def train(args): logger.auto_set_dir() os.environ['CUDA_VISIBLE_DEVICES'] = '3' # Setup Augmentations data_aug = Compose([RandomRotate(10), RandomHorizontallyFlip()]) # Setup Dataloader data_loader = get_loader(args.dataset) data_path = get_data_path(args.dataset) t_loader = data_loader(data_path, is_transform=True, img_size=(args.img_rows, args.img_cols), epoch_scale=4, augmentations=data_aug, img_norm=args.img_norm) v_loader = data_loader(data_path, is_transform=True, split='val', img_size=(args.img_rows, args.img_cols), img_norm=args.img_norm) n_classes = t_loader.n_classes trainloader = data.DataLoader(t_loader, batch_size=args.batch_size, num_workers=8, shuffle=True) valloader = data.DataLoader(v_loader, batch_size=args.batch_size, num_workers=8) # Setup Metrics running_metrics = runningScore(n_classes) # Setup Model from model_zoo.deeplabv1 import VGG16_LargeFoV model = VGG16_LargeFoV(class_num=n_classes, image_size=[args.img_cols, args.img_rows], pretrained=True) #model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count())) model.cuda() # Check if model has custom optimizer / loss if hasattr(model, 'optimizer'): logger.warn("don't have customzed optimizer, use default setting!") optimizer = model.module.optimizer else: optimizer = torch.optim.SGD(model.parameters(), lr=args.l_rate, momentum=0.99, weight_decay=5e-4) optimizer_summary(optimizer) if args.resume is not None: if os.path.isfile(args.resume): logger.info( "Loading model and optimizer from checkpoint '{}'".format( args.resume)) checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['model_state']) optimizer.load_state_dict(checkpoint['optimizer_state']) logger.info("Loaded checkpoint '{}' (epoch {})".format( args.resume, checkpoint['epoch'])) else: logger.info("No checkpoint found at '{}'".format(args.resume)) best_iou = -100.0 for epoch in tqdm(range(args.n_epoch), total=args.n_epoch): model.train() for i, (images, labels) in tqdm(enumerate(trainloader), total=len(trainloader), desc="training epoch {}/{}".format( epoch, args.n_epoch)): cur_iter = i + epoch * len(trainloader) cur_lr = adjust_learning_rate(optimizer, args.l_rate, cur_iter, args.n_epoch * len(trainloader), power=0.9) #if i > 10:break images = Variable(images.cuda()) labels = Variable(labels.cuda()) optimizer.zero_grad() outputs = model(images) #print(np.unique(outputs.data[0].cpu().numpy())) loss = CrossEntropyLoss2d_Seg(input=outputs, target=labels, class_num=n_classes) loss.backward() optimizer.step() if (i + 1) % 100 == 0: logger.info("Epoch [%d/%d] Loss: %.4f, lr: %.7f" % (epoch + 1, args.n_epoch, loss.data[0], cur_lr)) model.eval() for i_val, (images_val, labels_val) in tqdm(enumerate(valloader), total=len(valloader), desc="validation"): images_val = Variable(images_val.cuda(), volatile=True) labels_val = Variable(labels_val.cuda(), volatile=True) outputs = model(images_val) pred = outputs.data.max(1)[1].cpu().numpy() gt = labels_val.data.cpu().numpy() running_metrics.update(gt, pred) score, class_iou = running_metrics.get_scores() for k, v in score.items(): logger.info("{}: {}".format(k, v)) running_metrics.reset() if score['Mean IoU : \t'] >= best_iou: best_iou = score['Mean IoU : \t'] state = { 'epoch': epoch + 1, 'mIoU': best_iou, 'model_state': model.state_dict(), 'optimizer_state': optimizer.state_dict(), } torch.save(state, os.path.join(logger.get_logger_dir(), "best_model.pkl"))
