def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese." ) parser.add_argument("--model_recover_path", default=None, type=str, help="The file of fine-tuned pretraining model.") parser.add_argument( "--max_seq_length", default=512, type=int, help= "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument('--ffn_type', default=0, type=int, help="0: default mlp; 1: W((Wx+b) elem_prod x);") parser.add_argument('--num_qkv', default=0, type=int, help="Number of different <Q,K,V>.") parser.add_argument('--seg_emb', action='store_true', help="Using segment embedding for self-attention.") # decoding parameters parser.add_argument( '--fp16', default=0, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--amp', action='store_true', help="Whether to use amp for fp16") parser.add_argument("--input_file", type=str, help="Input file") parser.add_argument('--subset', type=int, default=0, help="Decode a subset of the input dataset.") parser.add_argument("--output_file", type=str, help="output file") parser.add_argument("--split", type=str, default="", help="Data split (train/val/test).") parser.add_argument('--tokenized_input', action='store_true', help="Whether the input is tokenized.") parser.add_argument('--seed', type=int, default=123, help="random seed for initialization") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument('--new_segment_ids', action='store_true', help="Use new segment ids for bi-uni-directional LM.") parser.add_argument('--new_pos_ids', action='store_true', help="Use new position ids for LMs.") parser.add_argument('--batch_size', type=int, default=4, help="Batch size for decoding.") parser.add_argument('--beam_size', type=int, default=1, help="Beam size for searching") parser.add_argument('--length_penalty', type=float, default=0, help="Length penalty for beam search") parser.add_argument('--forbid_duplicate_ngrams', action='store_true') parser.add_argument('--forbid_ignore_word', type=str, default=None, help="Forbid the word during forbid_duplicate_ngrams") parser.add_argument("--min_len", default=None, type=int) parser.add_argument('--need_score_traces', action='store_true') parser.add_argument('--ngram_size', type=int, default=3) parser.add_argument('--mode', default="s2s", choices=["s2s", "l2r", "both"]) parser.add_argument('--max_tgt_length', type=int, default=128, help="maximum length of target sequence") parser.add_argument( '--s2s_special_token', action='store_true', help="New special tokens ([S2S_SEP]/[S2S_CLS]) of S2S.") parser.add_argument('--s2s_add_segment', action='store_true', help="Additional segmental for the encoder of S2S.") parser.add_argument( '--s2s_share_segment', action='store_true', help= "Sharing segment embeddings for the encoder of S2S (used with --s2s_add_segment)." ) parser.add_argument('--pos_shift', action='store_true', help="Using position shift for fine-tuning.") args = parser.parse_args() if args.need_score_traces and args.beam_size <= 1: raise ValueError( "Score trace is only available for beam search with beam size > 1." ) if args.max_tgt_length >= args.max_seq_length - 2: raise ValueError("Maximum tgt length exceeds max seq length - 2.") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) tokenizer.max_len = args.max_seq_length pair_num_relation = 0 bi_uni_pipeline = [] bi_uni_pipeline.append( seq2seq_loader.Preprocess4Seq2seqDecoder( list(tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, new_segment_ids=args.new_segment_ids, mode="s2s", num_qkv=args.num_qkv, s2s_special_token=args.s2s_special_token, s2s_add_segment=args.s2s_add_segment, s2s_share_segment=args.s2s_share_segment, pos_shift=args.pos_shift)) amp_handle = None if args.fp16 and args.amp: from apex import amp amp_handle = amp.init(enable_caching=True) logger.info("enable fp16 with amp") # Prepare model cls_num_labels = 2 type_vocab_size = 6 + \ (1 if args.s2s_add_segment else 0) if args.new_segment_ids else 2 mask_word_id, eos_word_ids, sos_word_id = tokenizer.convert_tokens_to_ids( ["[MASK]", "[SEP]", "[S2S_SOS]"]) forbid_ignore_set = None if args.forbid_ignore_word: w_list = [] for w in args.forbid_ignore_word.split('|'): if w.startswith('[') and w.endswith(']'): w_list.append(w.upper()) else: w_list.append(w) forbid_ignore_set = set(tokenizer.convert_tokens_to_ids(w_list)) print(args.model_recover_path) for model_recover_path in glob.glob(args.model_recover_path.strip()): logger.info("***** Recover model: %s *****", model_recover_path) model_recover = torch.load(model_recover_path) model = BertForSeq2SeqDecoder.from_pretrained( args.bert_model, state_dict=model_recover, num_labels=cls_num_labels, num_rel=pair_num_relation, type_vocab_size=type_vocab_size, task_idx=3, mask_word_id=mask_word_id, search_beam_size=args.beam_size, length_penalty=args.length_penalty, eos_id=eos_word_ids, sos_id=sos_word_id, forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set, ngram_size=args.ngram_size, min_len=args.min_len, mode=args.mode, max_position_embeddings=args.max_seq_length, ffn_type=args.ffn_type, num_qkv=args.num_qkv, seg_emb=args.seg_emb, pos_shift=args.pos_shift) del model_recover if args.fp16: model.half() model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) torch.cuda.empty_cache() model.eval() next_i = 0 max_src_length = args.max_seq_length - 2 - args.max_tgt_length with open(args.input_file, encoding="utf-8") as fin: input_lines = [x.strip() for x in fin.readlines()] if args.subset > 0: logger.info("Decoding subset: %d", args.subset) input_lines = input_lines[:args.subset] data_tokenizer = WhitespaceTokenizer( ) if args.tokenized_input else tokenizer input_lines = [ data_tokenizer.tokenize(x)[:max_src_length] for x in input_lines ] input_lines = sorted(list(enumerate(input_lines)), key=lambda x: -len(x[1])) output_lines = [""] * len(input_lines) score_trace_list = [None] * len(input_lines) total_batch = math.ceil(len(input_lines) / args.batch_size) with tqdm(total=total_batch) as pbar: while next_i < len(input_lines): _chunk = input_lines[next_i:next_i + args.batch_size] buf_id = [x[0] for x in _chunk] buf = [x[1] for x in _chunk] next_i += args.batch_size max_a_len = max([len(x) for x in buf]) instances = [] for instance in [(x, max_a_len) for x in buf]: for proc in bi_uni_pipeline: instances.append(proc(instance)) with torch.no_grad(): batch = seq2seq_loader.batch_list_to_batch_tensors( instances) batch = [ t.to(device) if t is not None else None for t in batch ] input_ids, token_type_ids, position_ids, input_mask, mask_qkv, task_idx = batch traces = model(input_ids, token_type_ids, position_ids, input_mask, task_idx=task_idx, mask_qkv=mask_qkv) if args.beam_size > 1: traces = {k: v.tolist() for k, v in traces.items()} output_ids = traces['pred_seq'] else: output_ids = traces.tolist() for i in range(len(buf)): w_ids = output_ids[i] output_buf = tokenizer.convert_ids_to_tokens(w_ids) output_tokens = [] for t in output_buf: if t in ("[SEP]", "[PAD]"): break output_tokens.append(t) output_sequence = ' '.join(detokenize(output_tokens)) output_lines[buf_id[i]] = output_sequence if args.need_score_traces: score_trace_list[buf_id[i]] = { 'scores': traces['scores'][i], 'wids': traces['wids'][i], 'ptrs': traces['ptrs'][i] } pbar.update(1) if args.output_file: fn_out = args.output_file else: fn_out = model_recover_path + '.' + args.split with open(fn_out, "w", encoding="utf-8") as fout: for l in output_lines: fout.write(l) fout.write("\n") if args.need_score_traces: with open(fn_out + ".trace.pickle", "wb") as fout_trace: pickle.dump({ "version": 0.0, "num_samples": len(input_lines) }, fout_trace) for x in score_trace_list: pickle.dump(x, fout_trace)
