default=8,
        type=int,
        help="Total batch size for eval.")
    parser.add_argument(
        "--learning_rate",
        default=5e-5,
        type=float,
        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--num_train_epochs",
        default=3.0,
        type=float,
        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help="Proportion of training to perform linear learning rate warmup for. "
             "E.g., 0.1 = 10%% of training.")
    parser.add_argument(
        "--no_cuda",
        action='store_true',
        help="Whether not to use CUDA when available")
    parser.add_argument(
        "--local_rank",
        type=int,
        default=-1,
        help="local_rank for distributed training on gpus")
    parser.add_argument(
        '--seed',
        type=int,
        default=42,
        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
             "0 (default value): dynamic loss scaling.\n"
             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument(
        '--server_ip',
        type=str,
        default='',
        help="Can be used for distant debugging.")
    parser.add_argument(
        '--server_port',
        type=str,
        default='',
        help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {"ner": NerProcessor}

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    label_list = processor.get_labels()
    num_labels = len(label_list) + 1

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )
    print("num_train_optimization_steps: ", num_train_optimization_steps)

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    model = BertForTokenClassification.from_pretrained(args.bert_model,
                                                       cache_dir=cache_dir,
                                                       num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())
        label_map = {i: label for i, label in enumerate(label_list, 1)}
        model_config = {
            "bert_model": args.bert_model,
            "do_lower": args.do_lower_case,
            "max_seq_length": args.max_seq_length,
            "num_labels": len(label_list) + 1,
            "label_map": label_map
        }
        json.dump(
            model_config,
            open(os.path.join(args.output_dir, "model_config.json"), "w"))
        # Load a trained model and config that you have fine-tuned
    else:
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        config = BertConfig(output_config_file)
        model = BertForTokenClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))

    model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        y_true = []
        y_pred = []
        label_map = {i: label for i, label in enumerate(label_list, 1)}
        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask)

            logits = torch.argmax(F.log_softmax(logits, dim=2), dim=2)
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            input_mask = input_mask.to('cpu').numpy()
            for i, mask in enumerate(input_mask):
                temp_1 = []
                temp_2 = []
                for j, m in enumerate(mask):
                    if j == 0:
                        continue
                    if m:
                        if label_map[label_ids[i][j]] != "X":
                            temp_1.append(label_map[label_ids[i][j]])
                            temp_2.append(label_map[logits[i][j]])
                    else:
                        temp_1.pop()
                        temp_2.pop()
                        break
                y_true.append(temp_1)
                y_pred.append(temp_2)
        report = classification_report(y_true, y_pred, digits=4)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            logger.info("\n%s", report)
            writer.write(report)
示例#14
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    labels = list('BIEOS')
    processor = sequence_labeling.NerProcessor(labels)

    label_list = processor.labels
    num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    model = BertForTokenClassification.from_pretrained(args.bert_model,
                                                       cache_dir=cache_dir,
                                                       num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = processor.convert_examples_to_features(
            train_examples, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)

        all_label_ids = torch.tensor([f.label_ids for f in train_features],
                                     dtype=torch.long)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, num_labels),
                                label_ids.view(-1))

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)
        processor.save(
            os.path.join(args.output_dir, sequence_labeling.PROCESSOR_NAME))

        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForTokenClassification.from_pretrained(
            args.output_dir, num_labels=num_labels)
        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
    else:
        model = BertForTokenClassification.from_pretrained(
            args.bert_model, num_labels=num_labels)
    model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = processor.convert_examples_to_features(
            eval_examples, args.max_seq_length, tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)

        all_label_ids = torch.tensor([f.label_ids for f in eval_features],
                                     dtype=torch.long)

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss = 0
        nb_eval_steps = 0
        preds = []

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask, labels=None)

            # create eval loss and other metric required by the task
            loss_fct = CrossEntropyLoss()
            tmp_eval_loss = loss_fct(logits.view(-1, num_labels),
                                     label_ids.view(-1))

            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
            else:
                preds[0] = np.append(preds[0],
                                     logits.detach().cpu().numpy(),
                                     axis=0)

        eval_loss = eval_loss / nb_eval_steps
        preds = preds[0]
        preds = np.argmax(preds, axis=2)
        print(preds.shape)
        print(all_label_ids.numpy().shape)
        result = compute_metrics(preds.flatten(),
                                 all_label_ids.numpy().flatten())
        loss = tr_loss / global_step if args.do_train else None

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

max_seq_length = 512
model_path = "/.pytorch_pretrained_bert/token_model.pt"
bert_model = "/.pytorch_pretrained_bert/bert-base-uncased.tar.gz"
bert_vocab = "/.pytorch_pretrained_bert/bert-base-uncased-vocab.txt"
# device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
device = "cpu"
tokenizer = BertTokenizer.from_pretrained(bert_vocab)
label_list = [
    "B-etime", "B-fname", "B-organizer", "B-participant", "B-place",
    "B-target", "B-trigger", "I-etime", "I-fname", "I-organizer",
    "I-participant", "I-place", "I-target", "I-trigger", "O"
]
label_map = {}
for (i, label) in enumerate(label_list):
    label_map[i] = label

model = BertForTokenClassification.from_pretrained(
    bert_model, PYTORCH_PRETRAINED_BERT_CACHE, num_labels=len(label_list))

if device == "cpu":
    model.load_state_dict(torch.load(model_path, map_location='cpu'))
else:
    model.load_state_dict(torch.load(model_path))

model.to(device)

api.add_resource(queryList, '/queries')
app.run(host='0.0.0.0', port=4998, debug=True)
示例#16
0
# all_test_len = [len(item.label) for item in test_examples]

num_train_optimization_steps = int(
    len(train_examples) / args.train_batch_size /
    args.gradient_accumulation_steps) * args.num_train_epochs

if args.local_rank != -1:
    num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
    )

# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(
    str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
        args.local_rank))
model = BertForTokenClassification.from_pretrained(args.bert_model,
                                                   cache_dir=cache_dir,
                                                   num_labels=num_labels)
if args.fp16:
    model.half()
model.to(device)
if args.local_rank != -1:
    try:
        from apex.parallel import DistributedDataParallel as DDP
    except ImportError:
        raise ImportError(
            "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
        )

    model = DDP(model)
elif n_gpu > 1:
    model = torch.nn.DataParallel(model)
def main():
    parser = train_opts()
    args, _ = parser.parse_known_args()

    label_list = [
        "O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC",
        "I-LOC", "X", "[CLS]", "[SEP]"
    ]
    num_labels = len(label_list) + 1
    # Load features
    train_features = pd.read_parquet(os.path.join(args.train_feature_dir,
                                                  "feature.parquet"),
                                     engine='pyarrow')
    input_ids_list = train_features['input_ids'].tolist()
    input_mask_list = train_features['input_mask'].tolist()
    segment_ids_list = train_features['segment_ids'].tolist()
    label_ids_list = train_features['label_ids'].tolist()

    all_input_ids = torch.tensor(input_ids_list, dtype=torch.long)
    all_input_mask = torch.tensor(input_mask_list, dtype=torch.long)
    all_segment_ids = torch.tensor(segment_ids_list, dtype=torch.long)
    all_label_ids = torch.tensor(label_ids_list, dtype=torch.long)
    train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                               all_label_ids)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if not os.path.exists(args.output_model_dir):
        os.makedirs(args.output_model_dir)

    num_train_optimization_steps = int(
        len(train_features) / args.train_batch_size /
        args.gradient_accumulation_steps) * args.num_train_epochs

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    model = BertForTokenClassification.from_pretrained(args.bert_model,
                                                       cache_dir=cache_dir,
                                                       num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_features))
    logger.info("  Batch size = %d", args.train_batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)
    model.train()
    for _ in trange(int(args.num_train_epochs), desc="Epoch"):
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch
            loss = model(input_ids, segment_ids, input_mask, label_ids)
            if n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu.
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                optimizer.backward(loss)
            else:
                loss.backward()

            tr_loss += loss.item()
            nb_tr_examples += input_ids.size(0)
            nb_tr_steps += 1
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    # modify learning rate with special warm up BERT uses
                    # if args.fp16 is False, BertAdam is used that handles this automatically
                    lr_this_step = args.learning_rate * warmup_linear(
                        global_step / num_train_optimization_steps,
                        args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                optimizer.step()
                optimizer.zero_grad()
                global_step += 1