def main(): logger.auto_set_dir() global args parser = argparse.ArgumentParser() parser.add_argument('--dataroot', default='/home/hutao/lab/pytorchgo/example/ROAD/data', help='Path to source dataset') parser.add_argument('--batchSize', type=int, default=1, help='input batch size') parser.add_argument('--max_epoch', type=int, default=max_epoch, help='Number of training iterations') parser.add_argument('--optimizer', type=str, default='Adam', help='Optimizer to use | SGD, Adam') parser.add_argument('--lr', type=float, default=base_lr, help='learning rate') parser.add_argument('--momentum', type=float, default=0.99, help='Momentum for SGD') parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.5') parser.add_argument('--weight_decay', type=float, default=0.0005, help='Weight decay') parser.add_argument('--model', type=str, default='vgg16') parser.add_argument('--gpu', type=int, default=1) args = parser.parse_args() print(args) gpu = args.gpu os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu) cuda = torch.cuda.is_available() torch.manual_seed(1337) if cuda: logger.info("random seed 1337") torch.cuda.manual_seed(1337) # Defining data loaders kwargs = { 'num_workers': 4, 'pin_memory': True, 'drop_last': True } if cuda else {} train_loader = torch.utils.data.DataLoader(torchfcn.datasets.SYNTHIA( 'SYNTHIA', args.dataroot, split='train', transform=True, image_size=image_size), batch_size=args.batchSize, shuffle=True, **kwargs) val_loader = torch.utils.data.DataLoader(torchfcn.datasets.CityScapes( 'cityscapes', args.dataroot, split='val', transform=True, image_size=image_size), batch_size=1, shuffle=False) target_loader = torch.utils.data.DataLoader(torchfcn.datasets.CityScapes( 'cityscapes', args.dataroot, split='train', transform=True, image_size=image_size), batch_size=args.batchSize, shuffle=True) if cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') if args.model == "vgg16": model = origin_model = torchfcn.models.Seg_model(n_class=class_num) vgg16 = torchfcn.models.VGG16(pretrained=True) model.copy_params_from_vgg16(vgg16) model_fix = torchfcn.models.Seg_model(n_class=class_num) model_fix.copy_params_from_vgg16(vgg16) for param in model_fix.parameters(): param.requires_grad = False elif args.model == "deeplabv2": # TODO may have problem! model = origin_model = torchfcn.models.Res_Deeplab( num_classes=class_num, image_size=image_size) saved_state_dict = model_zoo.load_url(Deeplabv2_restore_from) new_params = model.state_dict().copy() for i in saved_state_dict: # Scale.layer5.conv2d_list.3.weight i_parts = i.split('.') # print i_parts if not class_num == 19 or not i_parts[1] == 'layer5': new_params['.'.join(i_parts[1:])] = saved_state_dict[i] # print i_parts model.load_state_dict(new_params) model_fix = torchfcn.models.Res_Deeplab(num_classes=class_num, image_size=image_size) model_fix.load_state_dict(new_params) else: raise ValueError("only support vgg16, deeplabv2!") netD = torchfcn.models.Domain_classifer(reverse=True) netD.apply(weights_init) model_summary([model, netD]) if cuda: model = model.cuda() netD = netD.cuda() # Defining optimizer if args.optimizer == 'SGD': raise ValueError("SGD is not prepared well..") optim = torch.optim.SGD([ { 'params': get_parameters(model, bias=False) }, { 'params': get_parameters(model, bias=True), 'lr': args.lr * 2, 'weight_decay': args.weight_decay }, ], lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) elif args.optimizer == 'Adam': if args.model == "vgg16": optim = torch.optim.Adam([ { 'params': get_parameters(model, bias=False), 'weight_decay': args.weight_decay }, { 'params': get_parameters(model, bias=True), 'lr': args.lr * 2, 