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese." ) parser.add_argument("--model_recover_path", default=None, type=str, help="The file of fine-tuned pretraining model.") parser.add_argument( "--max_seq_length", default=512, type=int, help= "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument('--ffn_type', default=0, type=int, help="0: default mlp; 1: W((Wx+b) elem_prod x);") parser.add_argument('--num_qkv', default=0, type=int, help="Number of different <Q,K,V>.") parser.add_argument('--seg_emb', action='store_true', help="Using segment embedding for self-attention.") # decoding parameters parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--amp', action='store_true', help="Whether to use amp for fp16") parser.add_argument("--input_file", type=str, help="Input file") parser.add_argument('--subset', type=int, default=0, help="Decode a subset of the input dataset.") parser.add_argument("--output_file", type=str, help="output file") parser.add_argument("--split", type=str, default="", help="Data split (train/val/test).") parser.add_argument('--tokenized_input', action='store_true', help="Whether the input is tokenized.") parser.add_argument('--seed', type=int, default=123, help="random seed for initialization") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument('--new_segment_ids', action='store_true', help="Use new segment ids for bi-uni-directional LM.") parser.add_argument('--new_pos_ids', action='store_true', help="Use new position ids for LMs.") parser.add_argument('--batch_size', type=int, default=4, help="Batch size for decoding.") parser.add_argument('--beam_size', type=int, default=1, help="Beam size for searching") parser.add_argument('--length_penalty', type=float, default=0, help="Length penalty for beam search") parser.add_argument("--config_path", default=None, type=str, help="Bert config file path.") parser.add_argument('--topk', type=int, default=10, help="Value of K.") parser.add_argument('--forbid_duplicate_ngrams', action='store_true') parser.add_argument('--forbid_ignore_word', type=str, default=None, help="Ignore the word during forbid_duplicate_ngrams") parser.add_argument("--min_len", default=None, type=int) parser.add_argument('--need_score_traces', action='store_true') parser.add_argument('--ngram_size', type=int, default=3) parser.add_argument('--mode', default="s2s", choices=["s2s", "l2r", "both"]) parser.add_argument('--max_tgt_length', type=int, default=128, help="maximum length of target sequence") parser.add_argument( '--s2s_special_token', action='store_true', help="New special tokens ([S2S_SEP]/[S2S_CLS]) of S2S.") parser.add_argument('--s2s_add_segment', action='store_true', help="Additional segmental for the encoder of S2S.") parser.add_argument( '--s2s_share_segment', action='store_true', help= "Sharing segment embeddings for the encoder of S2S (used with --s2s_add_segment)." ) parser.add_argument('--pos_shift', action='store_true', help="Using position shift for fine-tuning.") parser.add_argument('--not_predict_token', type=str, default=None, help="Do not predict the tokens during decoding.") args = parser.parse_args() if args.need_score_traces and args.beam_size <= 1: raise ValueError( "Score trace is only available for beam search with beam size > 1." ) if args.max_tgt_length >= args.max_seq_length - 2: raise ValueError("Maximum tgt length exceeds max seq length - 2.") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) # tokenizer = BertTokenizer.from_pretrained( # args.bert_model, do_lower_case=args.do_lower_case) tokenizer = BertTokenizer( vocab_file= '/ps2/intern/clsi/BERT/bert_weights/cased_L-24_H-1024_A-16/vocab.txt', do_lower_case=args.do_lower_case) tokenizer.max_len = args.max_seq_length pair_num_relation = 0 bi_uni_pipeline = [] bi_uni_pipeline.append( seq2seq_loader.Preprocess4Seq2seqDecoder( list(tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, new_segment_ids=args.new_segment_ids, mode="s2s", num_qkv=args.num_qkv, s2s_special_token=args.s2s_special_token, s2s_add_segment=args.s2s_add_segment, s2s_share_segment=args.s2s_share_segment, pos_shift=args.pos_shift)) amp_handle = None if args.fp16 and args.amp: from apex import amp amp_handle = amp.init(enable_caching=True) logger.info("enable fp16 with amp") # Prepare model cls_num_labels = 2 type_vocab_size = 6 + \ (1 if args.s2s_add_segment else 0) if args.new_segment_ids else 2 mask_word_id, eos_word_ids, sos_word_id = tokenizer.convert_tokens_to_ids( ["[MASK]", "[SEP]", "[S2S_SOS]"]) def _get_token_id_set(s): r = None if s: w_list = [] for w in s.split('|'): if w.startswith('[') and w.endswith(']'): w_list.append(w.upper()) else: w_list.append(w) r = set(tokenizer.convert_tokens_to_ids(w_list)) return r forbid_ignore_set = _get_token_id_set(args.forbid_ignore_word) not_predict_set = _get_token_id_set(args.not_predict_token) print(args.model_recover_path) for model_recover_path in glob.glob(args.model_recover_path.strip()): logger.info("***** Recover model: %s *****", model_recover_path) model_recover = torch.load(model_recover_path) model = BertForSeq2SeqDecoder.from_pretrained( args.bert_model, state_dict=model_recover, num_labels=cls_num_labels, num_rel=pair_num_relation, type_vocab_size=type_vocab_size, task_idx=3, mask_word_id=mask_word_id, search_beam_size=args.beam_size, length_penalty=args.length_penalty, eos_id=eos_word_ids, sos_id=sos_word_id, forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set, not_predict_set=not_predict_set, ngram_size=args.ngram_size, min_len=args.min_len, mode=args.mode, max_position_embeddings=args.max_seq_length, ffn_type=args.ffn_type, num_qkv=args.num_qkv, seg_emb=args.seg_emb, pos_shift=args.pos_shift, topk=args.topk, config_path=args.config_path) del model_recover if args.fp16: model.half() model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) torch.cuda.empty_cache() model.eval() next_i = 0 max_src_length = args.max_seq_length - 2 - args.max_tgt_length ## for YFG style json # testset = loads_json(args.input_file, 'Load Test Set: '+args.input_file) # if args.subset > 0: # logger.info("Decoding subset: %d", args.subset) # testset = testset[:args.subset] with open(args.input_file, encoding="utf-8") as fin: data = json.load(fin) # input_lines = [x.strip() for x in fin.readlines()] # if args.subset > 0: # logger.info("Decoding subset: %d", args.subset) # input_lines = input_lines[:args.subset] # data_tokenizer = WhitespaceTokenizer() if args.tokenized_input else tokenizer # input_lines = [data_tokenizer.tokenize( # x)[:max_src_length] for x in input_lines] # input_lines = sorted(list(enumerate(input_lines)), # key=lambda x: -len(x[1])) # output_lines = [""] * len(input_lines) # score_trace_list = [None] * len(input_lines) # total_batch = math.ceil(len(input_lines) / args.batch_size) data_tokenizer = WhitespaceTokenizer( ) if args.tokenized_input else tokenizer PQA_dict = {} #will store the generated distractors dis_tot = 0 dis_n = 0 len_tot = 0 hypothesis = {} ##change to process one by one and store the distractors in PQA json form ##with tqdm(total=total_batch) as pbar: # for example in tqdm(testset): # question_id = str(example['id']['file_id']) + '_' + str(example['id']['question_id']) # if question_id in hypothesis: # continue # dis_n += 1 # if dis_n % 2000 == 0: # logger.info("Already processed: "+str(dis_n)) counter = 0 for