    # Save a trained model and the associated configuration
    model_to_save = model.module if hasattr(
        model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(args.output_model_dir, WEIGHTS_NAME)
    torch.save(model_to_save.state_dict(), output_model_file)
    output_config_file = os.path.join(args.output_model_dir, CONFIG_NAME)
    with open(output_config_file, 'w') as f:
        f.write(model_to_save.config.to_json_string())
    label_map = {i: label for i, label in enumerate(label_list, 1)}
    model_config = {
        "bert_model": args.bert_model,
        "do_lower": args.do_lower_case,
        "max_seq_length": args.max_seq_length,
        "num_labels": len(label_list) + 1,
        "label_map": label_map
    }
    json.dump(
        model_config,
        open(os.path.join(args.output_model_dir, "model_config.json"), "w"))

    # Dump data_type.json as a work around until SMT deploys
    dct = {
        "Id": "ILearnerDotNet",
        "Name": "ILearner .NET file",
        "ShortName": "Model",
        "Description": "A .NET serialized ILearner",
        "IsDirectory": False,
        "Owner": "Microsoft Corporation",
        "FileExtension": "ilearner",
        "ContentType": "application/octet-stream",
        "AllowUpload": False,
        "AllowPromotion": False,
        "AllowModelPromotion": True,
        "AuxiliaryFileExtension": None,
        "AuxiliaryContentType": None
    }
    with open(os.path.join(args.output_model_dir, 'data_type.json'), 'w') as f:
        json.dump(dct, f)
    # Dump data.ilearner as a work around until data type design
    visualization = os.path.join(args.output_model_dir, "data.ilearner")
    with open(visualization, 'w') as file:
        file.writelines('{}')
示例#18
0
def predict(OUTPUT_DIR, in_sentences):
    """ predict a bert model 
		OUTPUT_DIR :: contains pretrained models
		in_sentences :: is a list of sentences on which tagging has to be performed
	"""
    PRED_BATCH_SIZE = 64

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model_config = os.path.join(OUTPUT_DIR, "model_config.json")
    model_config = json.load(open(model_config))
    output_config_file = os.path.join(OUTPUT_DIR, CONFIG_NAME)
    output_model_file = os.path.join(OUTPUT_DIR, WEIGHTS_NAME)
    config = BertConfig(output_config_file)
    model = BertForTokenClassification(config,
                                       num_labels=model_config["num_labels"])
    model.load_state_dict(torch.load(output_model_file))
    model.to(device)
    tokenizer = BertTokenizer.from_pretrained(
        model_config["bert_model"], do_lower_case=model_config["do_lower"])

    in_examples = [
        InputExample(guid="",
                     text_a=x,
                     text_b=None,
                     label=["O"] * len(x.split(" "))) for x in in_sentences
    ]
    in_features = convert_examples_to_features(in_examples, label_list,
                                               MAX_SEQ_LENGTH, tokenizer)

    all_input_ids = torch.tensor([f.input_ids for f in in_features],
                                 dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in in_features],
                                  dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in in_features],
                                   dtype=torch.long)

    pred_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids)
    # 	# Run prediction for full data
    pred_sampler = SequentialSampler(pred_data)
    pred_dataloader = DataLoader(pred_data,
                                 sampler=pred_sampler,
                                 batch_size=PRED_BATCH_SIZE,
                                 drop_last=False)
    model.eval()

    preds = []

    label_map = model_config["label_map"]

    for input_ids, input_mask, segment_ids in tqdm(pred_dataloader,
                                                   desc="Predicting"):
        input_ids = input_ids.to(device)
        input_mask = input_mask.to(device)
        segment_ids = segment_ids.to(device)

        with torch.no_grad():
            logits = model(input_ids, segment_ids, input_mask)

        logits = torch.argmax(F.log_softmax(logits, dim=2), dim=2)
        logits = logits.detach().cpu().numpy()
        pred_batch = []
        for i, mask in enumerate(input_mask):
            temp_1 = []
            for j, m in enumerate(mask):
                if j == 0:
                    continue
                if m:
                    if label_map[str(logits[i][j])] != "X":
                        temp_1.append(label_map[str(logits[i][j])])
                else:
                    temp_1.pop()
                    break
            pred_batch.append(temp_1)
        preds.extend(pred_batch)
    return [(sentence, pred) for sentence, pred in zip(in_sentences, preds)]
示例#19
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--train_file",
                        default='../../data/eng-2015.conll',
                        type=str,
                        required=True,
                        help="train file path")
    parser.add_argument("--dev_file",
                        default='../../data/eng-2016.conll',
                        type=str,
                        required=True,
                        help="dev file path")
    
    parser.add_argument("--bert_model", default='bert-base-cased', type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")

    parser.add_argument("--finetune_dir",
                        default='NER_BERT',
                        type=str,
                        required=False,
                        help="The output")

    parser.add_argument("--output_dir",
                        default='NER_BERT',
                        type=str,
                        required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--cache_dir",
                        default="",
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_finetune",
                        action='store_true',
                        help="Whether to run finetuning.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    
    args = parser.parse_args()
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
        do_lower_case=args.do_lower_case, do_basic_tokenize=False)
    label_list = get_labels()
    num_labels = len(label_list)
    train_examples = read_ner_example(args.train_file, args.do_lower_case)
    num_train_optimization_steps = None
    if args.do_train:
        #train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank))
    model = BertForTokenClassification.from_pretrained(args.bert_model,
              cache_dir=cache_dir,
              num_labels = num_labels)
    if args.fp16:
        model.half()
    if args.do_finetune:
        if not os.path.exists(args.finetune_dir) and not os.listdir(args.finetune_dir):
            raise ValueError("Finetune directory ({}) is empty.".format(args.finetune_dir))
        finetune_model_file = os.path.join(args.finetune_dir, WEIGHTS_NAME)
        finetune_config_file = os.path.join(args.finetune_dir, CONFIG_NAME)
        config = BertConfig(finetune_config_file)
        #model = BertForTokenClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(finetune_model_file))
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)
    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
        all_label_masks = torch.tensor([f.label_mask for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_label_masks)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
        
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids, label_masks = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids, label_masks)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        model = BertForTokenClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
    else:
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        config = BertConfig(output_config_file)
        model = BertForTokenClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
        #model = BertForTokenClassification.from_pretrained(args.bert_model, num_labels=num_labels)
    model.to(device)
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = read_ner_example(args.dev_file, args.do_lower_case)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        all_label_masks = torch.tensor([f.label_mask for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
            all_segment_ids, all_label_ids, all_label_masks)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        pred_list = []
        label_list = []
        for input_ids, input_mask, segment_ids, label_ids, label_masks in tqdm(eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)
            label_masks = label_masks.to(device)
            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids, label_masks)
                logits = model(input_ids, segment_ids, input_mask)
            active_loss = label_masks.view(-1) == 1
            active_logits = logits.view(-1, num_labels)[active_loss]
            #print(active_logits.shape)
            active_labels = label_ids.view(-1)[active_loss]
            active_logits = active_logits.detach().cpu().numpy()
            #print(active_logits.shape)
            active_labels = active_labels.to('cpu').numpy()
            active_preds = np.argmax(active_logits, axis=1)
            #print(active_labels.shape, active_preds.shape)
            #tmp_eval_accuracy = accuracy(logits, label_ids, label_masks)

            #eval_loss += tmp_eval_loss.mean().item()
            #eval_accuracy += tmp_eval_accuracy
            pred_list.extend(active_preds)
            label_list.extend(active_labels)
            #print(active_labels.shape)
            nb_eval_examples += active_labels.shape[0]
            nb_eval_steps += 1

        #eval_loss = eval_loss / nb_eval_steps
        #eval_accuracy = eval_accuracy / nb_eval_examples
        loss = tr_loss/nb_tr_steps if args.do_train else None
        eval_f1_micro = f1_score(label_list, pred_list, average='micro')
        eval_f1_none = f1_score(label_list, pred_list, average=None)
        result = {'eval_f1_micro': eval_f1_micro,
                  'eval_f1_none': eval_f1_none,
                  'global_step': global_step,
                  'loss': loss}

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key]))) 
        output_pred_file = os.path.join(args.output_dir, "pred_results.conll")
        label_map = get_labels()
        print(len(label_list), len(pred_list))
        with open(output_pred_file, 'w') as f, open(args.dev_file) as dev_f:
            idx = 1
            for l, p, dl in zip(label_list, pred_list, dev_f):
                if len(dl) == 0:
                    print(dl)
                    f.write('\n')
                    idx = 1
                    continue
                f.write(' '.join((str(idx), label_map[l], label_map[p])) + '\n')
                idx += 1
示例#20
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--log_dir",
        default=None,
        type=str,
        required=True,
        help="The log dir. Should contain the .txt file (or other data file) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written."
    )

    # Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help="Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    # log setting
    handler = logging.FileHandler(os.path.join(args.log_dir, "log.txt"))
    handler.setFormatter(logging.DEBUG)
    formatter = logging.Formatter(
        '%(asctime)s - %(levelname)s - %(name)s -   %(message)s')
    handler.setFormatter(formatter)
    logger.addHandler(handler)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        # bbn processor
        "bbn": BBNNerProcessor,
    }

    output_modes = {
        "bbn": "classification",
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    if task_name == 'bbn':
        label_list = processor.get_labels(args.data_dir)
    else:
        label_list = processor.get_labels()

    num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    model = BertForTokenClassification.from_pretrained(args.bert_model,
                                                       cache_dir=cache_dir,
                                                       num_labels=num_labels)
    if args.fp16:
        model.half()

    try:
        model.to(device)
    except Exception:

        logger.warning("toGPU failed, failed msg:" + traceback.format_exc())

    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    # prepare Data
    # train_label_ids, dev_label_ids, test_label_ids = process_data(tokenizer, processor, args.data_dir, args.max_seq_length)
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        train_data = torch.load(os.path.join(args.data_dir, "train.pt"))
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in range(int(args.num_train_epochs)):
            tr_loss = 0
            last_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                # define a new function to compute loss values for both output_modes
                loss = model(input_ids, segment_ids, input_mask, label_ids)

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
                if abs(loss.item() - last_loss) <= 5e-10:
                    break
                # if abs(loss.item() - last_loss) != 0:
                #     print("iterate fine")
                #     print("step: " + str(step))
                #     print(abs(loss.item() - last_loss))
                last_loss = loss.item()

        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        model = BertForTokenClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
    else:
        logger.info("preparing model")
        # model = BertForTokenClassification.from_pretrained(
        #     args.bert_model, num_labels=num_labels)
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        config = BertConfig(output_config_file)
        model = BertForTokenClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))

        print("Model's state_dict:")
        for param_tensor in model.state_dict():
            print(param_tensor, "\t", model.state_dict()[param_tensor].size())
    
    model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        model.eval()

        # eval_examples = processor.get_dev_examples(args.data_dir)
        eval_examples = processor.get_dev_examples(args.data_dir)

        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)

        eval_data = torch.load(os.path.join(args.data_dir, "dev.pt"))
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss = 0
        nb_eval_steps = 0
        preds = []
        active_labels_dataset = []

        i = 0
        for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits, active_loss = model(input_ids, segment_ids, input_mask, labels=None)
                active_labels = label_ids.view(-1)[active_loss]

            # create eval loss and other metric required by the task
            if output_mode == "classification":
                loss_fct = CrossEntropyLoss()
                # tmp_eval_loss = loss_fct(logits.view(-1, num_labels),
                #                          active_labels.view(-1))
                tmp_eval_loss = 0
            elif output_mode == "regression":
                loss_fct = MSELoss()
                tmp_eval_loss = loss_fct(logits.view(-1), active_labels.view(-1))

            # eval_loss += tmp_eval_loss.mean().item()
            eval_loss += 0
            nb_eval_steps += 1
            # if len(preds) == 0:
            #     preds.append(logits.detach().cpu().numpy())
            # else:
            #     preds[0] = np.append(preds[0],
            #                          logits.detach().cpu().numpy(),
            #                          axis=0)
            logits = np.argmax(logits.detach().cpu().numpy(), axis=1)
            preds.append(logits)
            active_labels_dataset.append(active_labels)

        eval_loss = eval_loss / nb_eval_steps
        # preds = preds[0]
        preds_flat = []
        labels_flat = []
        for s in preds:
            for l in s:  # l is label
                preds_flat.append(l)
        for s in active_labels_dataset:
            for l in s:
                labels_flat.append(l.detach().cpu().numpy())
        preds_flat = np.array(preds_flat)
        labels_flat = np.array(labels_flat)

        for i in range(len(preds_flat)):
            if preds_flat[i] == 37:
                preds_flat[i] = 7
            elif preds_flat[i] == 34:
                preds_flat[i] == 12
            elif preds_flat[i] == 26:
                preds_flat[i] = 36
            elif preds_flat[i] == 36:
                preds_flat[i] = 37
            elif preds_flat[i] == 41:
                preds_flat[i] = 34
            elif preds_flat[i] == 31:
                preds_flat[i] = 39
            elif preds_flat[i] == 15:
                preds_flat[i] = 38

        # label_map = dict()
        # for i in range(len(preds_flat)):
        #     key = str(preds_flat[i]) + '-' + str(labels_flat[i])
        #     if key in label_map.keys():
        #         label_map[key] += 1
        #     else:
        #         label_map[key] = 0
        # for k in label_map.keys():
        #     if label_map[k] > 1000:
        #         print(k, ":", label_map[k])

        # if output_mode == "classification":
        #     preds = np.argmax(preds, axis=2)
        # elif output_mode == "regression":
        #     preds = np.squeeze(preds)
        result = compute_metrics(task_name, preds_flat, labels_flat)
        loss = tr_loss / nb_tr_steps if args.do_train else None

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        # hack for MNLI-MM
        if task_name == "mnli":
            task_name = "mnli-mm"
            processor = processors[task_name]()

            if os.path.exists(args.output_dir +
                              '-MM') and os.listdir(args.output_dir +
                                                    '-MM') and args.do_train:
                raise ValueError(
                    "Output directory ({}) already exists and is not empty.".
                    format(args.output_dir))
            if not os.path.exists(args.output_dir + '-MM'):
                os.makedirs(args.output_dir + '-MM')

            eval_examples = processor.get_dev_examples(args.data_dir)
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer,
                output_mode)[0]
            logger.info("***** Running evaluation *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                         dtype=torch.long)
            all_input_mask = torch.tensor(
                [f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)

            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data,
                                         sampler=eval_sampler,
                                         batch_size=args.eval_batch_size)

            model.eval()
            eval_loss = 0
            nb_eval_steps = 0
            preds = []

            for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                with torch.no_grad():
                    logits = model(input_ids,
                                   segment_ids,
                                   input_mask,
                                   labels=None)

                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels),
                                         label_ids.view(-1))

                eval_loss += tmp_eval_loss.mean().item()
                nb_eval_steps += 1
                if len(preds) == 0:
                    preds.append(logits.detach().cpu().numpy())
                else:
                    preds[0] = np.append(preds[0],
                                         logits.detach().cpu().numpy(),
                                         axis=0)

            eval_loss = eval_loss / nb_eval_steps
            preds = preds[0]
            preds = np.argmax(preds, axis=1)
            result = compute_metrics(task_name, preds, all_label_ids.numpy())
            loss = tr_loss / nb_tr_steps if args.do_train else None

            result['eval_loss'] = eval_loss
            result['global_step'] = global_step
            result['loss'] = loss

            output_eval_file = os.path.join(args.output_dir + '-MM',
                                            "eval_results.txt")
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
示例#21
0
                                num_workers=4,
                                collate_fn=NerDataset.pad)


#%%
'''
#####  Use only BertForTokenClassification  #####
'''
print('*** Use only BertForTokenClassification ***')

if load_checkpoint and os.path.exists(output_dir+'/ner_bert_checkpoint.pt'):
    checkpoint = torch.load(output_dir+'/ner_bert_checkpoint.pt', map_location='cpu')
    start_epoch = checkpoint['epoch']+1
    valid_acc_prev = checkpoint['valid_acc']
    valid_f1_prev = checkpoint['valid_f1']
    model = BertForTokenClassification.from_pretrained(
        bert_model_scale, state_dict=checkpoint['model_state'], num_labels=len(label_list))
    print('Loaded the pretrain NER_BERT model, epoch:',checkpoint['epoch'],'valid acc:', 
            checkpoint['valid_acc'], 'valid f1:', checkpoint['valid_f1'])
else:
    start_epoch = 0
    valid_acc_prev = 0
    valid_f1_prev = 0
    model = BertForTokenClassification.from_pretrained(
        bert_model_scale, num_labels=len(label_list))

model.to(device)