'weight_decay': args.weight_decay }, ], lr=args.lr, betas=(args.beta1, 0.999)) elif args.model == "deeplabv2": optim = torch.optim.Adam(origin_model.optim_parameters(args.lr), lr=args.lr, betas=(args.beta1, 0.999), weight_decay=args.weight_decay) else: raise else: raise ValueError('Invalid optmizer argument. Has to be SGD or Adam') optimD = torch.optim.Adam(netD.parameters(), lr=dis_lr, weight_decay=args.weight_decay, betas=(0.7, 0.999)) optimizer_summary([optim, optimD]) trainer = MyTrainer_ROAD(cuda=cuda, model=model, model_fix=model_fix, netD=netD, optimizer=optim, optimizerD=optimD, train_loader=train_loader, target_loader=target_loader, val_loader=val_loader, batch_size=args.batchSize, image_size=image_size, loss_print_interval=LOSS_PRINT_INTERVAL) trainer.epoch = 0 trainer.iteration = 0 trainer.train()
def train(): train_loader = generator.Generator(args.dataset_root, args, partition='train', dataset=args.dataset) logger.info('Batch size: ' + str(args.batch_size)) #Try to load models enc_nn = models.load_model('enc_nn', args) metric_nn = models.load_model('metric_nn', args) if enc_nn is None or metric_nn is None: enc_nn, metric_nn = models.create_models(args=args) softmax_module = models.SoftmaxModule() if args.cuda: enc_nn.cuda() metric_nn.cuda() logger.info(str(enc_nn)) logger.info(str(metric_nn)) weight_decay = 0 if args.dataset == 'mini_imagenet': logger.info('Weight decay ' + str(1e-6)) weight_decay = 1e-6 opt_enc_nn = optim.Adam(enc_nn.parameters(), lr=args.lr, weight_decay=weight_decay) opt_metric_nn = optim.Adam(metric_nn.parameters(), lr=args.lr, weight_decay=weight_decay) model_summary([enc_nn, metric_nn]) optimizer_summary([opt_enc_nn, opt_metric_nn]) enc_nn.train() metric_nn.train() counter = 0 total_loss = 0 val_acc, val_acc_aux = 0, 0 test_acc = 0 for batch_idx in range(args.iterations): #################### # Train #################### data = train_loader.get_task_batch( batch_size=args.batch_size, n_way=args.train_N_way, unlabeled_extra=args.unlabeled_extra, num_shots=args.train_N_shots, cuda=args.cuda, variable=True) [ batch_x, label_x, _, _, batches_xi, labels_yi, oracles_yi, hidden_labels ] = data opt_enc_nn.zero_grad() opt_metric_nn.zero_grad() loss_d_metric = train_batch(model=[enc_nn, metric_nn, softmax_module], data=[ batch_x, label_x, batches_xi, labels_yi, oracles_yi, hidden_labels ]) opt_enc_nn.step() opt_metric_nn.step() adjust_learning_rate(optimizers=[opt_enc_nn, opt_metric_nn], lr=args.lr, iter=batch_idx) #################### # Display #################### counter += 1 total_loss += loss_d_metric.data[0] if batch_idx % args.log_interval == 0: display_str = 'Train Iter: {}'.format(batch_idx) display_str += '\tLoss_d_metric: {:.6f}'.format(total_loss / counter) logger.info(display_str) counter = 0 total_loss = 0 #################### # Test #################### if (batch_idx + 1) % args.test_interval == 0 or batch_idx == 20: if batch_idx == 20: test_samples = 100 else: test_samples = 3000 if args.dataset == 'mini_imagenet': val_acc_aux = test.test_one_shot( args, model=[enc_nn, metric_nn, softmax_module], test_samples=test_samples * 5, partition='val') test_acc_aux = test.test_one_shot( args, model=[enc_nn, metric_nn, softmax_module], test_samples=test_samples * 5, partition='test') test.test_one_shot(args, model=[enc_nn, metric_nn, softmax_module], test_samples=test_samples, partition='train') enc_nn.train() metric_nn.train() if val_acc_aux is not None and val_acc_aux >= val_acc: test_acc = test_acc_aux val_acc = val_acc_aux if args.dataset == 'mini_imagenet': logger.info("Best test accuracy {:.4f} \n".format(test_acc)) #################### # Save model #################### if (batch_idx + 1) % args.save_interval == 0: logger.info("saving model...") torch.save(enc_nn, os.path.join(logger.get_logger_dir(), 'enc_nn.t7')) torch.save(metric_nn, os.path.join(logger.get_logger_dir(), 'metric_nn.t7')) # Test after training test.test_one_shot(args, model=[enc_nn, metric_nn, softmax_module], test_samples=args.test_samples)