race_id, example in tqdm(data.items()): counter += 1 if args.subset > 0 and counter >= args.subset: break eg_dict = {} # eg_dict["question_id"] = question_id # eg_dict["question"] = ' '.join(example['question']) # eg_dict["context"] = ' '.join(example['article']) eg_dict["question"] = example['question'] eg_dict["context"] = example['context'] label = int(example["label"]) options = example["options"] answer = options[label] #new_distractors = [] pred1 = None pred2 = None pred3 = None #while next_i < len(input_lines): #_chunk = input_lines[next_i:next_i + args.batch_size] #line = example["context"].strip() + ' ' + example["question"].strip() question = example['question'] question = question.replace('_', ' ') line = ' '.join( nltk.word_tokenize(example['context']) + nltk.word_tokenize(question)) line = [data_tokenizer.tokenize(line)[:max_src_length]] # buf_id = [x[0] for x in _chunk] # buf = [x[1] for x in _chunk] buf = line #next_i += args.batch_size max_a_len = max([len(x) for x in buf]) instances = [] for instance in [(x, max_a_len) for x in buf]: for proc in bi_uni_pipeline: instances.append(proc(instance)) with torch.no_grad(): batch = seq2seq_loader.batch_list_to_batch_tensors(instances) batch = [ t.to(device) if t is not None else None for t in batch ] input_ids, token_type_ids, position_ids, input_mask, mask_qkv, task_idx = batch # for i in range(1): #try max 10 times # if len(new_distractors) >= 3: # break traces = model(input_ids, token_type_ids, position_ids, input_mask, task_idx=task_idx, mask_qkv=mask_qkv) if args.beam_size > 1: traces = {k: v.tolist() for k, v in traces.items()} output_ids = traces['pred_seq'] # print (np.array(output_ids).shape) # print (output_ids) else: output_ids = traces.tolist() # now only supports single batch decoding!!! # will keep the second and third sequence as backup for i in range(len(buf)): # print (len(buf), buf) for s in range(len(output_ids)): output_seq = output_ids[s] #w_ids = output_ids[i] #output_buf = tokenizer.convert_ids_to_tokens(w_ids) output_buf = tokenizer.convert_ids_to_tokens( output_seq) output_tokens = [] for t in output_buf: if t in ("[SEP]", "[PAD]"): break output_tokens.append(t) if s == 1: backup_1 = output_tokens if s == 2: backup_2 = output_tokens if pred1 is None: pred1 = output_tokens elif jaccard_similarity(pred1, output_tokens) < 0.5: if pred2 is None: pred2 = output_tokens elif pred3 is None: if jaccard_similarity(pred2, output_tokens) < 0.5: pred3 = output_tokens if pred1 is not None and pred2 is not None and pred3 is not None: break if pred2 is None: pred2 = backup_1 if pred3 is None: pred3 = backup_2 elif pred3 is None: pred3 = backup_1 # output_sequence = ' '.join(detokenize(output_tokens)) # print (output_sequence) # print (output_sequence) # if output_sequence.lower().strip() == answer.lower().strip(): # continue # repeated = False # for cand in new_distractors: # if output_sequence.lower().strip() == cand.lower().strip(): # repeated = True # break # if not repeated: # new_distractors.append(output_sequence.strip()) #hypothesis[question_id] = [pred1, pred2, pred3] new_distractors = [pred1, pred2, pred3] # print (new_distractors) # dis_tot += len(new_distractors) # # fill the missing ones with original distractors # for i in range(4): # if len(new_distractors) >= 3: # break # elif i == label: # continue # else: # new_distractors.append(options[i]) for dis in new_distractors: len_tot += len(dis) dis_n += 1 new_distractors = [ ' '.join(detokenize(dis)) for dis in new_distractors if dis is not None ] assert len(new_distractors) == 3, "Number of distractors WRONG" new_distractors.insert(label, answer) #eg_dict["generated_distractors"] = new_distractors eg_dict["options"] = new_distractors eg_dict["label"] = label #PQA_dict[question_id] = eg_dict PQA_dict[race_id] = eg_dict # reference = {} # for example in testset: # question_id = str(example['id']['file_id']) + '_' + str(example['id']['question_id']) # if question_id not in reference.keys(): # reference[question_id] = [example['distractor']] # else: # reference[question_id].append(example['distractor']) # _ = eval(hypothesis, reference) # assert len(PQA_dict) == len(data), "Number of examples WRONG" # logger.info("Average number of GENERATED distractor per question: "+str(dis_tot/dis_n)) logger.info("Average length of distractors: " + str(len_tot / dis_n)) with open(args.output_file, mode='w', encoding='utf-8') as f: json.dump(PQA_dict, f, indent=4)
def main(): args = load_args() ss = load_server_socket() if args.need_score_traces and args.beam_size <= 1: raise ValueError( "Score trace is only available for beam search with beam size > 1." ) if args.max_tgt_length >= args.max_seq_length - 2: raise ValueError("Maximum tgt length exceeds max seq length - 2.") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) tokenizer.max_len = args.max_seq_length pair_num_relation = 0 bi_uni_pipeline = [] bi_uni_pipeline.append( seq2seq_loader.Preprocess4Seq2seqDecoder( list(tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, new_segment_ids=args.new_segment_ids, mode="s2s", num_qkv=args.num_qkv, s2s_special_token=args.s2s_special_token, s2s_add_segment=args.s2s_add_segment, s2s_share_segment=args.s2s_share_segment, pos_shift=args.pos_shift)) amp_handle = None if args.fp16 and args.amp: from apex import amp amp_handle = amp.init(enable_caching=True) logger.info("enable fp16 with amp") # Prepare model cls_num_labels = 2 type_vocab_size = 6 + \ (1 if args.s2s_add_segment else 0) if args.new_segment_ids else 2 mask_word_id, eos_word_ids, sos_word_id = tokenizer.convert_tokens_to_ids( ["[MASK]", "[SEP]", "[S2S_SOS]"]) def _get_token_id_set(s): r = None if s: w_list = [] for w in s.split('|'): if w.startswith('[') and w.endswith(']'): w_list.append(w.upper()) else: w_list.append(w) r = set(tokenizer.convert_tokens_to_ids(w_list)) return r forbid_ignore_set = _get_token_id_set(args.forbid_ignore_word) not_predict_set = _get_token_id_set(args.not_predict_token) print(args.model_recover_path) for model_recover_path in glob.glob(args.model_recover_path.strip()): logger.info("***** Recover model: %s *****", model_recover_path) model_recover = torch.load(model_recover_path) model = BertForSeq2SeqDecoder.from_pretrained( args.bert_model, state_dict=model_recover, num_labels=cls_num_labels, num_rel=pair_num_relation, type_vocab_size=type_vocab_size, task_idx=3, mask_word_id=mask_word_id, search_beam_size=args.beam_size, length_penalty=args.length_penalty, eos_id=eos_word_ids, sos_id=sos_word_id, forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set, not_predict_set=not_predict_set, ngram_size=args.ngram_size, min_len=args.min_len, mode=args.mode, max_position_embeddings=args.max_seq_length, ffn_type=args.ffn_type, num_qkv=args.num_qkv, seg_emb=args.seg_emb, pos_shift=args.pos_shift) del model_recover if args.fp16: model.half() model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) torch.cuda.empty_cache() model.eval() max_src_length = args.max_seq_length - 2 - args.max_tgt_length DONE_SIGNAL = 42 # bytescode of asterisk '*' while True: ss.listen(100) print("Waiting Connection:") cs, addr = ss.accept() data = bytes() while True: recv = cs.recv(1024) if 0 < len(recv) and DONE_SIGNAL == recv[-1]: data += recv[:len(recv) - 1] break data += recv print("Connection with:", addr) print("Received:", len(data)) input_lines = [ x.strip() for x in data.decode('utf-8').splitlines() ] if args.subset > 0: logger.info("Decoding subset: %d", args.subset) input_lines = input_lines[:args.subset] data_tokenizer = WhitespaceTokenizer( ) if args.tokenized_input else tokenizer input_lines = [ data_tokenizer.tokenize(x)[:max_src_length] for x in input_lines ] input_lines = list(enumerate(input_lines)) output_lines = [""] * len(input_lines) score_trace_list = [None] * len(input_lines) next_i = 0 while next_i < len(input_lines): _chunk = input_lines[next_i:next_i + args.batch_size] buf_id = [x[0] for x in _chunk] buf = [x[1] for x in _chunk] next_i += args.batch_size max_a_len = max([len(x) for x in buf]) instances = [] for instance in [(x, max_a_len) for x in buf]: for proc in bi_uni_pipeline: instances.append(proc(instance)) with torch.no_grad(): batch = seq2seq_loader.batch_list_to_batch_tensors( instances) batch = [ t.to(device) if t is not None else None for t in batch ] input_ids, token_type_ids, position_ids, input_mask, mask_qkv, task_idx = batch traces = model(input_ids, token_type_ids, position_ids, input_mask, task_idx=task_idx, mask_qkv=mask_qkv) if args.beam_size > 1: traces = {k: v.tolist() for k, v in traces.items()} output_ids = traces['pred_seq'] else: output_ids = traces.tolist() qg_result = [] for i in range(len(buf)): w_ids = output_ids[i] output_buf = tokenizer.convert_ids_to_tokens(w_ids) output_tokens = [] for t in output_buf: if t in ("[SEP]", "[PAD]"): break output_tokens.append(t) output_sequence = ' '.join(detokenize(output_tokens)) qg_result.append(output_sequence) if args.need_score_traces: score_trace_list[buf_id[i]] = { 'scores': traces['scores'][i], 'wids': traces['wids'][i], 'ptrs': traces['ptrs'][i] } cs.sendall(ascii_print('\n'.join(qg_result))) cs.close() if args.output_file: fn_out = args.output_file else: fn_out = model_recover_path + '.' + args.split with open(fn_out, "w", encoding="utf-8") as fout: for l in output_lines: fout.write(l) fout.write("\n") if args.need_score_traces: with open(fn_out + ".trace.pickle", "wb") as fout_trace: pickle.dump( { "version": 0.0, "num_samples": len(input_lines) }, fout_trace) for x in score_trace_list: pickle.dump(x, fout_trace)
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese." ) parser.add_argument("--unilm_model_recover_path", default=None, type=str, help="The file of fine-tuned pretraining unilm model.") parser.add_argument("--topic_model_recover_path", default=None, type=str, help="The file of fine-tuned pretraining topic model.") parser.add_argument("--topic_data_path", default=None, type=str, help="The file of topic model data.") parser.add_argument("--topic_num", default=50, type=int, help="topic_num.") parser.add_argument("--data_path", default=None, type=str, help="The file of topic model data.") parser.add_argument( "--max_seq_length", default=512, type=int, help= "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument('--ffn_type', default=0, type=int, help="0: default mlp; 1: W((Wx+b) elem_prod x);") parser.add_argument('--num_qkv', default=0, type=int, help="Number of different <Q,K,V>.") parser.add_argument('--seg_emb', action='store_true', help="Using segment embedding for self-attention.") parser.add_argument('--topic_mode', default=1, type=float, help="1:idea1 1.1:idea1_wo_theta 2:idea2 ") parser.add_argument("--topic_model_dict_path", default=None, type=str, help="The file of fine-tuned pretraining topic model.") # decoding parameters parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--amp', action='store_true', help="Whether to use amp for fp16") parser.add_argument("--input_file", type=str, help="Input file") parser.add_argument('--subset', type=int, default=0, help="Decode a subset of the input dataset.") parser.add_argument("--output_file", type=str, help="output file") parser.add_argument("--split", type=str, default="", help="Data split (train/val/test).") parser.add_argument('--tokenized_input', action='store_true', help="Whether the input is tokenized.") parser.add_argument('--seed', type=int, default=123, help="random seed for initialization") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument('--new_segment_ids', action='store_true', help="Use new segment ids for bi-uni-directional LM.") parser.add_argument('--new_pos_ids', action='store_true', help="Use new position ids for LMs.") parser.add_argument('--batch_size', type=int, default=4, help="Batch size for decoding.") parser.add_argument('--beam_size', type=int, default=1, help="Beam size for searching") parser.add_argument('--length_penalty', type=float, default=0, help="Length penalty for beam search") parser.add_argument('--forbid_duplicate_ngrams', action='store_true') parser.add_argument('--forbid_ignore_word', type=str, default=None, help="Ignore the word during forbid_duplicate_ngrams") parser.add_argument("--min_len", default=None, type=int) parser.add_argument('--need_score_traces', action='store_true') parser.add_argument('--ngram_size', type=int, default=3) parser.add_argument('--mode', default="s2s", choices=["s2s", "l2r", "both"]) parser.add_argument('--max_tgt_length', type=int, default=128, help="maximum length of target sequence") parser.add_argument( '--s2s_special_token', action='store_true', help="New special tokens ([S2S_SEP]/[S2S_CLS]) of S2S.") parser.add_argument('--s2s_add_segment', action='store_true', help="Additional segmental for the encoder of S2S.") parser.add_argument( '--s2s_share_segment', action='store_true', help= "Sharing segment embeddings for the encoder of S2S (used with --s2s_add_segment)." ) parser.add_argument('--pos_shift', action='store_true', help="Using position shift for fine-tuning.") parser.add_argument('--not_predict_token', type=str, default=None, help="Do not predict the tokens during decoding.") args = parser.parse_args() if args.need_score_traces and args.beam_size <= 1: raise ValueError( "Score trace is only available for beam search with beam size > 1." ) if args.max_tgt_length >= args.max_seq_length - 2: raise ValueError("Maximum tgt length exceeds max seq length - 2.") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) tokenizer.max_len = args.max_seq_length pair_num_relation = 0 bi_uni_pipeline = [] bi_uni_pipeline.append( seq2seq_loader.Preprocess4Seq2seqDecoder( list(tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, new_segment_ids=args.new_segment_ids, mode="s2s", num_qkv=args.num_qkv, s2s_special_token=args.s2s_special_token, s2s_add_segment=args.s2s_add_segment, s2s_share_segment=args.s2s_share_segment, pos_shift=args.pos_shift)) amp_handle = None if args.fp16 and args.amp: from apex import amp amp_handle = amp.init(enable_caching=True) # logger.info("enable fp16 with amp") # Prepare model cls_num_labels = 2 type_vocab_size = 6 + \ (1 if args.s2s_add_segment else 0) if args.new_segment_ids else 2 mask_word_id, eos_word_ids, sos_word_id = tokenizer.convert_tokens_to_ids( ["[MASK]", "[SEP]", "[S2S_SOS]"]) def _get_token_id_set(s): r = None if s: w_list = [] for w in s.split('|'): if w.startswith('[') and w.endswith(']'): w_list.append(w.upper()) else: w_list.append(w) r = set(tokenizer.convert_tokens_to_ids(w_list)) return r forbid_ignore_set = _get_token_id_set(args.forbid_ignore_word) not_predict_set = _get_token_id_set(args.not_predict_token) unilm_model_recover = torch.load(args.unilm_model_recover_path) unilm = BertForSeq2SeqDecoder.from_pretrained( args.bert_model, state_dict=unilm_model_recover, num_labels=cls_num_labels, num_rel=pair_num_relation, type_vocab_size=type_vocab_size, task_idx=3, mask_word_id=mask_word_id, search_beam_size=args.beam_size, length_penalty=args.length_penalty, eos_id=eos_word_ids, sos_id=sos_word_id, forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set, not_predict_set=not_predict_set, ngram_size=args.ngram_size, min_len=args.min_len, mode=args.mode, max_position_embeddings=args.max_seq_length, ffn_type=args.ffn_type, num_qkv=args.num_qkv, seg_emb=args.seg_emb, pos_shift=args.pos_shift) topic_model_recover = torch.load(args.topic_model_recover_path) dictionary = Dictionary.load_from_text(args.topic_model_dict_path) gsm = GSM(len(dictionary)) gsm.load_state_dict(topic_model_recover) del unilm_model_recover del topic_model_recover if args.fp16: unilm.half() gsm.half() unilm.to(device) gsm.to(device) if n_gpu > 1: unilm = torch.nn.DataParallel(unilm) gsm = torch.nn.DataParallel(gsm) torch.cuda.empty_cache() unilm.eval() gsm.eval() next_i = 0 max_src_length = args.max_seq_length - 2 - args.max_tgt_length with open(args.input_file, encoding="utf-8") as fin: input_lines = [x.strip() for x in fin.readlines()] if args.subset > 0: #==0 可忽略 # logger.info("Decoding subset: %d", args.subset) input_lines = input_lines[:args.subset] data_tokenizer = WhitespaceTokenizer( ) if args.tokenized_input else tokenizer input_lines = [ data_tokenizer.tokenize(x)[:max_src_length] for x in input_lines ] input_lines = sorted( list(enumerate(input_lines)), key=lambda x: -len(x[1]) ) #input_lines = [(ori_index,[tokens]), (ori_index,[tokens])] 按照文本长度倒着排 output_lines = [""] * len(input_lines) #一维[] score_trace_list = [None] * len(input_lines) total_batch = math.ceil(len(input_lines) / args.batch_size) # get topic_model bows def detokenize(tk_list): r_list = [] src = " ".join(tk_list) src = src.replace("[UNK]", "") tk_list = src.split() for tk in tk_list: if tk.startswith('##') and len(r_list) > 0: r_list[-1] = r_list[-1] + tk[2:] else: r_list.append(tk) src = " ".join(r_list) src = src.replace("UNK", "") r_list = src.split() return r_list txtLines = [] for input_line in input_lines: textline = " ".join(detokenize(input_line[1])) txtLines.append(textline) cwd = os.getcwd() dictionary = Dictionary.load_from_text(args.topic_model_dict_path) dictionary.id2token = { v: k for k, v in dictionary.token2id.items() } # because id2token is empty be default, it is a bug. stopwords = set([ l.strip('\n').strip() for l in open(os.path.join(cwd, 'data/topic_model', 'stopwords.txt'), 'r', encoding='utf-8') ]) topic_tokenizer = seq2seq_loader.SpacyTokenizer(stopwords=stopwords) docs = topic_tokenizer.tokenize(txtLines) # convert to BOW representation bows, _docs = [], [] vocabsize = len(dictionary) print("vocabsize", vocabsize) for doc in docs: _bow = dictionary.doc2bow(doc) if _bow != []: _docs.append(list(doc)) bows.append(_bow) else: bows.append([(vocabsize - 1, 1)]) docs = _docs with tqdm(total=total_batch) as pbar: while next_i < len(input_lines): _chunk = input_lines[next_i:next_i + args.batch_size] #如果超过就到最后一个,这是list[a:b]的特性 buf_id = [x[0] for x in _chunk] buf = [x[1] for x in _chunk] max_a_len = max([len(x) for x in buf]) instances = [] batch_bow = [] for i in range(next_i, next_i + args.batch_size): if i < len(input_lines): bow = torch.zeros(vocabsize) item = list( zip(*bows[i]) ) # bow = [[token_id1,token_id2,...],[freq1,freq2,...]] bow[list(item[0])] = torch.tensor(list(item[1])).float() batch_bow.append(bow) next_i += args.batch_size for instance in [(x, max_a_len) for x in buf]: for proc in bi_uni_pipeline: #proc 是 Preprocess4Seq2seqDecoder 相当于可以把数据给padding instances.append(proc(instance)) with torch.no_grad(): batch = seq2seq_loader.batch_list_to_batch_tensors(instances) batch = [ t.to(device) if t is not None else None for t in batch ] batch_bow = torch.stack(batch_bow) batch_bow = batch_bow.to(device) input_ids, token_type_ids, position_ids, input_mask, mask_qkv, task_idx = batch p_x, mus, log_vars, theta, beta, topic_embedding = gsm( batch_bow) traces = unilm(input_ids, theta, beta, topic_embedding, args.topic_mode, token_type_ids, position_ids, input_mask, task_idx=task_idx, mask_qkv=mask_qkv) cal_ppl(batch_bow, p_x, log_vars, mus) if args.beam_size > 1: traces = {k: v.tolist() for k, v in traces.items()} output_ids = traces['pred_seq'] else: output_ids = traces.tolist() for i in range(len(buf)): w_ids = output_ids[i] output_buf = tokenizer.convert_ids_to_tokens(w_ids) output_tokens = [] for t in output_buf: if t in ("[SEP]", "[PAD]"): break output_tokens.append(t) output_sequence = ' '.join(detokenize(output_tokens)) output_lines[buf_id[i]] = output_sequence if args.need_score_traces: score_trace_list[buf_id[i]] = { 'scores': traces['scores'][i], 'wids': traces['wids'][i], 'ptrs': traces['ptrs'][i] } pbar.update(1) print("word_count", word_count) ppx = np.exp(loss_sum / word_count) ppx_document = np.exp(ppx_sum / doc_count) print("ppx", ppx) print("ppx_document", ppx_document) topic_words = show_topic_words(gsm.module, args.topic_num, device, dictionary.id2token, topic_id=None, topK=10) # evaluate_topic_quality(topic_words, docs, dictionary, taskname="unilm", calc4each=False) topic_diversity = calc_topic_diversity(topic_words) print("topic_diversity", topic_diversity) # print('\n'.join([str(lst) for lst in topic_words])) # print('='*30) if args.output_file: fn_out = args.output_file else: fn_out = args.unilm_model_recover_path + '.' + args.split with open(fn_out, "w", encoding="utf-8") as fout: for l in output_lines: fout.write(l) fout.write("\n") if args.need_score_traces: with open(fn_out + ".trace.pickle", "wb") as fout_trace: pickle.dump({ "version": 0.0, "num_samples": len(input_lines) }, fout_trace) for x in score_trace_list: pickle.dump(x, fout_trace)
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese." ) parser.add_argument("--model_recover_path", default=None, type=str, help="The file of fine-tuned pretraining model.") parser.add_argument( "--max_seq_length", default=512, type=int, help= "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") # decoding parameters parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--amp', action='store_true', help="Whether to use amp for fp16") parser.add_argument("--input_file", type=str, help="Input file") parser.add_argument("--output_file", type=str, help="output file") parser.add_argument("--split", type=str, default="", help="Data split (train/val/test).") parser.add_argument('--tokenized_input', action='store_true', help="Whether the input is tokenized.") parser.add_argument('--seed', type=int, default=123, help="random seed for initialization") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument('--new_segment_ids', action='store_true', help="Use new segment ids for bi-uni-directional LM.") parser.add_argument('--batch_size', type=int, default=4, help="Batch size for decoding.") parser.add_argument('--beam_size', type=int, default=1, help="Beam size for searching") parser.add_argument('--top_k', type=int, default=1, help="Top k for output") parser.add_argument('--top_kk', type=int, default=0, help="Top k sample method for output") parser.add_argument('--length_penalty', type=float, default=0, help="Length penalty for beam search") parser.add_argument('--forbid_duplicate_ngrams', action='store_true') parser.add_argument('--forbid_ignore_word', type=str, default=None, help="Forbid the word during forbid_duplicate_ngrams") parser.add_argument("--min_len", default=None, type=int) parser.add_argument('--need_score_traces', action='store_true') parser.add_argument('--ngram_size', type=int, default=3) parser.add_argument('--mode', default="s2s", choices=["s2s", "l2r", "both"]) parser.add_argument('--max_tgt_length', type=int, default=128, help="maximum length of target sequence") args = parser.parse_args() if args.need_score_traces and args.beam_size <= 1: raise ValueError( "Score trace is only available for beam search with beam size > 1." ) if args.max_tgt_length >= args.max_seq_length - 2: raise ValueError("Maximum tgt length exceeds max seq length - 2.") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) tokenizer.max_len = args.max_seq_length pair_num_relation = 0 bi_uni_pipeline = [] if args.mode == "s2s" or args.mode == "both": bi_uni_pipeline.append( seq2seq_loader.Preprocess4Seq2seqDecoder( list(tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, new_segment_ids=args.new_segment_ids, mode="s2s")) if args.mode == "l2r" or args.mode == "both": bi_uni_pipeline.append( seq2seq_loader.Preprocess4Seq2seqDecoder( list(tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, new_segment_ids=args.new_segment_ids, mode="l2r")) amp_handle = None if args.fp16 and args.amp: from apex import amp amp_handle = amp.init(enable_caching=True) logger.info("enable fp16 with amp") # Prepare model cls_num_labels = 2 type_vocab_size = 6 if args.new_segment_ids else 2 mask_word_id, eos_word_ids = tokenizer.convert_tokens_to_ids( ["[MASK]", "[SEP]"]) forbid_ignore_set = None if args.forbid_ignore_word: w_list = [] for w in args.forbid_ignore_word.split('|'): if w.startswith('[') and w.endswith(']'): w_list.append(w.upper()) else: w_list.append(w) forbid_ignore_set = set(tokenizer.convert_tokens_to_ids(w_list)) print(args.model_recover_path) for model_recover_path in glob.glob(args.model_recover_path.strip()): logger.info("***** Recover model: %s *****", model_recover_path) model_recover = torch.load(model_recover_path) model = BertForSeq2SeqDecoder.from_pretrained( args.bert_model, state_dict=model_recover, num_labels=cls_num_labels, num_rel=pair_num_relation, type_vocab_size=type_vocab_size, task_idx=3, mask_word_id=mask_word_id, search_beam_size=args.beam_size, length_penalty=args.length_penalty, eos_id=eos_word_ids, forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set, ngram_size=args.ngram_size, min_len=args.min_len, mode=args.mode, max_position_embeddings=args.max_seq_length, top_kk=args.top_kk) del model_recover if args.fp16: model.half() model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) torch.cuda.empty_cache() model.eval() next_i = 0 max_src_length = args.max_seq_length - 2 - args.max_tgt_length with open(args.input_file, encoding="utf-8") as fin: input_lines = [x.strip() for x in fin.readlines()] data_tokenizer = WhitespaceTokenizer( ) if args.tokenized_input else tokenizer input_lines = [ data_tokenizer.tokenize(x)[:max_src_length] for x in input_lines ] input_lines = sorted(list(enumerate(input_lines)), key=lambda x: -len(x[1])) output_lines = [""] * len(input_lines) score_trace_list = [None] * len(input_lines) total_batch = math.ceil(len(input_lines) / args.batch_size) with tqdm(total=total_batch) as pbar: while next_i < len(input_lines): _chunk = input_lines[next_i:next_i + args.batch_size] buf_id = [x[0] for x in _chunk] buf = [x[1] for x in _chunk] next_i += args.batch_size max_a_len = max([len(x) for x in buf]) instances = [] for instance in [(x, max_a_len) for x in buf]: for proc in bi_uni_pipeline: instances.append(proc(instance)) with torch.no_grad(): batch = long_loader.batch_list_to_batch_tensors(instances) batch = [t.to(device) for t in batch] input_ids, token_type_ids, position_ids, input_mask, task_idx = batch traces = model(input_ids, token_type_ids, position_ids, input_mask, task_idx=task_idx) if args.beam_size > 1: traces = {k: v.tolist() for k, v in traces.items()} output_ids = traces['pred_seq'] else: output_ids = traces.tolist() for i in range(len(buf)): scores = traces['scores'][i] wids_list = traces['wids'][i] ptrs = traces['ptrs'][i] eos_id = 102 top_k = args.top_k # first we need to find the eos frame where all symbols are eos # any frames after the eos frame are invalid last_frame_id = len(scores) - 1 for _i, wids in enumerate(wids_list): if all(wid == eos_id for wid in wids): last_frame_id = _i break frame_id = -1 pos_in_frame = -1 seqs = [] for fid in range(last_frame_id + 1): for _i, wid in enumerate(wids_list[fid]): if wid == eos_id or fid == last_frame_id: s = scores[fid][_i] frame_id = fid pos_in_frame = _i if frame_id != -1 and s < 0: seq = [ wids_list[frame_id][pos_in_frame] ] for _fid in range(frame_id, 0, -1): pos_in_frame = ptrs[_fid][ pos_in_frame] seq.append( wids_list[_fid - 1][pos_in_frame]) seq.reverse() seqs.append([seq, s]) seqs = sorted(seqs, key=lambda x: x[1], reverse=True) w_idss = [seq[0] for seq in seqs[:top_k]] output_sequences = [] for w_ids in w_idss: output_buf = tokenizer.convert_ids_to_tokens(w_ids) output_tokens = [] for t in output_buf: if t in ("[SEP]", "[PAD]"): break output_tokens.append(t) output_sequence = ' '.join( detokenize(output_tokens)) output_sequences.append(output_sequence) output_lines[buf_id[i]] = output_sequences if args.need_score_traces: score_trace_list[buf_id[i]] = { 'scores': traces['scores'][i], 'wids': traces['wids'][i], 'ptrs': traces['ptrs'][i] } pbar.update(1) if args.output_file: fn_out = args.output_file else: fn_out = model_recover_path + '.' + args.split with open(fn_out, "w", encoding="utf-8") as fout: for l in output_lines: fout.write('\t'.join(l)) fout.write("\n") if args.need_score_traces: with open(fn_out + ".trace.pickle", "wb") as fout_trace: pickle.dump({ "version": 0.0, "num_samples": len(input_lines) }, fout_trace) for x in score_trace_list: pickle.dump(x, fout_trace)
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") parser.add_argument("--model_recover_path", default=None, type=str, help="The file of fine-tuned pretraining model.") parser.add_argument("--max_seq_length", default=512, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") # decoding parameters parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--amp', action='store_true', help="Whether to use amp for fp16") parser.add_argument("--input_file", type=str, help="Input file") parser.add_argument("--output_file", type=str, help="output file") parser.add_argument("--split", type=str, default="", help="Data split (train/val/test).") parser.add_argument('--tokenized_input', action='store_true', help="Whether the input is tokenized.") parser.add_argument('--seed', type=int, default=123, help="random seed for initialization") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument('--new_segment_ids', action='store_true', help="Use new segment ids for bi-uni-directional LM.") parser.add_argument('--batch_size', type=int, default=4, help="Batch size for decoding.") parser.add_argument('--beam_size', type=int, default=1, help="Beam size for searching") parser.add_argument('--top_k', type=int, default=1, help="Top k for output") parser.add_argument('--top_kk', type=int, default=0, help="Top k sample method for output") parser.add_argument('--length_penalty', type=float, default=0, help="Length penalty for beam search") parser.add_argument('--forbid_duplicate_ngrams', action='store_true') parser.add_argument('--forbid_ignore_word', type=str, default=None, help="Forbid the word during forbid_duplicate_ngrams") parser.add_argument("--min_len", default=None, type=int) parser.add_argument('--need_score_traces', action='store_true') parser.add_argument('--ngram_size', type=int, default=3) parser.add_argument('--mode', default="s2s", choices=["s2s", "l2r", "both"]) parser.add_argument('--max_tgt_length', type=int, default=128, help="maximum