示例#1
0
    def post_process_genes(self, data, position, states, output_path):

        output = open(output_path, "w")
        pos2state = dict([(position[t], states[t])
                          for t in range(len(states))])
        theta = numpy.mean(data > 0)
        G = tnseq_tools.Genes(self.ctrldata,
                              self.annotation_path,
                              data=data,
                              position=position,
                              ignoreCodon=False)

        num2label = {0: "ES", 1: "GD", 2: "NE", 3: "GA"}
        output.write("#HMM - Genes\n")
        for gene in G:

            reads_nz = [c for c in gene.reads.flatten() if c > 0]
            avg_read_nz = 0
            if len(reads_nz) > 0:
                avg_read_nz = numpy.average(reads_nz)

            # State
            genestates = [pos2state[p] for p in gene.position]
            statedist = {}
            for st in genestates:
                if st not in statedist: statedist[st] = 0
                statedist[st] += 1

            # State counts
            n0 = statedist.get(0, 0)
            n1 = statedist.get(1, 0)
            n2 = statedist.get(2, 0)
            n3 = statedist.get(3, 0)

            if gene.n > 0:
                E = tnseq_tools.ExpectedRuns(gene.n, 1.0 - theta)
                V = tnseq_tools.VarR(gene.n, 1.0 - theta)
                if n0 == gene.n: S = "ES"
                elif n0 >= int(E + (3 * math.sqrt(V))): S = "ES"
                else:
                    temp = max([(statedist.get(s, 0), s)
                                for s in [0, 1, 2, 3]])[1]
                    S = num2label[temp]
            else:
                E = 0.0
                V = 0.0
                S = "N/A"
            output.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%1.4f\t%1.2f\t%s\n" %
                         (gene.orf, gene.name, gene.desc, gene.n, n0, n1, n2,
                          n3, gene.theta(), avg_read_nz, S))

        output.close()
示例#2
0
    def Run(self):
        self.transit_message("Starting Tn5 gaps method")
        start_time = time.time()

        self.transit_message("Getting data (May take a while)")

        # Combine all wigs
        (data, position) = transit_tools.get_validated_data(self.ctrldata,
                                                            wxobj=self.wxobj)
        combined = tnseq_tools.combine_replicates(data, method=self.replicates)
        combined[combined < self.minread] = 0
        counts = combined
        counts[counts > 0] = 1
        num_sites = counts.size

        genes_obj = tnseq_tools.Genes(self.ctrldata,
                                      self.annotation_path,
                                      ignoreCodon=self.ignoreCodon,
                                      nterm=self.NTerminus,
                                      cterm=self.CTerminus,
                                      data=data,
                                      position=position)

        pins = numpy.mean(counts)
        pnon = 1.0 - pins

        # Calculate stats of runs
        exprunmax = tnseq_tools.ExpectedRuns(num_sites, pnon)
        varrun = tnseq_tools.VarR(num_sites, pnon)
        stddevrun = math.sqrt(varrun)
        exp_cutoff = exprunmax + 2 * stddevrun

        # Get the runs
        self.transit_message("Getting non-insertion runs in genome")
        run_arr = tnseq_tools.runs_w_info(counts)
        pos_hash = transit_tools.get_pos_hash(self.annotation_path)

        # Finally, calculate the results
        self.transit_message("Running Tn5 gaps method")
        results_per_gene = {}
        for gene in genes_obj.genes:
            results_per_gene[gene.orf] = [
                gene.orf, gene.name, gene.desc, gene.k, gene.n, gene.r, 0, 0, 1
            ]

