def test_eval(self): data = DATACQA( debug=False, data_dir=self.data_dir ) test_examples = data.read_examples_test(os.path.join(self.data_dir, 'test.csv')) print('eval_examples的数量', len(test_examples)) questions = [x.text_a for x in test_examples] test_features = data.convert_examples_to_features(test_examples, self.tokenizer, self.max_seq_length) all_input_ids = torch.tensor(data.select_field(test_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(data.select_field(test_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(data.select_field(test_features, 'segment_ids'), dtype=torch.long) all_label = torch.tensor([f.label for f in test_features], dtype=torch.long) test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) # Run prediction for full data test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=self.eval_batch_size) config = BertConfig.from_pretrained(self.model_name_or_path, num_labels=self.num_labels) model = BertForSequenceClassification.from_pretrained( os.path.join(self.output_dir, "pytorch_model_0.bin"), self.args, config=config) model.to(self.device) model.eval() inference_labels = [] gold_labels = [] scores = [] for input_ids, input_mask, segment_ids, label_ids in test_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) label_ids = label_ids.to(self.device) with torch.no_grad(): logits = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask ).detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() scores.append(logits) inference_labels.append(np.argmax(logits, axis=1)) gold_labels.append(label_ids) gold_labels = np.concatenate(gold_labels, 0) scores = np.concatenate(scores, 0) logits = np.concatenate(inference_labels, 0) # eval_accuracy = accuracyCQA(inference_logits, gold_labels) eval_mrr = compute_MRR_CQA(scores, gold_labels, questions) eval_5R20 = compute_5R20(scores, gold_labels, questions) print('eval_mrr',eval_mrr) print('eval_5R20',eval_5R20)
def test_eval(self): data = DATAUBUNTU(debug=False, data_dir=self.data_dir) test_examples = data.read_examples( os.path.join(self.data_dir, 'test.csv')) print('eval_examples的数量', len(test_examples)) ID = [x.guid for x in test_examples] test_features = data.convert_examples_to_features( test_examples, self.tokenizer, self.max_seq_length) all_input_ids = torch.tensor(data.select_field(test_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(data.select_field( test_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(data.select_field( test_features, 'segment_ids'), dtype=torch.long) all_utterance_mask = torch.tensor(data.select_field( test_features, 'utterance_mask'), dtype=torch.long) all_response_mask = torch.tensor(data.select_field( test_features, 'response_mask'), dtype=torch.long) all_history_mask = torch.tensor(data.select_field( test_features, 'history_mask'), dtype=torch.long) all_label = torch.tensor([f.label for f in test_features], dtype=torch.long) test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_utterance_mask, all_response_mask, all_history_mask, all_label) # Run prediction for full data test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=self.eval_batch_size) config = BertConfig.from_pretrained(self.model_name_or_path, num_labels=self.num_labels) model = BertForSequenceClassification.from_pretrained(os.path.join( self.output_dir, "pytorch_model.bin"), self.args, config=config) model.to(self.device) model.eval() inference_labels = [] gold_labels = [] scores = [] for input_ids, input_mask, segment_ids, utterance_mask, response_mask, history_mask, label_ids in test_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) utterance_mask = utterance_mask.to(self.device) response_mask = response_mask.to(self.device) history_mask = history_mask.to(self.device) label_ids = label_ids.to(self.device) with torch.no_grad(): logits = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, utterance_mask=utterance_mask, response_mask=response_mask, history_mask=history_mask, ).detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() scores.append(logits) inference_labels.append(np.argmax(logits, axis=1)) gold_labels.append(label_ids) gold_labels = np.concatenate(gold_labels, 0) scores = np.concatenate(scores, 0) logits = np.concatenate(inference_labels, 0) # 计算评价指标 assert len(ID) == scores.shape[0] == scores.shape[0] eval_DOUBAN_MRR, eval_DOUBAN_mrr, eval_DOUBAN_MAP, eval_Precision1 = compute_DOUBAN( ID, scores, gold_labels) r_at_1 = r_at_k(ID, scores, gold_labels, 1) r_at_2 = r_at_k(ID, scores, gold_labels, 2) r_at_5 = r_at_k(ID, scores, gold_labels, 5) print( 'eval_MRR', eval_DOUBAN_MRR, eval_DOUBAN_mrr, 'eval_MAP', eval_DOUBAN_MAP, 'eval_Precision1', eval_Precision1, 'r10@1', r_at_1, 'r10@2', r_at_2, 'r10@5', r_at_5, )