length of target sequence") # evaluate parameters parser.add_argument('--do_predict', action='store_true', help="do_predict") parser.add_argument("--do_evaluate", action="store_true", help="caculate the scores if have label file") parser.add_argument("--label_file", type=str, default="") parser.add_argument("--experiment", type=str, default="full", help="full/title/title-l1/hierachical/title-first/title-first-rouge") # ranker parameters parser.add_argument("--ranker_recover_path", type=str, help="ranker model for extract sentence") parser.add_argument("--ranker_max_len", type=int, default=192, help ="max length of the ranker input") parser.add_argument("--ranker_batch_size", type=int, default=128) args = parser.parse_args() if args.need_score_traces and args.beam_size <= 1: raise ValueError( "Score trace is only available for beam search with beam size > 1.") if args.max_tgt_length >= args.max_seq_length - 2: raise ValueError("Maximum tgt length exceeds max seq length - 2.") device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) tokenizer = BertTokenizer.from_pretrained( args.bert_model, do_lower_case=args.do_lower_case) tokenizer.max_len = args.max_seq_length pair_num_relation = 0 bi_uni_pipeline = [] if args.mode == "s2s" or args.mode == "both": bi_uni_pipeline.append(seq2seq_loader.Preprocess4Seq2seqDecoder(list( tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, new_segment_ids=args.new_segment_ids, mode="s2s")) if args.mode == "l2r" or args.mode == "both": bi_uni_pipeline.append(seq2seq_loader.Preprocess4Seq2seqDecoder(list( tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, new_segment_ids=args.new_segment_ids, mode="l2r")) if args.experiment == "segsep": bi_uni_pipeline = [] bi_uni_pipeline.append(Preprocess4SegSepDecoder(list( tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, new_segment_ids=args.new_segment_ids, mode="s2s")) amp_handle = None if args.fp16 and args.amp: from apex import amp amp_handle = amp.init(enable_caching=True) logger.info("enable fp16 with amp") # Prepare model cls_num_labels = 2 type_vocab_size = 6 if args.new_segment_ids else 2 if args.experiment == "segsep": type_vocab_size = 11 mask_word_id, eos_word_ids = tokenizer.convert_tokens_to_ids( ["[MASK]", "[SEP]"]) forbid_ignore_set = None if args.forbid_ignore_word: w_list = [] for w in args.forbid_ignore_word.split('|'): if w.startswith('[') and w.endswith(']'): w_list.append(w.upper()) else: w_list.append(w) forbid_ignore_set = set(tokenizer.convert_tokens_to_ids(w_list)) print(args.model_recover_path) if args.do_predict: for model_recover_path in glob.glob(args.model_recover_path.strip()): logger.info("***** Recover model: %s *****", model_recover_path) model_recover = torch.load(model_recover_path) model = BertForSeq2SeqDecoder.from_pretrained(args.bert_model, state_dict=model_recover, num_labels=cls_num_labels, num_rel=pair_num_relation, type_vocab_size=type_vocab_size, task_idx=3, mask_word_id=mask_word_id, search_beam_size=args.beam_size, length_penalty=args.length_penalty, eos_id=eos_word_ids, forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set, ngram_size=args.ngram_size, min_len=args.min_len, mode=args.mode, max_position_embeddings=args.max_seq_length) del model_recover if args.fp16: model.half() model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) torch.cuda.empty_cache() model.eval() next_i = 0 max_src_length = args.max_seq_length - 2 - args.max_tgt_length if args.experiment in ["full", "title", "title-l1"]: input_lines = EvalDataset(args.input_file, args.experiment).proc() elif args.experiment == "single": input_lines, map_dict = EvalDataset(args.input_file, args.experiment).proc() elif args.experiment == "title-first": input_lines = EvalDataset(args.input_file, args.experiment, tokenizer, args.max_seq_length, args.max_seq_length).proc() elif args.experiment == "segsep": input_lines = EvalDataset(args.input_file, args.experiment, tokenizer, args.max_seq_length, args.max_seq_length).proc() elif args.experiment == "heirachical": logger.info("***** Recover rank model: %s *****", args.ranker_recover_path) # extract sentences before load data # load rank model rank_model_recover = torch.load(args.ranker_recover_path, map_location="cpu") global_step = 0 rank_model = BertForSentenceRanker.from_pretrained(args.bert_model, state_dict=rank_model_recover, num_labels=2) # set model for multi GPUs or multi nodes if args.fp16: rank_model.half() rank_model.to(device) if n_gpu > 1: rank_model = DataParallelImbalance(rank_model) DatasetFunc = ScoreEvalDataset # Load title + sentence pair print ("Loading Rank Dataset from ", args.input_file) data_tokenizer = WhitespaceTokenizer() if args.tokenized_input else tokenizer max_pred = 16 mask_prob = 0.7 rank_bi_uni_pipeline = [Preprocess4Seq2cls(max_pred, mask_prob, list(tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.ranker_max_len, new_segment_ids=args.new_segment_ids, truncate_config={'max_len_a': 64, 'max_len_b': 16, 'trunc_seg': 'a', 'always_truncate_tail': True}, mask_source_words=False, skipgram_prb=0.0, skipgram_size=1, mask_whole_word=False, mode="s2s", has_oracle=False, num_qkv=0, s2s_special_token=False, s2s_add_segment=False, s2s_share_segment=False, pos_shift=False, eval=True)] fn_src = args.input_file fn_tgt = None eval_dataset = DatasetFunc( fn_src, fn_tgt, args.ranker_batch_size, data_tokenizer, args.ranker_max_len, bi_uni_pipeline=rank_bi_uni_pipeline ) eval_sampler = SequentialSampler(eval_dataset) _batch_size = args.ranker_batch_size eval_dataloader = torch.utils.data.DataLoader(eval_dataset, batch_size=_batch_size, sampler=eval_sampler, num_workers=24, collate_fn=seq2seq_loader.batch_list_to_batch_tensors, pin_memory=False) logger.info("***** CUDA.empty_cache() *****") torch.cuda.empty_cache() logger.info("***** Runinning ranker *****") logger.info(" Batch size = %d", _batch_size) logger.info(" Num steps = %d", int(len(eval_dataset)/ args.ranker_batch_size)) rank_model.to(device) rank_model.eval() iter_bar = tqdm(eval_dataloader, desc = "Iter: ") num_rank_labels = 2 all_labels = [] for step, batch in enumerate(iter_bar): batch = [t.to(device) if t is not None else None for t in batch] input_ids, segment_ids, input_mask, mask_qkv, lm_label_ids, masked_pos, masked_weights, is_next, task_idx = batch logits = rank_model(input_ids, task_idx=task_idx, mask_qkv=mask_qkv) labels = torch.argmax(logits.view(-1, num_rank_labels), dim=-1) all_labels.append(labels) all_labels_results = [] for label in all_labels: all_labels_results.extend(label.detach().cpu().numpy()) # collect results logger.info("**** Collect results ******") clu2doc_dict, doc2sent_dict, all_titles, all_sents = eval_dataset.get_maps() all_docs = [] for i, doc in enumerate(doc2sent_dict): text = all_titles[i] sent_idx = doc2sent_dict[doc] for idx in sent_idx: if all_labels_results[idx] == 1: text += ". " + all_sents[idx] all_docs.append(text) input_lines = [] for clu in tqdm(clu2doc_dict): doc_idx = clu2doc_dict[clu] input_line = "" for idx in doc_idx: input_line += all_docs[idx] input_lines.append(input_line) elif args.experiment == "title-first-rank": logger.info("***** Recover rank model: %s *****", args.ranker_recover_path) # extract sentences before load data # load rank model rank_model_recover = torch.load(args.ranker_recover_path, map_location="cpu") global_step = 0 rank_model = BertForSentenceRanker.from_pretrained(args.bert_model, state_dict=rank_model_recover, num_labels=2) # set model for multi GPUs or multi nodes if args.fp16: rank_model.half() rank_model.to(device) if n_gpu > 1: rank_model = DataParallelImbalance(rank_model) DatasetFunc = EvalRankDataset # Load title + sentence pair print ("Loading Rank Dataset from ", args.input_file) data_tokenizer = WhitespaceTokenizer() if args.tokenized_input else tokenizer max_pred = 16 mask_prob = 0.7 rank_bi_uni_pipeline = [Preprocess4Seq2cls(max_pred, mask_prob, list(tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, new_segment_ids=args.new_segment_ids, truncate_config={'max_len_a': 512, 'max_len_b': 16, 'trunc_seg': 'a', 'always_truncate_tail': True}, mask_source_words=False, skipgram_prb=0.0, skipgram_size=1, mask_whole_word=False, mode="s2s", has_oracle=False, num_qkv=0, s2s_special_token=False, s2s_add_segment=False, s2s_share_segment=False, pos_shift=False, eval=True)] fn_src = args.input_file fn_tgt = None eval_dataset = DatasetFunc( fn_src, fn_tgt, args.ranker_batch_size, data_tokenizer, args.max_seq_length, bi_uni_pipeline=rank_bi_uni_pipeline ) eval_sampler = SequentialSampler(eval_dataset) _batch_size = args.ranker_batch_size eval_dataloader = torch.utils.data.DataLoader(eval_dataset, batch_size=_batch_size, sampler=eval_sampler, num_workers=24, collate_fn=seq2seq_loader.batch_list_to_batch_tensors, pin_memory=False) logger.info("***** CUDA.empty_cache() *****") torch.cuda.empty_cache() logger.info("***** Runinning ranker *****") logger.info(" Batch size = %d", _batch_size) logger.info(" Num steps = %d", int(len(eval_dataset)/ args.ranker_batch_size)) rank_model.to(device) rank_model.eval() iter_bar = tqdm(eval_dataloader, desc = "Iter: ") num_rank_labels = 2 all_labels = [] for step, batch in enumerate(iter_bar): batch = [t.to(device) if t is not None else None for t in batch] input_ids, segment_ids, input_mask, mask_qkv, lm_label_ids, masked_pos, masked_weights, is_next, task_idx = batch # print("input_ids", len(input_ids[0]), "segment_ids", len(segment_ids[0])) with torch.no_grad(): logits = rank_model(input_ids, task_idx=task_idx, mask_qkv=mask_qkv) labels = logits.view(-1) all_labels.append(labels) all_labels_results = [] for label in all_labels: all_labels_results.extend(label.detach().cpu().numpy()) print("test label results") print(all_labels_results[0]) # collect results logger.info("**** Collect results ******") clu2sent_dict, all_sents, all_titles= eval_dataset.get_maps() all_clusters = [] input_lines = [] for i, clu_id in enumerate(clu2sent_dict): text = all_titles[clu_id] sent_idx = clu2sent_dict[clu_id] sents_collect = [] for idx in sent_idx: sents_collect.append([all_sents[idx], all_labels_results[idx]]) sents_collect_sort = sorted(sents_collect, key=lambda x:x[1]) sents_collect = [x[0] for x in sents_collect_sort] text_tk = tokenizer.tokenize(text) j = 0 while j < len(sents_collect) and len(text_tk) + len(tokenizer.tokenize(sents_collect[j])) <= args.max_seq_length: text += " " + sents_collect[j] j += 1 input_lines.append(text) else: input_lines = [] data_tokenizer = WhitespaceTokenizer() if args.tokenized_input else tokenizer input_lines = [data_tokenizer.tokenize( x)[:max_src_length] for x in input_lines] input_lines = sorted(list(enumerate(input_lines)), key=lambda x: -len(x[1])) output_lines = [""] * len(input_lines) score_trace_list = [None] * len(input_lines) total_batch = math.ceil(len(input_lines) / args.batch_size) with tqdm(total=total_batch) as pbar: while next_i < len(input_lines): _chunk = input_lines[next_i:next_i + args.batch_size] buf_id = [x[0] for x in _chunk] buf = [x[1] for x in _chunk] next_i += args.batch_size max_a_len = max([len(x) for x in buf]) instances = [] for instance in [(x, max_a_len) for x in buf]: for proc in bi_uni_pipeline: instances.append(proc(instance)) with torch.no_grad(): batch = seq2seq_loader.batch_list_to_batch_tensors( instances) # print("batch") # print(batch) # print(len(batch)) batch = [t.to(device) for t in batch if t is not None] input_ids, token_type_ids, position_ids, input_mask, task_idx = batch traces = model(input_ids, token_type_ids, position_ids, input_mask, task_idx=task_idx) if args.beam_size > 1: traces = {k: v.tolist() for k, v in traces.items()} output_ids = traces['pred_seq'] else: output_ids = traces.tolist() for i in range(len(buf)): scores = traces['scores'][i] wids_list = traces['wids'][i] ptrs = traces['ptrs'][i] eos_id = 102 top_k = args.top_k # first we need to find the eos frame where all symbols are eos # any frames after the eos frame are invalid last_frame_id = len(scores) - 1 for _i, wids in enumerate(wids_list): if all(wid == eos_id for wid in wids): last_frame_id = _i break frame_id = -1 pos_in_frame = -1 seqs = [] for fid in range(last_frame_id + 1): for _i, wid in enumerate(wids_list[fid]): if wid == eos_id or fid == last_frame_id: s = scores[fid][_i] frame_id = fid pos_in_frame = _i if frame_id != -1 and s < 0: seq = [wids_list[frame_id][pos_in_frame]] for _fid in range(frame_id, 0, -1): pos_in_frame = ptrs[_fid][pos_in_frame] seq.append(wids_list[_fid - 1][pos_in_frame]) seq.reverse() seqs.append([seq, s]) seqs = sorted(seqs, key= lambda x:x[1], reverse=True) w_idss = [seq[0] for seq in seqs[:top_k]] output_sequences = [] for w_ids in w_idss: output_buf = tokenizer.convert_ids_to_tokens(w_ids) output_tokens = [] for t in output_buf: if t in ("[SEP]", "[PAD]"): break output_tokens.append(t) output_sequence = ' '.join(detokenize(output_tokens)) output_sequences.append(output_sequence) output_lines[buf_id[i]] = output_sequences if args.need_score_traces: score_trace_list[buf_id[i]] = { 'scores': traces['scores'][i], 'wids': traces['wids'][i], 'ptrs': traces['ptrs'][i]} pbar.update(1) # collect instances after split results = [] if args.experiment == "single": for clu in map_dict: record = [] clu_ixs = map_dict[clu] for i in clu_ixs: record.extend(output_lines[i]) record_top10 = Counter(record).most_common(10) record_top10 = [x[0] for x in record_top10] results.append(record_top10) output_lines = results if args.output_file: fn_out = args.output_file else: fn_out = model_recover_path+'.'+args.split with open(fn_out, "w", encoding="utf-8") as fout: for l in output_lines: fout.write('\t'.join(l)) fout.write("\n") if args.need_score_traces: with open(fn_out + ".trace.pickle", "wb") as fout_trace: pickle.dump( {"version": 0.0, "num_samples": len(input_lines)}, fout_trace) for x in score_trace_list: pickle.dump(x, fout_trace) # Evaluate ! if args.do_evaluate: labels = [] if not os.path.exists(args.label_file): raise ValueError("Label file not exists") print("Loading label file from {}".format(args.label_file)) with open(args.label_file) as f: for line in tqdm(f.readlines()): line = line.strip().split("\t") labels.append(line) results = output_lines ks = [1, 5, 10] results_dict = {} for k in ks: acc_cul = 0 r_cul = 0 f1_cul = 0 cnt = 0 for predict, true_label in zip(tqdm(results), tqdm(labels)): predict = predict[:k] true_label = true_label[:k] if len(predict) > 0 and len(true_label) > 0: acc_cul += acc_score(predict, true_label) r_cul += recall_score(predict, true_label) f1_cul += f1_score(acc_score(predict, true_label), recall_score(predict, true_label)) cnt += 1 results_dict["P@{}".format(k)] = acc_cul*1.000 / cnt results_dict["R@{}".format(k)] = r_cul*1.000 / cnt results_dict["F1@{}".format(k)] = f1_cul*1.000 / cnt print(results_dict)