示例#1
0
    def test_fake_quant_per_channel_other_prec(self):
        kernel_size = 3

        quant_desc_input = QuantDescriptor(num_bits=4)
        quant_desc_weight = QuantDescriptor(num_bits=3, axis=(0))

        quant_conv_object = quant_conv.QuantConv1d(
            _NUM_IN_CHANNELS,
            _NUM_OUT_CHANNELS,
            kernel_size,
            bias=False,
            quant_desc_input=quant_desc_input,
            quant_desc_weight=quant_desc_weight)
        test_input = torch.randn(16, _NUM_IN_CHANNELS, 16)

        test_input_quantizer = TensorQuantizer(quant_desc_input)
        weight_quantizer = TensorQuantizer(quant_desc_weight)

        quant_input = test_input_quantizer(test_input)

        weight_copy = quant_conv_object.weight.clone()
        quant_weight = weight_quantizer(weight_copy)

        out1 = F.conv1d(quant_input, quant_weight)
        out2 = quant_conv_object(test_input)
        np.testing.assert_array_equal(out1.detach().cpu().numpy(), out2.detach().cpu().numpy())
示例#2
0
    def test_against_unquantized(self):
        kernel_size = 3
        test_input = torch.randn(16, _NUM_IN_CHANNELS, 24).cuda()

        torch.manual_seed(12345)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(12345)
        fake_quant_conv1d = quant_conv.QuantConv1d(
            _NUM_IN_CHANNELS,
            _NUM_OUT_CHANNELS,
            kernel_size,
            bias=True,
            quant_desc_input=QuantDescriptor(num_bits=16),
            quant_desc_weight=QuantDescriptor(num_bits=16, axis=(0)))

        # Reset seed. Make sure weight and bias are the same
        torch.manual_seed(12345)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(12345)
        conv1d = nn.Conv1d(_NUM_IN_CHANNELS, _NUM_OUT_CHANNELS, kernel_size, bias=True)

        fake_quant_output = fake_quant_conv1d(test_input)
        output = conv1d(test_input)

        test_utils.compare(fake_quant_output, output, rtol=1e-5, atol=1e-4)
示例#3
0
    def test_fake_quant_per_channel_bias(self):
        kernel_size = 3

        quant_conv_object = quant_conv.QuantConv1d(
            _NUM_IN_CHANNELS,
            _NUM_OUT_CHANNELS,
            kernel_size,
            bias=True,
            quant_desc_weight=QuantDescriptor(axis=(0)))
        test_input = torch.randn(16, _NUM_IN_CHANNELS, 16)

        quant_input = tensor_quant.fake_tensor_quant(
            test_input, torch.max(torch.abs(test_input)))

        weight_copy = quant_conv_object.weight.clone()
        quant_weight = tensor_quant.fake_tensor_quant(
            weight_copy,
            torch.max(torch.abs(weight_copy).view(_NUM_OUT_CHANNELS, -1),
                      dim=1,
                      keepdim=True)[0].view(_NUM_OUT_CHANNELS, 1, 1))

        out1 = F.conv1d(quant_input, quant_weight, bias=quant_conv_object.bias)
        out2 = quant_conv_object(test_input)
        np.testing.assert_array_equal(out1.detach().cpu().numpy(),
                                      out2.detach().cpu().numpy())
示例#4
0
    def test_fake_quant_per_tensor(self):
        kernel_size = 3

        quant_conv_object = quant_conv.QuantConv1d(
            _NUM_IN_CHANNELS, _NUM_OUT_CHANNELS, kernel_size, bias=False, quant_desc_weight=QuantDescriptor())
        test_input = torch.randn(16, _NUM_IN_CHANNELS, 16)

        quant_input = tensor_quant.fake_tensor_quant(test_input, torch.max(torch.abs(test_input)))

        weight_copy = quant_conv_object.weight.clone()
        quant_weight = tensor_quant.fake_tensor_quant(weight_copy, torch.max(torch.abs(weight_copy)))

        out1 = F.conv1d(quant_input, quant_weight)
        out2 = quant_conv_object(test_input)
        np.testing.assert_array_equal(out1.detach().cpu().numpy(), out2.detach().cpu().numpy())
示例#5
0
    def test_fake_quant_input(self):
        kernel_size = 3

        quant_conv_object = quant_conv.QuantConv1d(
            _NUM_IN_CHANNELS,
            _NUM_OUT_CHANNELS,
            kernel_size,
            bias=False)
        quant_conv_object.weight_quantizer.disable()
        test_input = torch.randn(20, _NUM_IN_CHANNELS, 50)

        quant_input = tensor_quant.fake_tensor_quant(test_input, torch.max(torch.abs(test_input)))

        out1 = F.conv1d(quant_input, quant_conv_object.weight)
        out2 = quant_conv_object(test_input)
        np.testing.assert_array_equal(out1.detach().cpu().numpy(), out2.detach().cpu().numpy())
示例#6
0
    def test_no_quant(self):
        kernel_size = 8

        quant_conv_object = quant_conv.QuantConv1d(
            _NUM_IN_CHANNELS,
            _NUM_OUT_CHANNELS,
            kernel_size,
            bias=False)
        quant_conv_object.input_quantizer.disable()
        quant_conv_object.weight_quantizer.disable()
        test_input = torch.randn(16, _NUM_IN_CHANNELS, 256)

        weight_copy = quant_conv_object.weight.clone()
        quant_weight = weight_copy

        out1 = F.conv1d(test_input, quant_weight)
        out2 = quant_conv_object(test_input)
        np.testing.assert_array_equal(out1.detach().cpu().numpy(), out2.detach().cpu().numpy())
示例#7
0
    def test_weight_fake_quant_per_channel(self):
        kernel_size = 3

        quant_conv_object = quant_conv.QuantConv1d(
            _NUM_IN_CHANNELS,
            _NUM_OUT_CHANNELS,
            kernel_size,
            bias=False,
            quant_desc_weight=QuantDescriptor(axis=(0)))
        quant_conv_object.input_quantizer.disable()
        test_input = torch.randn(16, _NUM_IN_CHANNELS, 256)

        weight_copy = quant_conv_object.weight.clone()
        amax = quant_utils.reduce_amax(weight_copy, axis=(1, 2))
        quant_weight = tensor_quant.fake_tensor_quant(weight_copy, amax)

        out1 = F.conv1d(test_input, quant_weight)
        out2 = quant_conv_object(test_input)
        np.testing.assert_array_equal(out1.detach().cpu().numpy(), out2.detach().cpu().numpy())