def train(self): if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) # logger.info(f'Fold {split_index + 1}') train_dataloader, eval_dataloader, train_examples, eval_examples = self.create_dataloader( ) num_train_optimization_steps = self.train_steps # Prepare model config = BertConfig.from_pretrained(self.model_name_or_path, num_labels=self.num_labels) model = BertForSequenceClassification.from_pretrained( self.model_name_or_path, self.args, config=config) model.to(self.device) model.train() # Prepare optimizer param_optimizer = list(model.named_parameters()) param_optimizer = [n for n in param_optimizer] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': self.weight_decay }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = AdamW(optimizer_grouped_parameters, lr=self.learning_rate, eps=self.adam_epsilon) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=self.warmup_steps, t_total=self.train_steps) global_step = 0 logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", self.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) best_acc = 0 best_MRR = 0 tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 train_dataloader = cycle(train_dataloader) for step in range(num_train_optimization_steps): batch = next(train_dataloader) batch = tuple(t.to(self.device) for t in batch) input_ids, input_mask, segment_ids, utterance_mask, response_mask, history_mask, label_ids = batch loss = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, utterance_mask=utterance_mask, response_mask=response_mask, history_mask=history_mask, labels=label_ids) tr_loss += loss.item() train_loss = round(tr_loss / (nb_tr_steps + 1), 4) nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 loss.backward() if (nb_tr_steps + 1) % self.gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() scheduler.step() global_step += 1 if (step + 1) % (self.eval_steps * self.gradient_accumulation_steps) == 0: tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 logger.info("***** Report result *****") logger.info(" %s = %s", 'global_step', str(global_step)) logger.info(" %s = %s", 'train loss', str(train_loss)) if self.do_eval and (step + 1) % ( self.eval_steps * self.gradient_accumulation_steps) == 0: for file in ['dev.csv']: inference_labels = [] gold_labels = [] inference_logits = [] scores = [] ID = [x.guid for x in eval_examples] logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", self.eval_batch_size) model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, utterance_mask, response_mask, history_mask, label_ids in eval_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) utterance_mask = utterance_mask.to(self.device) response_mask = response_mask.to(self.device) history_mask = history_mask.to(self.device) label_ids = label_ids.to(self.device) with torch.no_grad(): tmp_eval_loss = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, utterance_mask=utterance_mask, response_mask=response_mask, history_mask=history_mask, labels=label_ids) logits = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, utterance_mask=utterance_mask, response_mask=response_mask, history_mask=history_mask, ) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() inference_labels.append(np.argmax(logits, axis=1)) scores.append(logits) gold_labels.append(label_ids) inference_logits.append(logits) eval_loss += tmp_eval_loss.mean().item() nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 gold_labels = np.concatenate(gold_labels, 0) inference_logits = np.concatenate(inference_logits, 0) scores = np.concatenate(scores, 0) model.train() eval_loss = eval_loss / nb_eval_steps eval_accuracy = accuracyCQA(inference_logits, gold_labels) eval_DOUBAN_MRR, eval_DOUBAN_mrr, eval_DOUBAN_MAP, eval_Precision1 = compute_DOUBAN( ID, scores, gold_labels) r_at_1 = r_at_k(ID, scores, gold_labels, 1) r_at_2 = r_at_k(ID, scores, gold_labels, 2) r_at_5 = r_at_k(ID, scores, gold_labels, 5) # print('eval_mrr',eval_mrr) print('eval_F1', eval_accuracy, 'eval_MRR', eval_DOUBAN_MRR, 'eval_MAP', eval_DOUBAN_MAP, 'eval_Precision1', eval_Precision1, 'r10@1', r_at_1, 'r10@2', r_at_2, 'r10@5', r_at_5, 'global_step', global_step, 'loss', train_loss) result = { 'eval_loss': eval_loss, 'eval_F1': eval_accuracy, 'eval_MRR': eval_DOUBAN_MRR, 'eval_MAP': eval_DOUBAN_MAP, 'eval_Precision1': eval_Precision1, 'r10@1': r_at_1, 'r10@2': r_at_2, 'r10@5': r_at_5, 'global_step': global_step, 'loss': train_loss } output_eval_file = os.path.join(self.output_dir, "eval_results.txt") with open(output_eval_file, "a") as writer: for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) writer.write('*' * 80) writer.write('\n') # if eval_accuracy > best_acc : if eval_DOUBAN_MRR > best_MRR: print("=" * 80) print("Best MRR", eval_DOUBAN_MRR) print("Saving Model......") # best_acc = eval_accuracy best_MRR = eval_DOUBAN_MRR # Save a trained model model_to_save = model.module if hasattr( model, 'module') else model output_model_file = os.path.join( self.output_dir, "pytorch_model.bin") torch.save(model_to_save.state_dict(), output_model_file) print("=" * 80) else: print("=" * 80)