def main(): """Create the model and start the training.""" h, w = map(int, args.input_size.split(',')) input_size = (h, w) h, w = map(int, args.input_size_target.split(',')) input_size_target = (h, w) cudnn.enabled = True from pytorchgo.utils.pytorch_utils import set_gpu set_gpu(args.gpu) # Create network if args.model == 'DeepLab': logger.info("adopting Deeplabv2 base model..") model = Res_Deeplab(num_classes=args.num_classes, multi_scale=False) if args.restore_from[:4] == 'http': saved_state_dict = model_zoo.load_url(args.restore_from) else: saved_state_dict = torch.load(args.restore_from) new_params = model.state_dict().copy() for i in saved_state_dict: # Scale.layer5.conv2d_list.3.weight i_parts = i.split('.') # print i_parts if not args.num_classes == 19 or not i_parts[1] == 'layer5': new_params['.'.join(i_parts[1:])] = saved_state_dict[i] # print i_parts model.load_state_dict(new_params) optimizer = optim.SGD(model.optim_parameters(args), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) elif args.model == "FCN8S": logger.info("adopting FCN8S base model..") from pytorchgo.model.MyFCN8s import MyFCN8s model = MyFCN8s(n_class=NUM_CLASSES) vgg16 = torchfcn.models.VGG16(pretrained=True) model.copy_params_from_vgg16(vgg16) optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) else: raise ValueError model.train() model.cuda() cudnn.benchmark = True # init D model_D1 = FCDiscriminator(num_classes=args.num_classes) model_D2 = FCDiscriminator(num_classes=args.num_classes) model_D1.train() model_D1.cuda() model_D2.train() model_D2.cuda() if SOURCE_DATA == "GTA5": trainloader = data.DataLoader(GTA5DataSet( args.data_dir, args.data_list, max_iters=args.num_steps * args.iter_size * args.batch_size, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN), batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True) trainloader_iter = enumerate(trainloader) elif SOURCE_DATA == "SYNTHIA": trainloader = data.DataLoader(SynthiaDataSet( args.data_dir, args.data_list, LABEL_LIST_PATH, max_iters=args.num_steps * args.iter_size * args.batch_size, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN), batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True) trainloader_iter = enumerate(trainloader) else: raise ValueError targetloader = data.DataLoader(cityscapesDataSet( max_iters=args.num_steps * args.iter_size * args.batch_size, crop_size=input_size_target, scale=False, mirror=args.random_mirror, mean=IMG_MEAN, set=args.set), batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True) targetloader_iter = enumerate(targetloader) # implement model.optim_parameters(args) to handle different models' lr setting optimizer.zero_grad() optimizer_D1 = optim.Adam(model_D1.parameters(), lr=args.learning_rate_D, betas=(0.9, 0.99)) optimizer_D1.zero_grad() optimizer_D2 = optim.Adam(model_D2.parameters(), lr=args.learning_rate_D, betas=(0.9, 0.99)) optimizer_D2.zero_grad() bce_loss = torch.nn.BCEWithLogitsLoss() interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear') interp_target = nn.Upsample(size=(input_size_target[1], input_size_target[0]), mode='bilinear') # labels for adversarial training source_label = 0 target_label = 1 best_mIoU = 0 model_summary([model, model_D1, model_D2]) optimizer_summary([optimizer, optimizer_D1, optimizer_D2]) for i_iter in tqdm(range(args.num_steps_stop), total=args.num_steps_stop, desc="training"): loss_seg_value1 = 0 loss_adv_target_value1 = 0 loss_D_value1 = 0 loss_seg_value2 = 0 loss_adv_target_value2 = 0 loss_D_value2 = 0 optimizer.zero_grad() lr = adjust_learning_rate(optimizer, i_iter) optimizer_D1.zero_grad() optimizer_D2.zero_grad() lr_D1 = adjust_learning_rate_D(optimizer_D1, i_iter) lr_D2 = adjust_learning_rate_D(optimizer_D2, i_iter) for sub_i in range(args.iter_size): ######################### train G # don't accumulate grads in D for param in model_D1.parameters(): param.requires_grad = False for param in model_D2.parameters(): param.requires_grad = False # train with source _, batch = trainloader_iter.next() images, labels, _, _ = batch images = Variable(images).cuda() pred2 = model(images) pred2 = interp(pred2) loss_seg2 = loss_calc(pred2, labels) loss = loss_seg2 # proper normalization loss = loss / args.iter_size loss.backward() loss_seg_value2 += loss_seg2.data.cpu().numpy()[0] / args.iter_size # train with target _, batch = targetloader_iter.next() images, _, _, _ = batch images = Variable(images).cuda() pred_target2 = model(images) pred_target2 = interp_target(pred_target2) D_out2 = model_D2(F.softmax(pred_target2)) loss_adv_target2 = bce_loss( D_out2, Variable( torch.FloatTensor( D_out2.data.size()).fill_(source_label)).cuda()) loss = args.lambda_adv_target2 * loss_adv_target2 loss = loss / args.iter_size loss.backward() loss_adv_target_value2 += loss_adv_target2.data.cpu().numpy( )[0] / args.iter_size ################################## train D # bring back requires_grad for param in model_D1.parameters(): param.requires_grad = True for param in model_D2.parameters(): param.requires_grad = True # train with source pred2 = pred2.detach() D_out2 = model_D2(F.softmax(pred2)) loss_D2 = bce_loss( D_out2, Variable( torch.FloatTensor( D_out2.data.size()).fill_(source_label)).cuda()) loss_D2 = loss_D2 / args.iter_size / 2 loss_D2.backward() loss_D_value2 += loss_D2.data.cpu().numpy()[0] # train with target pred_target2 = pred_target2.detach() D_out2 = model_D2(F.softmax(pred_target2)) loss_D2 = bce_loss( D_out2, Variable( torch.FloatTensor( D_out2.data.size()).fill_(target_label)).cuda()) loss_D2 = loss_D2 / args.iter_size / 2 loss_D2.backward() loss_D_value2 += loss_D2.data.cpu().numpy()[0] optimizer.step() optimizer_D1.step() optimizer_D2.step() if i_iter % 100 == 0: logger.info( 'iter = {}/{},loss_seg1 = {:.3f} loss_seg2 = {:.3f} loss_adv1 = {:.3f}, loss_adv2 = {:.3f} loss_D1 = {:.3f} loss_D2 = {:.3f}, lr={:.7f}, lr_D={:.7f}, best miou16= {:.5f}' .format(i_iter, args.num_steps_stop, loss_seg_value1, loss_seg_value2, loss_adv_target_value1, loss_adv_target_value2, loss_D_value1, loss_D_value2, lr, lr_D1, best_mIoU)) if i_iter % args.save_pred_every == 0 and i_iter != 0: logger.info("saving snapshot.....") cur_miou16 = proceed_test(model, input_size) is_best = True if best_mIoU < cur_miou16 else False if is_best: best_mIoU = cur_miou16 torch.save( { 'iteration': i_iter, 'optim_state_dict': optimizer.state_dict(), 'optim_D1_state_dict': optimizer_D1.state_dict(), 'optim_D2_state_dict': optimizer_D2.state_dict(), 'model_state_dict': model.state_dict(), 'model_D1_state_dict': model_D1.state_dict(), 'model_D2_state_dict': model_D2.state_dict(), 'best_mean_iu': cur_miou16, }, osp.join(logger.get_logger_dir(), 'checkpoint.pth.tar')) if is_best: import shutil shutil.copy( osp.join(logger.get_logger_dir(), 'checkpoint.pth.tar'), osp.join(logger.get_logger_dir(), 'model_best.pth.tar')) if i_iter >= args.num_steps_stop - 1: break