# Prepare optimizer
named_params = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    # Data Directory
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    # Bert Model
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    # Output Directory
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    # Max sequence length
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    # Train it?
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    # Run evaluation?
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    # Uncased?
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    # Set batch size
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    # Batch size for evaluation
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    # Learning Rate for Adam
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    # Training epochs
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    # ??
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    # cuda or cpu
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    # Check for valid args
    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    # Set train batch size
    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    # Seeds
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    os.makedirs(args.output_dir, exist_ok=True)

    processor = NerProcessor()
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Call Tokenizer
    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None

    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)

    # Can I use Token Classification here?
    model = BertForTokenClassification.from_pretrained(
        args.bert_model,
        cache_dir=PYTORCH_PRETRAINED_BERT_CACHE /
        'distributed_{}'.format(args.local_rank),
        num_labels=num_labels)

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        # Create Optimizer
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(
                        global_step / t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    # Save a trained model
    model_to_save = model.module if hasattr(
        model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
    if args.do_train:
        torch.save(model_to_save.state_dict(), output_model_file)

    # Load a trained model that you have fine-tuned
    model_state_dict = torch.load(output_model_file)
    model = BertForTokenClassification.from_pretrained(
        args.bert_model, state_dict=model_state_dict, num_labels=num_labels)
    model.to(device)

    ######################################################################

    outputwrite = open('debug', 'w')

    ######################################################################
    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_test_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        exact_match, num_sentence = 0, 0
        tp, tn = 0, 0
        fp, fn = 0, 0
        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)
            # print(label_ids)
            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)
                ### Edited here!!!! - check dimension
                try:
                    for i in range(args.eval_batch_size):
                        outputwrite.write("Start ----\n")
                        sentence_flag = True
                        for j in range(args.max_seq_length):
                            test_prediction = label_list[int(
                                torch.argmax(logits[i][j]))]
                            outputwrite.write(test_prediction + " ")
                            test_answer = label_list[label_ids[i][j]]
                            outputwrite.write(test_answer)
                            outputwrite.write("\n")
                            if test_prediction == "X":
                                continue
                            if test_prediction not in ["O"]:  # Positive
                                if test_answer == test_prediction:
                                    tp += 1
                                    outputwrite.write("True Positive")
                                else:
                                    fp += 1
                                    outputwrite.write("False Positive")
                                    sentence_flag = False
                            else:
                                if test_answer == test_prediction:
                                    tn += 1
                                    outputwrite.write("True Negative")
                                else:
                                    fn += 1
                                    sentence_flag = False
                                    outputwrite.write("False Negative")
                            outputwrite.write("\n")
                        if sentence_flag:
                            exact_match += 1
                            outputwrite.write(" - Exact Match - ")
                        num_sentence += 1
                        outputwrite.write("\n")
                except Exception as e:
                    pass

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()

        exact_match = exact_match / num_sentence
        fprecision = tp / (tp + fp)
        frecall = tp / (tp + fn)

        f1 = 2 * fprecision * frecall / (fprecision + frecall)
        result = {
            'exact_match': exact_match,
            'f1': f1,
            'precision': fprecision,
            'recall': frecall,
            'true_pos': tp,
            'true_neg': tn,
            'false_pos': fp,
            'false_neg': fn
        }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
def main():
    """Main method of this module."""

    parser = argparse.ArgumentParser()

    parser.add_argument("-c",
                        "--input_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir")
    parser.add_argument("-o",
                        "--output_file",
                        default=None,
                        type=str,
                        required=True,
                        help="Output file for predictions")
    parser.add_argument("--bert_model",
                        default="",
                        type=str,
                        required=True,
                        help="Bert pre-trained model path")
    parser.add_argument("--bert_tokenizer",
                        default="",
                        type=str,
                        required=True,
                        help="Bert tokenizer path")
    parser.add_argument("--model_load",
                        default="",
                        type=str,
                        required=True,
                        help="The path of model state.")
    parser.add_argument(
        "--max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")

    args = parser.parse_args()

    max_seq_length = args.max_seq_length
    model_path = args.model_load

    input_file = args.input_file
    output_file = args.output_file

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer)
    label_list = [
        "B-etime", "B-fname", "B-loc", "B-organizer", "B-participant",
        "B-place", "B-target", "B-trigger", "I-etime", "I-fname", "I-loc",
        "I-organizer", "I-participant", "I-place", "I-target", "I-trigger", "O"
    ]
    model = BertForTokenClassification.from_pretrained(
        args.bert_model,
        PYTORCH_PRETRAINED_BERT_CACHE,
        num_labels=len(label_list))

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[i] = label

    # try:
    #     model.load_state_dict(torch.load(model_path)) # , map_location='cpu' for only cpu
    # except: #When model is parallel
    #     model = torch.nn.DataParallel(model)
    #     model.load_state_dict(torch.load(model_path)) # , map_location='cpu' for only cpu

    model.load_state_dict(torch.load(model_path))

    logger.info("Model state has been loaded.")

    model.to(device)

    with open(input_file, "r", encoding="utf-8") as f:
        lines = f.read().splitlines()

    examples = []
    words = []
    for (i, line) in enumerate(lines):
        line = line.strip()
        if line == "SAMPLE_START":
            words.append("[CLS]")
        elif line == "[SEP]":
            continue
        elif line == "":
            tokens = []
            for (j, word) in enumerate(words):
                if word == "[CLS]":
                    tokens.append("[CLS]")
                    continue

                tokenized = tokenizer.tokenize(word)
                tokens.append(tokenized[0])

            if len(tokens) > max_seq_length - 1:
                tokens = tokens[0:(max_seq_length - 1)]

            tokens.append("[SEP]")
            tokens = tokenizer.convert_tokens_to_ids(tokens)

            segment_ids = [0] * len(tokens)
            input_mask = [1] * len(tokens)

            while len(tokens) < max_seq_length:
                tokens.append(0)
                segment_ids.append(0)
                input_mask.append(0)

            examples.append((tokens, input_mask, segment_ids))
            words = []
            continue
        elif line in ["\x91", "\x92", "\x97"]:
            continue
        else:
            words.append(line)

    # print(examples)

    all_labels = []
    model.eval()
    for (input_ids, input_mask, segment_ids) in examples:

        org_input_mask = input_mask
        org_input_mask = [x for x in org_input_mask if x != 0]

        input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
        input_mask = torch.tensor(input_mask, dtype=torch.long).unsqueeze(0)
        segment_ids = torch.tensor(segment_ids, dtype=torch.long).unsqueeze(0)

        input_ids = input_ids.to(device)
        input_mask = input_mask.to(device)
        segment_ids = segment_ids.to(device)

        with torch.no_grad():
            logits = model(input_ids, segment_ids, input_mask)
            logits = logits.detach().cpu().numpy()
            labels = np.argmax(logits, axis=-1).reshape(-1)

            labels = labels[0:len(org_input_mask)]
            # while len(labels) < max_seq_length:
            #     labels = np.append(labels, 16) # Add "O"

            all_labels = np.append(all_labels, labels)

    j = 0
    count = 0
    with open(output_file, "w", encoding="utf-8") as g:
        for (i, line) in enumerate(lines):
            line = line.strip()
            if line == "SAMPLE_START":
                count += 1
                g.write("SAMPLE_START\tO\n")
                j += 1
            elif line == "[SEP]":
                g.write("[SEP]\tO\n")
            elif line == "\x91":
                g.write("\x91\tO\n")
            elif line == "\x92":
                g.write("\x92\tO\n")
            elif line == "\x97":
                g.write("\x97\tO\n")
            elif line == "":
                g.write("\n")
                count = 0
                j += 1  # We have a SEP at the end
            else:
                count += 1
                if count < max_seq_length:
                    g.write(line + "\t" + label_map[all_labels[j]] + "\n")
                    j += 1
                else:
                    g.write(line + "\tO\n")

    logger.info("The predictions have been written to the output folder.")
示例#24
0
def main():
    parser = argparse.ArgumentParser()

    #  Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir.")
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help=
        "Bert pre-trained model selected in the list: bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese."
    )
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    #  Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \nSequences longer than this will be truncated, and sequences shorter \nthan this will be padded."
    )
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% of training."
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n0 (default value): dynamic loss scaling.\nPositive power of 2: static loss scaling value.\n"
    )