def test_submission(self): data = DATACQA( debug=False, data_dir=self.data_dir ) test_examples = data.read_examples_test(os.path.join(self.data_dir, 'test.csv')) print('eval_examples的数量', len(test_examples)) prediction = np.zeros((len(test_examples),self.num_labels)) gold_labels_ = np.zeros((len(test_examples),self.num_labels)) logits_ = np.zeros((len(test_examples),self.num_labels)) questions = [x.text_a for x in test_examples] test_features = data.convert_examples_to_features(test_examples, self.tokenizer, self.max_seq_length) all_input_ids = torch.tensor(data.select_field(test_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(data.select_field(test_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(data.select_field(test_features, 'segment_ids'), dtype=torch.long) all_label = torch.tensor([f.label for f in test_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=self.eval_batch_size) for i in range(5): config = BertConfig.from_pretrained(self.model_name_or_path, num_labels=self.num_labels) model = BertForSequenceClassification.from_pretrained( os.path.join(self.output_dir, "pytorch_model_{}.bin".format(i)), self.args, config=config) model.to(self.device) model.eval() inference_labels = [] gold_labels = [] for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) label_ids = label_ids.to(self.device) with torch.no_grad(): logits = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask).detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() inference_labels.append(logits) gold_labels.append(label_ids) gold_labels = np.concatenate(gold_labels, 0) gold_labels_ = gold_labels logits = np.concatenate(inference_labels, 0) print(logits.shape) print(prediction.shape) prediction += logits/5 test_id = [x.guid for x in test_examples] assert len(test_id) == len(prediction) # print(accuracyCQA(prediction, gold_labels_)) # print(compute_MRR_CQA(questions)) logits_ = np.argmax(prediction, axis=1) submission = pd.DataFrame({ 'id':test_id, 'predict':logits_ }) submission.to_csv(os.path.join(self.output_dir, "sub.csv"),index=False,header = False)
def train(self): if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) data_splitList = DATACQA.load_data(os.path.join(self.data_dir, 'train.csv'),n_splits=5) for split_index,each_data in enumerate(data_splitList): # Prepare model config = BertConfig.from_pretrained(self.model_name_or_path, num_labels=self.num_labels) model = BertForSequenceClassification.from_pretrained(self.model_name_or_path, self.args, config=config) model.to(self.device) logger.info(f'Fold {split_index + 1}') train_dataloader, eval_dataloader, train_examples, eval_examples = self.create_dataloader(each_data) num_train_optimization_steps = self.train_steps # Prepare optimizer param_optimizer = list(model.named_parameters()) param_optimizer = [n for n in param_optimizer] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': self.weight_decay}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=self.learning_rate, eps=self.adam_epsilon) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=self.warmup_steps, t_total=self.train_steps) global_step = 0 logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", self.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) best_acc = 0 model.train() tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 train_dataloader = cycle(train_dataloader) for step in range(num_train_optimization_steps): batch = next(train_dataloader) batch = tuple(t.to(self.device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch loss = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids) tr_loss += loss.item() train_loss = round(tr_loss / (nb_tr_steps + 1), 4) nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 loss.backward() if (nb_tr_steps + 1) % self.gradient_accumulation_steps == 0: scheduler.step() optimizer.step() optimizer.zero_grad() global_step += 1 if (step + 1) % (self.eval_steps * self.gradient_accumulation_steps) == 0: tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 logger.info("***** Report result *****") logger.info(" %s = %s", 'global_step', str(global_step)) logger.info(" %s = %s", 'train loss', str(train_loss)) if self.do_eval and (step + 1) % (self.eval_steps * self.gradient_accumulation_steps) == 0: for file in ['dev.csv']: inference_labels = [] gold_labels = [] inference_logits = [] scores = [] questions = [x.text_a for x in eval_examples] logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", self.eval_batch_size) # Run prediction for full data model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) label_ids = label_ids.to(self.device) with torch.no_grad(): tmp_eval_loss = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids) logits = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() inference_labels.append(np.argmax(logits, axis=1)) scores.append(logits) gold_labels.append(label_ids) inference_logits.append(logits) eval_loss += tmp_eval_loss.mean().item() nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 gold_labels = np.concatenate(gold_labels, 0) inference_logits = np.concatenate(inference_logits, 0) scores = np.concatenate(scores, 0) model.train() eval_loss = eval_loss / nb_eval_steps eval_accuracy = accuracyCQA(inference_logits, gold_labels) eval_mrr = compute_MRR_CQA(scores,gold_labels,questions) eval_5R20 = compute_5R20(scores,gold_labels,questions) result = {'eval_loss': eval_loss, 'eval_F1': eval_accuracy, 'eval_MRR':eval_mrr, 'eval_5R20':eval_5R20, 'global_step': global_step, 'loss': train_loss} output_eval_file = os.path.join(self.output_dir, "eval_results.txt") with open(output_eval_file, "a") as writer: for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) writer.write('*' * 80) writer.write('\n') if eval_accuracy > best_acc : print("=" * 80) print("Best F1", eval_accuracy) print("Saving Model......") best_acc = eval_accuracy # Save a trained model model_to_save = model.module if hasattr(model,'module') else model output_model_file = os.path.join(self.output_dir, "pytorch_model_{}.bin".format(split_index)) torch.save(model_to_save.state_dict(), output_model_file) print("=" * 80) else: print("=" * 80) del model gc.collect()
def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join( ALL_MODELS)) parser.add_argument("--meta_path", default=None, type=str, required=False, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join( ALL_MODELS)) parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_test", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--evaluate_during_training", action='store_true', help="Rul evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--eval_steps", default=-1, type=int, help="") parser.add_argument("--lstm_hidden_size", default=300, type=int, help="") parser.add_argument("--lstm_layers", default=2, type=int, help="") parser.add_argument("--lstm_dropout", default=0.5, type=float, help="") parser.add_argument("--train_steps", default=-1, type=int, help="") parser.add_argument("--report_steps", default=-1, type=int, help="") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--split_num", default=3, type=int, help="text split") parser.add_argument('--logging_steps', type=int, default=50, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") args = parser.parse_args() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) try: os.makedirs(args.output_dir) except: pass tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path, do_lower_case=args.do_lower_case) config = BertConfig.from_pretrained(args.model_name_or_path, num_labels=3) # Prepare model model = BertForSequenceClassification.from_pretrained(args.model_name_or_path, args, config=config) if args.fp16: model.half() model.to(device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") model = DDP(model) elif args.n_gpu > 1: model = torch.nn.DataParallel(model) args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) if args.do_train: # Prepare data loader train_examples = read_examples(os.path.join(args.data_dir, 'train.csv'), is_training=True) train_features = convert_examples_to_features( train_examples, tokenizer, args.max_seq_length, args.split_num, True) all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long) all_label = torch.tensor([f.label for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size // args.gradient_accumulation_steps) num_train_optimization_steps = args.train_steps # Prepare optimizer param_optimizer = list(model.named_parameters()) # hack to remove pooler, which is not used # thus it produce None grad that break apex param_optimizer = [n for n in param_optimizer] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=args.train_steps) global_step = 0 logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) best_acc = 0 model.train() tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 train_dataloader = cycle(train_dataloader) for step in range(num_train_optimization_steps): batch = next(train_dataloader) batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch loss = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.fp16 and args.loss_scale != 1.0: loss = loss * args.loss_scale if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps tr_loss += loss.item() train_loss = round(tr_loss * args.gradient_accumulation_steps / (nb_tr_steps + 1), 4) nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if args.fp16: optimizer.backward(loss) else: loss.backward() if (nb_tr_steps + 1) % args.gradient_accumulation_steps == 0: if args.fp16: # modify learning rate with special warm up BERT uses # if args.fp16 is False, BertAdam is used that handles this automatically lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step scheduler.step() optimizer.step() optimizer.zero_grad() global_step += 1 if (step + 1) % (args.eval_steps * args.gradient_accumulation_steps) == 0: tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 logger.info("***** Report result *****") logger.info(" %s = %s", 'global_step', str(global_step)) logger.info(" %s = %s", 'train loss', str(train_loss)) if args.do_eval and (step + 1) % (args.eval_steps * args.gradient_accumulation_steps) == 0: for file in ['dev.csv']: inference_labels = [] gold_labels = [] inference_logits = [] eval_examples = read_examples(os.path.join(args.data_dir, file), is_training=True) eval_features = convert_examples_to_features(eval_examples, tokenizer, args.max_seq_length, args.split_num, False) all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long) all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): tmp_eval_loss = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids) logits = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() inference_labels.append(np.argmax(logits, axis=1)) gold_labels.append(label_ids) inference_logits.append(logits) eval_loss += tmp_eval_loss.mean().item() nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 gold_labels = np.concatenate(gold_labels, 0) inference_logits = np.concatenate(inference_logits, 0) model.train() eval_loss = eval_loss / nb_eval_steps eval_accuracy = accuracy(inference_logits, gold_labels) result = {'eval_loss': eval_loss, 'eval_F1': eval_accuracy, 'global_step': global_step, 'loss': train_loss} output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "a") as writer: for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) writer.write('*' * 80) writer.write('\n') if eval_accuracy > best_acc and 'dev' in file: print("=" * 80) print("Best F1", eval_accuracy) print("Saving Model......") best_acc = eval_accuracy # Save a trained model model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") torch.save(model_to_save.state_dict(), output_model_file) print("=" * 80) else: print("=" * 80) if args.do_test: del model gc.collect() args.do_train = False model = BertForSequenceClassification.from_pretrained(os.path.join(args.output_dir, "pytorch_model.bin"), args, config=config) if args.fp16: model.half() model.to(device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") model = DDP(model) elif args.n_gpu > 1: model = torch.nn.DataParallel(model) for file, flag in [('dev.csv', 'dev'), ('test.csv', 'test')]: # for file, flag in [ ('test.csv', 'test')]: inference_labels = [] gold_labels = [] eval_examples = read_examples(os.path.join(args.data_dir, file), is_training=False) print('exa',len(eval_examples)) # exit() eval_features = convert_examples_to_features(eval_examples, tokenizer, args.max_seq_length, args.split_num, False) all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long) all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) label_ids = label_ids.to(device) with torch.no_grad(): logits = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask).detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() inference_labels.append(logits) gold_labels.append(label_ids) gold_labels = np.concatenate(gold_labels, 0) logits = np.concatenate(inference_labels, 0) if flag == 'dev': print(flag, accuracy(logits, gold_labels)) if flag == 'test': df = pd.read_csv(os.path.join(args.data_dir, file),names = ['id', 'content', 'title', 'label']) predict = np.argmax(logits, axis=1).tolist() print(df.shape[0]) print(len(predict)) df['labelpre'] = predict df[['id','labelpre']].to_csv(os.path.join(args.output_dir, "sub.csv"),index=False,header = False)
def train(self): if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) # Prepare model config = BertConfig.from_pretrained(self.model_name_or_path, num_labels=3) model = BertForSequenceClassification.from_pretrained( self.model_name_or_path, self.args, config=config) model.to(self.device) data_splitList = DATABDCI.load_data(os.path.join( self.data_dir, 'train.csv'), n_splits=5) for split_index, each_data in enumerate(data_splitList): logger.info(f'Fold {split_index + 1}') train_dataloader, eval_dataloader, train_examples, eval_examples = self.create_dataloader( each_data) num_train_optimization_steps = self.train_steps # Prepare optimizer param_optimizer = list(model.named_parameters()) param_optimizer = [n for n in param_optimizer] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': self.weight_decay }, { 'params': [ p for n, p in param_optimizer if any(nd in n for nd in no_decay) ], 'weight_decay': 0.0 }] optimizer = AdamW(optimizer_grouped_parameters, lr=self.learning_rate, eps=self.adam_epsilon) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=self.warmup_steps, t_total=self.train_steps) global_step = 0 logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", self.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) best_acc = 0 model.train() tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 train_dataloader = cycle(train_dataloader) for step in range(num_train_optimization_steps): batch = next(train_dataloader) batch = tuple(t.to(self.device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch loss = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids) tr_loss += loss.item() train_loss = round(tr_loss / (nb_tr_steps + 1), 4) nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 loss.backward() if (nb_tr_steps + 1) % self.gradient_accumulation_steps == 0: scheduler.step() optimizer.step() optimizer.zero_grad() global_step += 1 if (step + 1) % (self.eval_steps * self.gradient_accumulation_steps) == 0: tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 logger.info("***** Report result *****") logger.info(" %s = %s", 