loss1e4=loss.item() * 1e4, group0_lr=optimizer.state_dict()['param_groups'][0]['lr'], sk_err=err, sk_time_sec=tim_sec), step=pytorchgo_args.get_args().step, use_wandb=pytorchgo_args.get_args().wandb, prefix="training epoch {}/{}: ".format( epoch, pytorchgo_args.get_args().epochs)) #optimizer_summary(optimizer) cpu_prototype = model.prototype_N2K.detach().cpu().numpy() return cpu_prototype optimizer_summary(optimizer) model_summary(model) pytorchgo_args.get_args().step = 0 for epoch in range(start_epoch, start_epoch + args.epochs): if args.debug and epoch >= 2: break prototype = train(epoch) feature_return_switch(model, True) logger.warning(logger.get_logger_dir()) logger.warning("doing KNN evaluation.") acc = kNN(model, trainloader, testloader, K=10, sigma=0.1, dim=knn_dim) logger.warning("finish KNN evaluation.") feature_return_switch(model, False) if acc > best_acc: logger.info('get better result, saving..') state = {
def train(args): logger.auto_set_dir() from pytorchgo.utils.pytorch_utils import set_gpu set_gpu(args.gpu) # Setup Dataloader from pytorchgo.augmentation.segmentation import SubtractMeans, PIL2NP, RGB2BGR, PIL_Scale, Value255to0, ToLabel from torchvision.transforms import Compose, Normalize, ToTensor img_transform = Compose([ # notice the order!!! PIL_Scale(train_img_shape, Image.BILINEAR), PIL2NP(), RGB2BGR(), SubtractMeans(), ToTensor(), ]) label_transform = Compose([ PIL_Scale(train_img_shape, Image.NEAREST), PIL2NP(), Value255to0(), ToLabel() ]) val_img_transform = Compose([ PIL_Scale(train_img_shape, Image.BILINEAR), PIL2NP(), RGB2BGR(), SubtractMeans(), ToTensor(), ]) val_label_transform = Compose([ PIL_Scale(train_img_shape, Image.NEAREST), PIL2NP(), ToLabel(), # notice here, training, validation size difference, this is very tricky. ]) from pytorchgo.dataloader.pascal_voc_loader import pascalVOCLoader as common_voc_loader train_loader = common_voc_loader(split="train_aug", epoch_scale=1, img_transform=img_transform, label_transform=label_transform) validation_loader = common_voc_loader(split='val', img_transform=val_img_transform, label_transform=val_label_transform) n_classes = train_loader.n_classes trainloader = data.DataLoader(train_loader, batch_size=args.batch_size, num_workers=8, shuffle=True) valloader = data.DataLoader(validation_loader, batch_size=args.batch_size, num_workers=8) # Setup Metrics running_metrics = runningScore(n_classes) # Setup Model from pytorchgo.model.deeplabv1 import VGG16_LargeFoV from pytorchgo.model.deeplab_resnet import Res_Deeplab model = Res_Deeplab(NoLabels=n_classes, pretrained=True, output_all=False) from pytorchgo.utils.pytorch_utils import model_summary, optimizer_summary model_summary(model) def get_validation_miou(model): model.eval() for i_val, (images_val, labels_val) in tqdm(enumerate(valloader), total=len(valloader), desc="validation"): if i_val > 5 and is_debug == 1: break if i_val > 200 and is_debug == 2: break #img_large = torch.Tensor(np.zeros((1, 3, 513, 513))) #img_large[:, :, :images_val.shape[2], :images_val.shape[3]] = images_val output = model(Variable(images_val, volatile=True).cuda()) output = output pred = output.data.max(1)[1].cpu().numpy() #pred = output[:, :images_val.shape[2], :images_val.shape[3]] gt = labels_val.numpy() running_metrics.update(gt, pred) score, class_iou = running_metrics.get_scores() for k, v in score.items(): logger.info("{}: {}".format(k, v)) running_metrics.reset() return score['Mean IoU : \t'] model.cuda() # Check if model has custom optimizer / loss if hasattr(model, 'optimizer'): logger.warn("don't have customzed optimizer, use default setting!") optimizer = model.module.optimizer else: optimizer = torch.optim.SGD(model.optimizer_params(args.l_rate), lr=args.l_rate, momentum=0.99, weight_decay=5e-4) optimizer_summary(optimizer) if args.resume is not None: if os.path.isfile(args.resume): logger.info( "Loading model and optimizer from checkpoint '{}'".format( args.resume)) checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['model_state']) optimizer.load_state_dict(checkpoint['optimizer_state']) logger.info("Loaded checkpoint '{}' (epoch {})".format( args.resume, checkpoint['epoch'])) else: logger.info("No checkpoint found at '{}'".format(args.resume)) best_iou = 0 logger.info('start!!') for epoch in tqdm(range(args.n_epoch), total=args.n_epoch): model.train() for i, (images, labels) in tqdm(enumerate(trainloader), total=len(trainloader), desc="training epoch {}/{}".format( epoch, args.n_epoch)): if i > 10 and is_debug == 1: break if i > 200 and is_debug == 2: break cur_iter = i + epoch * len(trainloader) cur_lr = adjust_learning_rate(optimizer, args.l_rate, cur_iter, args.n_epoch * len(trainloader), power=0.9) images = Variable(images.cuda()) labels = Variable(labels.cuda()) optimizer.zero_grad() outputs = model(images) # use fusion score loss = CrossEntropyLoss2d_Seg(input=outputs, target=labels, class_num=n_classes) #for i in range(len(outputs) - 1): #for i in range(1): # loss = loss + CrossEntropyLoss2d_Seg(input=outputs[i], target=labels, class_num=n_classes) loss.backward() optimizer.step() if (i + 1) % 100 == 0: logger.info( "Epoch [%d/%d] Loss: %.4f, lr: %.7f, best mIoU: %.7f" % (epoch + 1, args.n_epoch, loss.data[0], cur_lr, best_iou)) cur_miou = get_validation_miou(model) if cur_miou >= best_iou: best_iou = cur_miou state = { 'epoch': epoch + 1, 'mIoU': best_iou, 'model_state': model.state_dict(), 'optimizer_state': optimizer.state_dict(), } torch.save(state, os.path.join(logger.get_logger_dir(), "best_model.pth"))
method=args.method, uses_one_classifier=args.uses_one_classifier, is_data_parallel=args.is_data_parallel) optimizer_g = get_optimizer(model_g.parameters(), lr=args.lr, momentum=args.momentum, opt=args.opt, weight_decay=args.weight_decay) optimizer_f = get_optimizer(list(model_f1.parameters()) + list(model_f2.parameters()), opt=args.opt, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) if args.uses_one_classifier: logger.warn ("f1 and f2 are same!") model_f2 = model_f1 from pytorchgo.utils.pytorch_utils import model_summary,optimizer_summary model_summary([model_g, model_f1, model_f2]) optimizer_summary([optimizer_g,optimizer_f]) mode = "%s-%s2%s-%s_%sch" % (args.src_dataset, args.src_split, args.tgt_dataset, args.tgt_split, args.input_ch) if args.net in ["fcn", "psp"]: model_name = "%s-%s-%s-res%s" % (args.method, args.savename, args.net, args.res) else: model_name = "%s-%s-%s" % (args.method, args.savename, args.net) outdir = os.path.join(logger.get_logger_dir(), mode) # Create Model Dir pth_dir = os.path.join(outdir, "pth") mkdir_if_not_exist(pth_dir) # Create Model Dir and Set TF-Logger tflog_dir = os.path.join(outdir, "tflog", model_name)