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    os.makedirs(os.path.join(args.output_dir, args.task_name), exist_ok=True)

    processor = DataProcessor(os.path.join(args.data_dir, args.task_name),
                              do_lower_case=args.do_lower_case)
    train_examples = processor.get_train_examples()
    label_list = processor.all_labels
    num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    num_train_optimization_steps = None
    if args.do_train:
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    model = BertForTokenClassification.from_pretrained(args.bert_model,
                                                       num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex to use distributed and fp16 training.")
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex to use distributed and fp16 training.")
        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_ids for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_steps = 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses if args.fp16 is False,
                        # BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    # Save a trained model
    model_to_save = model.module if hasattr(
        model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(args.output_dir, args.task_name,
                                     "pytorch_model.bin")
    if args.do_train:
        torch.save(model_to_save.state_dict(), output_model_file)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):

        # Load a trained model that you have fine-tuned
        model_state_dict = torch.load(output_model_file)
        model = BertForTokenClassification.from_pretrained(
            args.bert_model,
            state_dict=model_state_dict,
            num_labels=num_labels)
        model.to(device)

        eval_examples = processor.get_dev_examples()
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_ids for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        all_examples = []
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            examples = get_output_file(logits, input_ids, input_mask,
                                       label_ids, tokenizer.ids_to_tokens,
                                       processor.all_labels)
            all_examples.extend(examples)
            eval_loss += tmp_eval_loss.mean().item()

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        acc, p, r, f1 = get_ner_fmeasure([e.labels for e in all_examples],
                                         [e.predicts for e in all_examples])

        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': acc,
            'precision': p,
            'recall': r,
            'f_meature': f1,
        }

        logger.info("***** Eval results *****")
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))

        output_eval_file = os.path.join(args.output_dir, args.task_name,
                                        "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for example in all_examples:
                for token, label, pred in zip(example.text, example.labels,
                                              example.predicts):
                    writer.write(F"{token} {label} {pred}\n")
                writer.write('\n')
示例#25
0
文件: bert.py 项目: stweil/sbb_ner
def model_train(bert_model,
                max_seq_length,
                do_lower_case,
                num_train_epochs,
                train_batch_size,
                gradient_accumulation_steps,
                learning_rate,
                weight_decay,
                loss_scale,
                warmup_proportion,
                processor,
                device,
                n_gpu,
                fp16,
                cache_dir,
                local_rank,
                dry_run,
                no_cuda,
                output_dir=None):

    label_map = processor.get_labels()

    if gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(gradient_accumulation_steps))

    train_batch_size = train_batch_size // gradient_accumulation_steps

    train_dataloader = processor.get_train_examples(train_batch_size,
                                                    local_rank)

    # Batch sampler divides by batch_size!
    num_train_optimization_steps = int(
        len(train_dataloader) * num_train_epochs / gradient_accumulation_steps)

    if local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )

    # Prepare model
    cache_dir = cache_dir if cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE),
        'distributed_{}'.format(local_rank))

    model = BertForTokenClassification.from_pretrained(
        bert_model, cache_dir=cache_dir, num_labels=len(label_map))

    if fp16:
        model.half()

    model.to(device)

    if local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=loss_scale)

        warmup_linear = WarmupLinearSchedule(
            warmup=warmup_proportion, t_total=num_train_optimization_steps)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=learning_rate,
                             warmup=warmup_proportion,
                             t_total=num_train_optimization_steps)
        warmup_linear = None

    global_step = 0
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataloader))
    logger.info("  Batch size = %d", train_batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)
    logger.info("  Num epochs = %d", num_train_epochs)

    model_config = {
        "bert_model": bert_model,
        "do_lower": do_lower_case,
        "max_seq_length": max_seq_length,
        "label_map": label_map
    }

    def save_model(lh):

        if output_dir is None:
            return

        output_model_file = os.path.join(output_dir,
                                         "pytorch_model_ep{}.bin".format(ep))

        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        torch.save(model_to_save.state_dict(), output_model_file)

        output_config_file = os.path.join(output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        json.dump(model_config,
                  open(os.path.join(output_dir, "model_config.json"), "w"))

        lh = pd.DataFrame(lh, columns=['global_step', 'loss'])

        loss_history_file = os.path.join(output_dir,
                                         "loss_ep{}.pkl".format(ep))

        lh.to_pickle(loss_history_file)

    def load_model(epoch):

        if output_dir is None:

            return False

        output_model_file = os.path.join(
            output_dir, "pytorch_model_ep{}.bin".format(epoch))

        if not os.path.exists(output_model_file):

            return False

        logger.info("Loading epoch {} from disk...".format(epoch))
        model.load_state_dict(
            torch.load(output_model_file,
                       map_location=lambda storage, loc: storage
                       if no_cuda else None))
        return True

    model.train()
    for ep in trange(1, int(num_train_epochs) + 1, desc="Epoch"):

        if dry_run and ep > 1:
            logger.info("Dry run. Stop.")
            break

        if load_model(ep):
            global_step += len(train_dataloader) // gradient_accumulation_steps
            continue

        loss_history = list()
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        with tqdm(total=len(train_dataloader), desc=f"Epoch {ep}") as pbar:

            for step, batch in enumerate(train_dataloader):

                batch = tuple(t.to(device) for t in batch)

                input_ids, input_mask, segment_ids, label_ids = batch

                loss = model(input_ids, segment_ids, input_mask, label_ids)

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if gradient_accumulation_steps > 1:
                    loss = loss / gradient_accumulation_steps

                if fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                loss_history.append((global_step, loss.item()))

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                pbar.update(1)
                mean_loss = tr_loss * gradient_accumulation_steps / nb_tr_steps
                pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")

                if dry_run and len(loss_history) > 2:
                    logger.info("Dry run. Stop.")
                    break

                if (step + 1) % gradient_accumulation_steps == 0:
                    if fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = learning_rate * warmup_linear.get_lr(
                            global_step, warmup_proportion)

                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step

                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

        save_model(loss_history)

    return model, model_config
示例#26
0
        sentdb = data.SentDB(args.sent_fi, args.tag_fi, tokenizer, args.val_sent_fi,
                             args.val_tag_fi, lower=args.lower,
                             align_strat=args.align_strat, parampred=True)
        sentdb.make_minibatches(args.bsz, None)
        sentdb.make_minibatches(args.bsz, None, val=True)
        # if args.db_fi is not None:
        #     print("saving db to", args.db_fi)
        #     sentdb.save(args.db_fi)
    idx2tag = sentdb.tagtypes

    if len(args.train_from) > 0:
        print("loading model from", args.train_from)
        saved_stuff = torch.load(args.train_from)
        saved_args = saved_stuff["opt"]
        model = BertForTokenClassification.from_pretrained(
            args.bert_model, num_labels=len(sentdb.tagtypes),
            cache_dir=CACHEDIR)
        model.load_state_dict(saved_stuff["state_dict"])
    else:
        model = BertForTokenClassification.from_pretrained(
            args.bert_model, num_labels=len(sentdb.tagtypes),
            cache_dir=CACHEDIR)

    model = model.to(device)
    model.dropout.p = args.drop


    if args.just_eval is not None:
        import sys
        # pos_c2f = {'ADP': 'IN', 'DET': 'DT', 'NOUN': 'NN', 'NUM': 'CD', '.': ',', 'PRT': 'TO',
        #            'VERB': 'VBD', 'CONJ': 'CC', 'ADV': 'RB', 'PRON': 'PRP', 'ADJ': 'JJ', 'X': 'FW'}
示例#27
0
    return examples
def get_labels():
    label_file = '../data/KBP-19/labels.txt'
    with open(label_file) as f:
        return [line.strip() for line in f]
    return ['B-GPE', 'I-GPE', 'O', 'B-PER', 'I-PER',
    'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC', 'B-TTL', 'I-TTL',
    'I-FAC', 'B-FAC', 'B-VEH', 'I-VEH', 'B-WEA', 'I-WEA']
num_labels = len(get_labels())
tokenizer = BertTokenizer.from_pretrained('bert-base-cased',
    do_lower_case=False, do_basic_tokenize=False)    
model_dir = '../KBP_19_bert_ner_5e-5'
output_model_file = os.path.join(model_dir, WEIGHTS_NAME)
output_config_file = os.path.join(model_dir, CONFIG_NAME)
config = BertConfig(output_config_file)
model = BertForTokenClassification(config, num_labels=num_labels)
model.load_state_dict(torch.load(output_model_file))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  
model.to(device)

def pred_ner(sent):
    
    eval_examples = read_sent(sent)
    label_list = get_labels()
    eval_features = convert_examples_to_features(
            eval_examples, label_list, 300, tokenizer)
    all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
    all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
    all_label_masks = torch.tensor([f.label_mask for f in eval_features], dtype=torch.long)
示例#28
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--src_file", default=None, type=str,
                        help="The input data file name.")
    parser.add_argument("--tgt_file", default=None, type=str,
                        help="The output data file name.")
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
    parser.add_argument("--config_path", default=None, type=str,
                        help="Bert config file path.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
    parser.add_argument("--log_dir",
                        default='',
                        type=str,
                        required=True,
                        help="The output directory where the log will be written.")
    parser.add_argument("--model_recover_path",
                        default=None,
                        type=str,
                        required=True,
                        help="The file of fine-tuned pretraining model.")
    parser.add_argument("--optim_recover_path",
                        default=None,
                        type=str,
                        help="The file of pretraining optimizer.")

    # Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=64,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--label_smoothing", default=0, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="The weight decay rate for Adam.")
    parser.add_argument("--finetune_decay",
                        action='store_true',
                        help="Weight decay to the original weights.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--hidden_dropout_prob", default=0.1, type=float,
                        help="Dropout rate for hidden states.")
    parser.add_argument("--attention_probs_dropout_prob", default=0.1, type=float,
                        help="Dropout rate for attention probabilities.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--fp32_embedding', action='store_true',
                        help="Whether to use 32-bit float precision instead of 16-bit for embeddings")
    parser.add_argument('--loss_scale', type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--amp', action='store_true',
                        help="Whether to use amp for fp16")
    parser.add_argument('--from_scratch', action='store_true',
                        help="Initialize parameters with random values (i.e., training from scratch).")
    parser.add_argument('--new_segment_ids', action='store_true',
                        help="Use new segment ids for bi-uni-directional LM.")
    parser.add_argument('--new_pos_ids', action='store_true',
                        help="Use new position ids for LMs.")
    parser.add_argument('--tokenized_input', action='store_true',
                        help="Whether the input is tokenized.")
    parser.add_argument('--max_len_a', type=int, default=0,
                        help="Truncate_config: maximum length of segment A.")
    parser.add_argument('--max_len_b', type=int, default=0,
                        help="Truncate_config: maximum length of segment B.")
    parser.add_argument('--trunc_seg', default='',
                        help="Truncate_config: first truncate segment A/B (option: a, b).")
    parser.add_argument('--always_truncate_tail', action='store_true',
                        help="Truncate_config: Whether we should always truncate tail.")
    parser.add_argument("--mask_prob", default=0.15, type=float,
                        help="Number of prediction is sometimes less than max_pred when sequence is short.")
    parser.add_argument("--mask_prob_eos", default=0, type=float,
                        help="Number of prediction is sometimes less than max_pred when sequence is short.")
    parser.add_argument('--max_pred', type=int, default=20,
                        help="Max tokens of prediction.")
    parser.add_argument("--num_workers", default=0, type=int,
                        help="Number of workers for the data loader.")

    parser.add_argument('--mask_source_words', action='store_true',
                        help="Whether to mask source words for training")
    parser.add_argument('--skipgram_prb', type=float, default=0.0,
                        help='prob of ngram mask')
    parser.add_argument('--skipgram_size', type=int, default=1,
                        help='the max size of ngram mask')
    parser.add_argument('--mask_whole_word', action='store_true',
                        help="Whether masking a whole word.")
    parser.add_argument('--do_l2r_training', action='store_true',
                        help="Whether to do left to right training")
    parser.add_argument('--has_sentence_oracle', action='store_true',
                        help="Whether to have sentence level oracle for training. "
                             "Only useful for summary generation")
    parser.add_argument('--max_position_embeddings', type=int, default=None,
                        help="max position embeddings")
    parser.add_argument('--relax_projection', action='store_true',
                        help="Use different projection layers for tasks.")
    parser.add_argument('--ffn_type', default=0, type=int,
                        help="0: default mlp; 1: W((Wx+b) elem_prod x);")
    parser.add_argument('--num_qkv', default=0, type=int,
                        help="Number of different <Q,K,V>.")
    parser.add_argument('--seg_emb', action='store_true',
                        help="Using segment embedding for self-attention.")
    parser.add_argument('--s2s_special_token', action='store_true',
                        help="New special tokens ([S2S_SEP]/[S2S_CLS]) of S2S.")
    parser.add_argument('--s2s_add_segment', action='store_true',
                        help="Additional segmental for the encoder of S2S.")
    parser.add_argument('--s2s_share_segment', action='store_true',
                        help="Sharing segment embeddings for the encoder of S2S (used with --s2s_add_segment).")
    parser.add_argument('--pos_shift', action='store_true',
                        help="Using position shift for fine-tuning.")
    parser.add_argument('--eval_file', type=str, default="")

    args = parser.parse_args()

    assert Path(args.model_recover_path).exists(
    ), "--model_recover_path doesn't exist"

    args.output_dir = args.output_dir.replace(
        '[PT_OUTPUT_DIR]', os.getenv('PT_OUTPUT_DIR', ''))
    args.log_dir = args.log_dir.replace(
        '[PT_OUTPUT_DIR]', os.getenv('PT_OUTPUT_DIR', ''))

    os.makedirs(args.output_dir, exist_ok=True)
    os.makedirs(args.log_dir, exist_ok=True)
    json.dump(args.__dict__, open(os.path.join(
        args.output_dir, 'opt.json'), 'w'), sort_keys=True, indent=2)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(
            "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        dist.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
            args.gradient_accumulation_steps))

    args.train_batch_size = int(
        args.train_batch_size / args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if args.local_rank not in (-1, 0):
        # Make sure only the first process in distributed training will download model & vocab
        dist.barrier()
    tokenizer = BertTokenizer.from_pretrained(
        args.bert_model, do_lower_case=args.do_lower_case)
    if args.max_position_embeddings:
        tokenizer.max_len = args.max_position_embeddings
    data_tokenizer = WhitespaceTokenizer() if args.tokenized_input else tokenizer
    if args.local_rank == 0:
        dist.barrier()

    if args.do_train:
        print("Loading Train Dataset", args.data_dir)
        bi_uni_pipeline = [Preprocess4CoNLL2003(args.max_pred, args.mask_prob, list(tokenizer.vocab.keys(
        )), tokenizer.convert_tokens_to_ids, args.max_seq_length, new_segment_ids=args.new_segment_ids, truncate_config={'max_len_a': args.max_len_a, 'max_len_b': args.max_len_b, 'trunc_seg': args.trunc_seg, 'always_truncate_tail': args.always_truncate_tail}, mask_source_words=args.mask_source_words, skipgram_prb=args.skipgram_prb, skipgram_size=args.skipgram_size, mask_whole_word=args.mask_whole_word, mode="s2s", has_oracle=args.has_sentence_oracle, num_qkv=args.num_qkv, s2s_special_token=args.s2s_special_token, s2s_add_segment=args.s2s_add_segment, s2s_share_segment=args.s2s_share_segment, pos_shift=args.pos_shift)]
        file_oracle = None
        if args.has_sentence_oracle:
            file_oracle = os.path.join(args.data_dir, 'train.oracle')
        fn_src = os.path.join(
            args.data_dir, args.src_file if args.src_file else 'train.src')
        fn_tgt = os.path.join(
            args.data_dir, args.tgt_file if args.tgt_file else 'train.tgt')
        train_dataset = CoNLL2003Dataset(
            fn_src, fn_tgt, args.train_batch_size, data_tokenizer, args.max_seq_length, file_oracle=file_oracle, bi_uni_pipeline=bi_uni_pipeline)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_dataset, replacement=False)
            _batch_size = args.train_batch_size
        else:
            train_sampler = DistributedSampler(train_dataset)
            _batch_size = args.train_batch_size // dist.get_world_size()
        train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=_batch_size, sampler=train_sampler,
                                                       num_workers=args.num_workers, collate_fn=seq2seq_loader.batch_list_to_batch_tensors, pin_memory=False)

    # note: args.train_batch_size has been changed to (/= args.gradient_accumulation_steps)
    # t_total = int(math.ceil(len(train_dataset.ex_list) / args.train_batch_size)
    t_total = int(len(train_dataloader) * args.num_train_epochs /
                  args.gradient_accumulation_steps)

    amp_handle = None
    if args.fp16 and args.amp:
        from apex import amp
        amp_handle = amp.init(enable_caching=True)
        logger.info("enable fp16 with amp")