'global_step', str(global_step)) logger.info(" %s = %s", 'train loss', str(train_loss)) if self.do_eval and ( step + 1) % (self.eval_steps * self.gradient_accumulation_steps) == 0: for file in ['dev.csv']: inference_labels = [] gold_labels = [] inference_logits = [] logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", self.eval_batch_size) # Run prediction for full data model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) label_ids = label_ids.to(self.device) with torch.no_grad(): tmp_eval_loss = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids) logits = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() inference_labels.append(np.argmax(logits, axis=1)) gold_labels.append(label_ids) inference_logits.append(logits) eval_loss += tmp_eval_loss.mean().item() nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 gold_labels = np.concatenate(gold_labels, 0) inference_logits = np.concatenate(inference_logits, 0) model.train() eval_loss = eval_loss / nb_eval_steps eval_accuracy = accuracyBDCI(inference_logits, gold_labels) result = { 'eval_loss': eval_loss, 'eval_F1': eval_accuracy, 'global_step': global_step, 'loss': train_loss } output_eval_file = os.path.join( self.output_dir, "eval_results.txt") with open(output_eval_file, "a") as writer: for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) writer.write('*' * 80) writer.write('\n') if eval_accuracy > best_acc and 'dev' in file: print("=" * 80) print("Best F1", eval_accuracy) print("Saving Model......") best_acc = eval_accuracy # Save a trained model model_to_save = model.module if hasattr( model, 'module') else model output_model_file = os.path.join( self.output_dir, "pytorch_model_{}.bin".format(split_index)) torch.save(model_to_save.state_dict(), output_model_file) print("=" * 80) else: print("=" * 80) if self.do_test: del model gc.collect() self.do_train = False data = DATABDCI(debug=False, data_dir='/home/lsy2018/文本匹配/DATA/DATA_BDCI/', data_process_output= '/home/lsy2018/文本匹配/DATA/DATA_BDCI/data_1014/') model = BertForSequenceClassification.from_pretrained( os.path.join(self.output_dir, "pytorch_model.bin"), self.args, config=config) model.to(self.device) for file, flag in [('dev.csv', 'dev'), ('test.csv', 'test')]: inference_labels = [] gold_labels = [] eval_examples = data.read_examples(os.path.join( self.data_dir, file), is_training=False) print('exa', len(eval_examples)) eval_features = data.convert_examples_to_features( eval_examples, self.tokenizer, self.max_seq_length) all_input_ids = torch.tensor(data.select_field( eval_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(data.select_field( eval_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(data.select_field( eval_features, 'segment_ids'), dtype=torch.long) all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=self.eval_batch_size) model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) label_ids = label_ids.to(self.device) with torch.no_grad(): logits = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask).detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() inference_labels.append(logits) gold_labels.append(label_ids) gold_labels = np.concatenate(gold_labels, 0) logits = np.concatenate(inference_labels, 0) if flag == 'dev': print(flag, accuracyBDCI(logits, gold_labels)) if flag == 'test': df = pd.read_csv(os.path.join(self.data_dir, file), names=['id', 'content', 'title', 'label']) predict = np.argmax(logits, axis=1).tolist() print(df.shape[0]) print(len(predict)) df['labelpre'] = predict df[['id', 'labelpre' ]].to_csv(os.path.join(self.output_dir, "sub.csv"), index=False, header=False)
def train(self): try: os.makedirs(args.output_dir) except: pass tokenizer = BertTokenizer.from_pretrained(self.model_name_or_path, do_lower_case=self.do_lower_case) config = BertConfig.from_pretrained(self.model_name_or_path, num_labels=3) # Prepare model model = BertForSequenceClassification.from_pretrained(self.model_name_or_path, args, config=config) model.to(self.device) train_batch_size = self.per_gpu_train_batch_size eval_batch_size = self.per_gpu_eval_batch_size for i in range(1): # Prepare data loader train_examples = self.read_examples(os.path.join(self.data_dir, 'train.csv'), is_training=True) train_features = self.convert_examples_to_features( train_examples, tokenizer, self.max_seq_length) all_input_ids = torch.tensor(self.select_field(train_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(self.select_field(train_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(self.select_field(train_features, 'segment_ids'), dtype=torch.long) all_label = torch.tensor([f.label for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler,batch_size=train_batch_size ) num_train_optimization_steps = self.train_steps # Prepare optimizer param_optimizer = list(model.named_parameters()) # hack to remove pooler, which is not used # thus it produce None grad that break apex param_optimizer = [n for n in