        N = len(run_arr)
        count = 0
        accum = 0
        self.progress_range(N)
        for run in run_arr:
            accum += run['length']
            count += 1
            genes = tnseq_tools.get_genes_in_range(pos_hash, run['start'],
                                                   run['end'])
            for gene_orf in genes:
                gene = genes_obj[gene_orf]
                inter_sz = self.intersect_size([run['start'], run['end']],
                                               [gene.start, gene.end]) + 1
                percent_overlap = self.calc_overlap([run['start'], run['end']],
                                                    [gene.start, gene.end])
                run_len = run['length']
                B = 1.0 / math.log(1.0 / pnon)
                u = math.log(num_sites * pins, 1.0 / pnon)
                pval = 1.0 - tnseq_tools.GumbelCDF(run['length'], u, B)

                curr_val = results_per_gene[gene.orf]
                curr_inter_sz = curr_val[6]
                curr_len = curr_val[7]
                if inter_sz > curr_inter_sz:
                    results_per_gene[gene.orf] = [
                        gene.orf, gene.name, gene.desc, gene.k, gene.n, gene.r,
                        inter_sz, run_len, pval
                    ]

            # Update Progress
            text = "Running Tn5Gaps method... %1.1f%%" % (100.0 * count / N)
            self.progress_update(text, count)

        data = list(results_per_gene.values())
        exp_run_len = float(accum) / N

        min_sig_len = float('inf')
        sig_genes_count = 0
        pval = [row[-1] for row in data]
        padj = stat_tools.BH_fdr_correction(pval)
        for i in range(len(data)):
            if padj[i] < 0.05:
                sig_genes_count += 1
                min_sig_len = min(min_sig_len, data[i][-2])
            data[i].append(padj[i])
            data[i].append('Essential' if padj[i] < 0.05 else 'Non-essential')
            #(data[i][0], data[i][1], data[i][2], data[i][3], data[i][4], data[i][5], data[i][6], data[i][7], data[i][8], padj[i], 'Essential' if padj[i] < 0.05 else 'Non-essential')
        data.sort(key=lambda l: l[0])

        # Output results
        self.output.write("#Tn5 Gaps\n")
        if self.wxobj:
            members = sorted([
                attr for attr in dir(self) if not callable(getattr(self, attr))
                and not attr.startswith("__")
            ])
            memberstr = ""
            for m in members:
                memberstr += "%s = %s, " % (m, getattr(self, m))
            self.output.write(
                "#GUI with: ctrldata=%s, annotation=%s, output=%s\n" %
                (",".join(self.ctrldata).encode('utf-8'),
                 self.annotation_path.encode('utf-8'),
                 self.output.name.encode('utf-8')))
        else:
            self.output.write("#Console: python %s\n" % " ".join(sys.argv))

        self.output.write("#Data: %s\n" %
                          (",".join(self.ctrldata).encode('utf-8')))
        self.output.write("#Annotation path: %s\n" %
                          self.annotation_path.encode('utf-8'))
        self.output.write("#Time: %s\n" % (time.time() - start_time))
        self.output.write("#Essential gene count: %d\n" % (sig_genes_count))
        self.output.write("#Minimum reads: %d\n" % (self.minread))
        self.output.write("#Replicate combination method: %s\n" %
                          (self.replicates))
        self.output.write("#Minimum significant run length: %d\n" %
                          (min_sig_len))
        self.output.write("#Expected run length: %1.5f\n" % (exp_run_len))
        self.output.write("#Expected max run length: %s\n" % (exprunmax))
        self.output.write("#%s\n" % "\t".join(columns))
        #self.output.write("#Orf\tName\tDesc\tk\tn\tr\tovr\tlenovr\tpval\tpadj\tcall\n")

        for res in data:
            self.output.write(
                "%s\t%s\t%s\t%s\t%s\t%s\t%d\t%d\t%1.5f\t%1.5f\t%s\n" %
                (res[0], res[1], res[2], res[3], res[4], res[5], res[6],
                 res[7], res[8], res[9], res[10]))
        self.output.close()

        self.transit_message("")  # Printing empty line to flush stdout
        self.transit_message("Adding File: %s" % (self.output.name))
        self.add_file(filetype="Tn5 Gaps")
        self.finish()
        self.transit_message("Finished Tn5Gaps Method")