    # Prepare model
    recover_step = _get_max_epoch_model(args.output_dir)
    cls_num_labels = 2
    type_vocab_size = 6 + \
        (1 if args.s2s_add_segment else 0) if args.new_segment_ids else 2
    num_sentlvl_labels = 2 if args.has_sentence_oracle else 0
    relax_projection = 4 if args.relax_projection else 0
    if args.local_rank not in (-1, 0):
        # Make sure only the first process in distributed training will download model & vocab
        dist.barrier()
    if (recover_step is None) and (args.model_recover_path is None):
        # if _state_dict == {}, the parameters are randomly initialized
        # if _state_dict == None, the parameters are initialized with bert-init
        _state_dict = {} if args.from_scratch else None
        model = BertForTokenClassification.from_pretrained(
            args.bert_model,  num_labels=10)
        global_step = 0
    else:
        if recover_step:
            logger.info("***** Recover model: %d *****", recover_step)
            model_recover = torch.load(os.path.join(
                args.output_dir, "model.{0}.bin".format(recover_step)), map_location='cpu')
            # recover_step == number of epochs
            global_step = math.floor(
                recover_step * t_total / args.num_train_epochs)
        elif args.model_recover_path:
            logger.info("***** Recover model: %s *****",
                        args.model_recover_path)
            model_recover = torch.load(
                args.model_recover_path, map_location='cpu')
            global_step = 0
        model = BertForTokenClassification.from_pretrained(
            args.bert_model, num_labels=10)
    if args.local_rank == 0:
        dist.barrier()

    if args.fp16:
        model.half()
        if args.fp32_embedding:
            model.bert.embeddings.word_embeddings.float()
            model.bert.embeddings.position_embeddings.float()
            model.bert.embeddings.token_type_embeddings.float()
    model.to(device)
    if args.local_rank != -1:
        try:
            from torch.nn.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("DistributedDataParallel")
        model = DDP(model, device_ids=[
                    args.local_rank], output_device=args.local_rank, find_unused_parameters=True)
    elif n_gpu > 1:
        # model = torch.nn.DataParallel(model)
        model = DataParallelImbalance(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(
            nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(
            nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    if args.fp16:
        try:
            # from apex.optimizers import FP16_Optimizer
            from pytorch_pretrained_bert.optimization_fp16 import FP16_Optimizer_State
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer_State(
                optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer_State(
                optimizer, static_loss_scale=args.loss_scale)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)

    if recover_step:
        logger.info("***** Recover optimizer: %d *****", recover_step)
        optim_recover = torch.load(os.path.join(
            args.output_dir, "optim.{0}.bin".format(recover_step)), map_location='cpu')
        if hasattr(optim_recover, 'state_dict'):
            optim_recover = optim_recover.state_dict()
        optimizer.load_state_dict(optim_recover)
        if args.loss_scale == 0:
            logger.info("***** Recover optimizer: dynamic_loss_scale *****")
            optimizer.dynamic_loss_scale = True

    logger.info("***** CUDA.empty_cache() *****")
    torch.cuda.empty_cache()

    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", t_total)

        model.train()
        if recover_step:
            start_epoch = recover_step+1
        else:
            start_epoch = 1
        for i_epoch in trange(start_epoch, int(args.num_train_epochs)+1, desc="Epoch", disable=args.local_rank not in (-1, 0)):
            if args.local_rank != -1:
                train_sampler.set_epoch(i_epoch)
            iter_bar = tqdm(train_dataloader, desc='Iter (loss=X.XXX)',
                            disable=args.local_rank not in (-1, 0))
            for step, batch in enumerate(iter_bar):
                batch = [
                    t.to(device) if t is not None else None for t in batch]
                if args.has_sentence_oracle:
                    input_ids, segment_ids, input_mask, mask_qkv, lm_label_ids, masked_pos, masked_weights, is_next, task_idx, oracle_pos, oracle_weights, oracle_labels = batch
                else:
                    input_ids, segment_ids, input_mask, mask_qkv, lm_label_ids, masked_pos, masked_weights, is_next, task_idx, label_ids, valid_length = batch
                    oracle_pos, oracle_weights, oracle_labels = None, None, None
               
                print("labels_ids_num:")
                print(Counter( label_ids.cpu().detach().numpy()))
                loss = model(input_ids, segment_ids, input_mask, label_ids, mask_qkv, task_idx)
                
                if n_gpu > 1:    # mean() to average on multi-gpu.
                    loss = loss.mean()
                   
                # logging for each step (i.e., before normalization by args.gradient_accumulation_steps)
                iter_bar.set_description('Iter (loss=%5.3f)' % loss.item())

                # ensure that accumlated gradients are normalized
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                    if amp_handle:
                        amp_handle._clear_cache()
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    lr_this_step = args.learning_rate * \
                        warmup_linear(global_step/t_total,
                                      args.warmup_proportion)
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

            # Save a trained model
            if (args.local_rank == -1 or torch.distributed.get_rank() == 0):
                logger.info(
                    "** ** * Saving fine-tuned model and optimizer ** ** * ")
                model_to_save = model.module if hasattr(
                    model, 'module') else model  # Only save the model it-self
                output_model_file = os.path.join(
                    args.output_dir, "model.{0}.bin".format(i_epoch))
                torch.save(model_to_save.state_dict(), output_model_file)
                output_optim_file = os.path.join(
                    args.output_dir, "optim.{0}.bin".format(i_epoch))
                torch.save(optimizer.state_dict(), output_optim_file)

                logger.info("***** CUDA.empty_cache() *****")
                torch.cuda.empty_cache()
    
    if args.do_eval:
        print("Loading Eval Dataset", args.data_dir)
        bi_uni_pipeline = [Preprocess4CoNLL2003(args.max_pred, args.mask_prob, list(tokenizer.vocab.keys(
        )), tokenizer.convert_tokens_to_ids, args.max_seq_length, new_segment_ids=args.new_segment_ids, truncate_config={'max_len_a': args.max_len_a, 'max_len_b': args.max_len_b, 'trunc_seg': args.trunc_seg, 'always_truncate_tail': args.always_truncate_tail}, mask_source_words=args.mask_source_words, skipgram_prb=args.skipgram_prb, skipgram_size=args.skipgram_size, mask_whole_word=args.mask_whole_word, mode="s2s", has_oracle=args.has_sentence_oracle, num_qkv=args.num_qkv, s2s_special_token=args.s2s_special_token, s2s_add_segment=args.s2s_add_segment, s2s_share_segment=args.s2s_share_segment, pos_shift=args.pos_shift)]
        file_oracle = None

        fn_src = os.path.join(args.data_dir, args.eval_file)
        eval_dataset = CoNLL2003Dataset(
            fn_src, fn_tgt, args.train_batch_size, data_tokenizer, args.max_seq_length, file_oracle=file_oracle, bi_uni_pipeline=bi_uni_pipeline)
        eval_sampler = SequentialSampler(eval_dataset, replacement=False)
        _batch_size = args.train_batch_size

        eval_dataloader = torch.utils.data.DataLoader(eval_dataset, batch_size=_batch_size, sampler=eval_sampler, 
                                                      num_workers=args.num_workers, collate_fn=seq2seq_loader.batch_list_to_batch_tensors, pin_memory=False)
        
        # Prepare model
        recover_step = _get_max_epoch_model(args.output_dir)
        cls_num_labels = 2
        type_vocab_size = 6 + \
            (1 if args.s2s_add_segment else 0) if args.new_segment_ids else 2
        num_sentlvl_labels = 2 if args.has_sentence_oracle else 0
        relax_projection = 4 if args.relax_projection else 0
        if args.local_rank not in (-1, 0):
            # Make sure only the first process in distributed training will download model & vocab
            dist.barrier()
        if (recover_step is None) and (args.model_recover_path is None):
            # if _state_dict == {}, the parameters are randomly initialized
            # if _state_dict == None, the parameters are initialized with bert-init
            _state_dict = {} if args.from_scratch else None
            model = BertForTokenClassification.from_pretrained(
                args.bert_model, num_labels=10)
            global_step = 0
        else:
            if recover_step:
                logger.info("***** Recover model: %d *****", recover_step)
                model_recover = torch.load(os.path.join(
                    args.output_dir, "model.{0}.bin".format(recover_step)), map_location='cpu')
                # recover_step == number of epochs
                global_step = math.floor(
                    recover_step * t_total / args.num_train_epochs)
            elif args.model_recover_path:
                logger.info("***** Recover model: %s *****",
                            args.model_recover_path)
                model_recover = torch.load(
                    args.model_recover_path, map_location='cpu')
                global_step = 0
            model = BertForTokenClassification.from_pretrained(
                args.bert_model, num_labels=10)
        if args.local_rank == 0:
            dist.barrier()