param_optimizer] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=self.learning_rate, eps=self.adam_epsilon) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=self.warmup_steps, t_total=self.train_steps) global_step = 0 logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) best_acc = 0 model.train() tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 train_dataloader = cycle(train_dataloader) for step in range(num_train_optimization_steps): batch = next(train_dataloader) batch = tuple(t.to(self.device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch loss = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids) tr_loss += loss.item() train_loss = round(tr_loss / (nb_tr_steps + 1), 4) nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 loss.backward() if (nb_tr_steps + 1) % self.gradient_accumulation_steps == 0: scheduler.step() optimizer.step() optimizer.zero_grad() global_step += 1 if (step + 1) % (self.eval_steps * self.gradient_accumulation_steps) == 0: tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 logger.info("***** Report result *****") logger.info(" %s = %s", 'global_step', str(global_step)) logger.info(" %s = %s", 'train loss', str(train_loss)) if self.do_eval and (step + 1) % (self.eval_steps * self.gradient_accumulation_steps) == 0: for file in ['dev.csv']: inference_labels = [] gold_labels = [] inference_logits = [] eval_examples = self.read_examples(os.path.join(self.data_dir, file), is_training=True) eval_features = self.convert_examples_to_features(eval_examples, tokenizer, self.max_seq_length) all_input_ids = torch.tensor(self.select_field(eval_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(self.select_field(eval_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(self.select_field(eval_features, 'segment_ids'), dtype=torch.long) all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", eval_batch_size) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=eval_batch_size) model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) label_ids = label_ids.to(self.device) with torch.no_grad(): tmp_eval_loss = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids) logits = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() inference_labels.append(np.argmax(logits, axis=1)) gold_labels.append(label_ids) inference_logits.append(logits) eval_loss += tmp_eval_loss.mean().item() nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 gold_labels = np.concatenate(gold_labels, 0) inference_logits = np.concatenate(inference_logits, 0) model.train() eval_loss = eval_loss / nb_eval_steps eval_accuracy = self.accuracy(inference_logits, gold_labels) result = {'eval_loss': eval_loss, 'eval_F1': eval_accuracy, 'global_step': global_step, 'loss': train_loss} output_eval_file = os.path.join(self.output_dir, "eval_results.txt") with open(output_eval_file, "a") as writer: for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) writer.write('*' * 80) writer.write('\n') if eval_accuracy > best_acc and 'dev' in file: print("=" * 80) print("Best F1", eval_accuracy) print("Saving Model......") best_acc = eval_accuracy # Save a trained model model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") torch.save(model_to_save.state_dict(), output_model_file) print("=" * 80) else: print("=" * 80) if args.do_test: del model gc.collect() args.do_train = False model = BertForSequenceClassification.from_pretrained(os.path.join(args.output_dir, "pytorch_model.bin"), args, config=config) if args.fp16: model.half() model.to(self.device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") model = DDP(model) elif args.n_gpu > 1: model = torch.nn.DataParallel(model) for file, flag in [('dev.csv', 'dev'), ('test.csv', 'test')]: # for file, flag in [ ('test.csv', 'test')]: inference_labels = [] gold_labels = [] eval_examples = self.read_examples(os.path.join(args.data_dir, file), is_training=False) print('exa',len(eval_examples)) # exit() eval_features = self.convert_examples_to_features(eval_examples, tokenizer, args.max_seq_length) all_input_ids = torch.tensor(self.select_field(eval_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(self.select_field(eval_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(self.select_field(eval_features, 'segment_ids'), dtype=torch.long) all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=eval_batch_size) model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) label_ids = label_ids.to(self.device) with torch.no_grad(): logits = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask).detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() inference_labels.append(logits) gold_labels.append(label_ids) gold_labels = np.concatenate(gold_labels, 0) logits = np.concatenate(inference_labels, 0) if flag == 'dev': print(flag,self.accuracy(logits, gold_labels)) if flag == 'test': df = pd.read_csv(os.path.join(args.data_dir, file),names = ['id', 'content', 'title', 'label']) predict = np.argmax(logits, axis=1).tolist() print(df.shape[0]) print(len(predict)) df['labelpre'] = predict df[['id','labelpre']].to_csv(os.path.join(args.output_dir, "sub.csv"),index=False,header = False)