        if args.fp16:
            model.half()
            if args.fp32_embedding:
                model.bert.embeddings.word_embeddings.float()
                model.bert.embeddings.position_embeddings.float()
                model.bert.embeddings.token_type_embeddings.float()
        model.to(device)
        if args.local_rank != -1:
            try:
                from torch.nn.parallel import DistributedDataParallel as DDP
            except ImportError:
                raise ImportError("DistributedDataParallel")
            model = DDP(model, device_ids=[
                        args.local_rank], output_device=args.local_rank, find_unused_parameters=True)
        elif n_gpu > 1:
            # model = torch.nn.DataParallel(model)
            model = DataParallelImbalance(model)
    
        logger.info("***** CUDA.empty_cache() *****")
        torch.cuda.empty_cache()

        logger.info("***** Running Evaluation *****")
        logger.info("  Batch size = %d", args.train_batch_size)
        model.eval()

        iter_bar = tqdm(eval_dataloader, desc="Evaluating")

        acc_score = 0.0000
        total_t = 0

        for step, batch in enumerate(iter_bar):
            batch = [
                    t.to(device) if t is not None else None for t in batch]
            
            input_ids, segment_ids, input_mask, mask_qkv, lm_label_ids, masked_pos, masked_weights, is_next, task_idx, label_ids, valid_length = batch
            oracle_pos, oracle_weights, oracle_labels = None, None, None
            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask, mask_qkv=mask_qkv, task_idx=task_idx)
            valid_length = valid_length.view(-1)
            logits = logits.view(-1, input_ids.size(1), 9)
            for i in range(input_ids.size(0)):
                valid_len = valid_length[i]
                logits_i = logits[i]
                pred_i = torch.argmax(logits_i, dim=-1)[:valid_len]
                labels_i = label_ids[i][:valid_len]
                acc_t = acc(pred_i, labels_i)
                acc_score += acc_t
                total_t += 1
        
        print("acc score:", acc_score/len(total_t))
示例#29
0
class NERPredictor:
    def __init__(self,
                 model_dir,
                 batch_size,
                 epoch,
                 max_seq_length=128,
                 local_rank=-1,
                 no_cuda=False):

        self._batch_size = batch_size
        self._local_rank = local_rank
        self._max_seq_length = max_seq_length

        self._device, self._n_gpu = get_device(no_cuda=no_cuda)

        self._model_config = json.load(
            open(os.path.join(model_dir, "model_config.json"), "r"))

        self._label_to_id = self._model_config['label_map']

        self._label_map = {
            v: k
            for k, v in self._model_config['label_map'].items()
        }

        self._bert_tokenizer = \
            BertTokenizer.from_pretrained(model_dir,
                                          do_lower_case=self._model_config['do_lower'])

        output_config_file = os.path.join(model_dir, CONFIG_NAME)

        output_model_file = os.path.join(
            model_dir, "pytorch_model_ep{}.bin".format(epoch))

        config = BertConfig(output_config_file)

        self._model = BertForTokenClassification(config,
                                                 num_labels=len(
                                                     self._label_map))
        self._model.load_state_dict(
            torch.load(output_model_file,
                       map_location=lambda storage, loc: storage
                       if no_cuda else None))
        self._model.to(self._device)
        self._model.eval()

        return

    def classify_text(self, sentences):

        examples = NerProcessor.create_examples(sentences, 'test')

        features = [
            fe for ex in examples for fe in convert_examples_to_features(
                ex, self._label_to_id, self._max_seq_length,
                self._bert_tokenizer)
        ]

        data_loader = NerProcessor.make_data_loader(None,
                                                    self._batch_size,
                                                    self._local_rank,
                                                    self._label_to_id,
                                                    self._max_seq_length,
                                                    self._bert_tokenizer,
                                                    features=features,
                                                    sequential=True)

        prediction_tmp = model_predict(data_loader, self._device,
                                       self._label_map, self._model)

        assert len(prediction_tmp) == len(features)

        prediction = []
        prev_guid = None
        for fe, pr in zip(features, prediction_tmp):
            # longer sentences might have been processed in several steps
            # therefore we have to glue them together. This can be done on the basis of the guid.

            if prev_guid != fe.guid:
                prediction.append((fe.tokens[1:-1], pr))
            else:
                prediction[-1] = (prediction[-1][0] + fe.tokens[1:-1],
                                  prediction[-1][1] + pr)

            prev_guid = fe.guid

        try:
            assert len(sentences) == len(prediction)
        except AssertionError:
            print('Sentences:\n')
            print(sentences)
            print('\n\nPrediciton:\n')
            print(prediction)

        return prediction
示例#30
0
def train_and_evaluate(OUTPUT_DIR, do_train=True, do_eval=True):
    """ Train and evaluate a BERT NER Model"""

    BATCH_SIZE = 32
    LEARNING_RATE = 2e-5
    NUM_TRAIN_EPOCHS = 5.0

    #in this steps lr will be low and training will be slow
    WARMUP_PROPORTION = 0.1

    if os.path.exists(OUTPUT_DIR) and os.listdir(OUTPUT_DIR) and do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                OUTPUT_DIR))
    if not os.path.exists(OUTPUT_DIR):
        os.makedirs(OUTPUT_DIR)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased",
                                              do_lower_case=True)

    if do_train:
        train_examples, num_train_examples = create_datasets("AGE/train.txt")

        num_train_steps = int(
            math.ceil(num_train_examples / BATCH_SIZE * NUM_TRAIN_EPOCHS))
        num_warmup_steps = int(num_train_steps * WARMUP_PROPORTION)

        model = BertForTokenClassification.from_pretrained(
            "bert-base-uncased", num_labels=num_labels)
        model.to(device)

        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=LEARNING_RATE,
                             warmup=WARMUP_PROPORTION,
                             t_total=num_train_steps)

        global_step = 0
        nb_tr_steps = 0
        tr_loss = 0

        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      MAX_SEQ_LENGTH,
                                                      tokenizer)

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", num_train_examples)
        logger.info("  Batch size = %d", BATCH_SIZE)
        logger.info("  Num steps = %d", num_train_steps)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        train_sampler = RandomSampler(train_data)

        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=BATCH_SIZE)

        model.train()
        # for name, param in model.named_parameters():
        # 	if param.requires_grad:
        # 		print(name)
        # return
        for _ in trange(int(NUM_TRAIN_EPOCHS), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                optimizer.step()
                optimizer.zero_grad()
                global_step += 1
            print(tr_loss)

        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(OUTPUT_DIR, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(OUTPUT_DIR, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())
        label_map = {i: label for i, label in enumerate(label_list, 1)}
        model_config = {
            "bert_model": "bert-base-uncased",
            "do_lower": True,
            "max_seq_length": MAX_SEQ_LENGTH,
            "num_labels": len(label_list) + 1,
            "label_map": label_map
        }
        json.dump(model_config,
                  open(os.path.join(OUTPUT_DIR, "model_config.json"), "w"))

    else:
        output_config_file = os.path.join(OUTPUT_DIR, CONFIG_NAME)
        output_model_file = os.path.join(OUTPUT_DIR, WEIGHTS_NAME)
        config = BertConfig(output_config_file)
        model = BertForTokenClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))

    model.to(device)

    if do_eval:

        EVAL_BATCH_SIZE = 32

        eval_examples, num_eval_examples = create_datasets("AGE/valid.txt")
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     MAX_SEQ_LENGTH, tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", num_eval_examples)
        logger.info("  Batch size = %d", EVAL_BATCH_SIZE)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # 	# Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=EVAL_BATCH_SIZE)
        model.eval()

        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        y_true = []
        y_pred = []
        label_map = {i: label for i, label in enumerate(label_list, 1)}
        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask)

            logits = torch.argmax(F.log_softmax(logits, dim=2), dim=2)
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            input_mask = input_mask.to('cpu').numpy()
            for i, mask in enumerate(input_mask):
                temp_1 = []
                temp_2 = []
                for j, m in enumerate(mask):
                    if j == 0:
                        continue
                    if m:
                        if label_map[label_ids[i][j]] != "X":
                            temp_1.append(label_map[label_ids[i][j]])
                            temp_2.append(label_map[logits[i][j]])
                    else:
                        temp_1.pop()
                        temp_2.pop()
                        break
                y_true.append(temp_1)
                y_pred.append(temp_2)
        report = classification_report(y_true, y_pred)
        output_eval_file = os.path.join(OUTPUT_DIR, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            logger.info("\n%s", report)
            writer.write(report)