示例#1
0
文件: test_mcb.py 项目: nubiofs/pyts
def test_high_n_bins_entropy():
    """Test that an error is raised when 'n_bins' is too large."""
    msg_error = ("The number of bins is too high for timestamp {0}. "
                 "Consider trying with a smaller number of bins or "
                 "removing this timestamp.".format(0))
    mcb = MultipleCoefficientBinning(n_bins=9, strategy='entropy')
    with pytest.raises(ValueError, match=msg_error):
        mcb.fit(X, y)
示例#2
0
文件: test_mcb.py 项目: nubiofs/pyts
def test_identical_bin_edges():
    """Test that an error is raised when two consecutive bins are equal."""
    msg_error = ("At least two consecutive quantiles are equal. "
                 "Consider trying with a smaller number of bins or "
                 "removing timestamps with low variation.")
    mcb = MultipleCoefficientBinning(n_bins=6, strategy='quantile')
    with pytest.raises(ValueError, match=msg_error):
        mcb.fit(np.r_[np.zeros((4, 2)), np.ones((4, 2))])
示例#3
0
文件: test_mcb.py 项目: nubiofs/pyts
def test_consistent_length():
    """Test that a ValueError is raised with a constant sample."""
    msg_error = ("The number of timestamps in X must be the same as "
                 "the number of timestamps when `fit` was called "
                 "({0} != {1}).".format(3, 1))
    mcb = MultipleCoefficientBinning()
    mcb.fit(X, y)
    with pytest.raises(ValueError, match=re.escape(msg_error)):
        mcb.transform(X[:, :1])
示例#4
0
文件: test_sfa.py 项目: nubiofs/pyts
def _compute_expected_results(X,
                              y=None,
                              n_coefs=None,
                              n_bins=4,
                              strategy='quantile',
                              drop_sum=False,
                              anova=False,
                              norm_mean=False,
                              norm_std=False,
                              alphabet=None):
    """Compute the expected results."""
    X = np.asarray(X)
    if norm_mean:
        X -= X.mean(axis=1)[:, None]
    if norm_std:
        X /= X.std(axis=1)[:, None]
    X_fft = np.fft.rfft(X)
    X_fft = np.vstack([np.real(X_fft), np.imag(X_fft)])
    X_fft = X_fft.reshape(n_samples, -1, order='F')
    if drop_sum:
        X_fft = X_fft[:, 2:-1]
    else:
        X_fft = np.hstack([X_fft[:, :1], X_fft[:, 2:-1]])
    if n_coefs is not None:
        if anova:
            _, p = f_classif(X_fft, y)
            support = np.argsort(p)[:n_coefs]
            X_fft = X_fft[:, support]
        else:
            X_fft = X_fft[:, :n_coefs]

    mcb = MultipleCoefficientBinning(n_bins=n_bins,
                                     strategy=strategy,
                                     alphabet=alphabet)
    arr_desired = mcb.fit_transform(X_fft)
    return arr_desired
示例#5
0
# License: BSD-3-Clause

import numpy as np
import matplotlib.pyplot as plt
from pyts.approximation import MultipleCoefficientBinning

# Parameters
n_samples, n_timestamps = 100, 12

# Toy dataset
rng = np.random.RandomState(41)
X = rng.randn(n_samples, n_timestamps)

# MCB transformation
n_bins = 3
mcb = MultipleCoefficientBinning(n_bins=n_bins, strategy='quantile')
X_mcb = mcb.fit_transform(X)

# Show the results for two time series
plt.figure(figsize=(6, 4))

plt.plot(X[0], 'o--', ms=4, label='First time series')
for x, y, s in zip(range(n_timestamps), X[0], X_mcb[0]):
    plt.text(x, y, s, ha='center', va='bottom', fontsize=14, color='C0')

plt.plot(X[5], 'o--', ms=4, label='Second time series')
for x, y, s in zip(range(n_timestamps), X[5], X_mcb[5]):
    plt.text(x, y, s, ha='center', va='bottom', fontsize=14, color='C1')

plt.hlines(mcb.bin_edges_.T, np.arange(n_timestamps) - 0.5,
           np.arange(n_timestamps) + 0.5, color='g',
示例#6
0
文件: test_mcb.py 项目: nubiofs/pyts
def test_constant_sample():
    """Test that a ValueError is raised with a constant sample."""
    discretizer = MultipleCoefficientBinning()
    msg_error = "At least one timestamp is constant."
    with pytest.raises(ValueError, match=msg_error):
        discretizer.fit_transform(np.ones((10, 15)))
示例#7
0
文件: test_mcb.py 项目: nubiofs/pyts
def test_parameter_check(params, error, err_msg):
    """Test parameter validation."""
    mcb = MultipleCoefficientBinning(**params)
    with pytest.raises(error, match=re.escape(err_msg)):
        mcb.fit(X, y)
示例#8
0
文件: test_mcb.py 项目: nubiofs/pyts
def test_fit_transform(params):
    """Test that fit and transform yield the same results as fit_transform."""
    arr_1 = MultipleCoefficientBinning(**params).fit(X, y).transform(X)
    arr_2 = MultipleCoefficientBinning(**params).fit_transform(X, y)
    np.testing.assert_array_equal(arr_1, arr_2)
示例#9
0
文件: test_mcb.py 项目: nubiofs/pyts
def test_actual_results(params, X, y, arr_desired):
    """Test that the actual results are the expected ones."""
    arr_actual = MultipleCoefficientBinning(**params).fit_transform(X, y)
    np.testing.assert_array_equal(arr_actual, arr_desired)
示例#10
0
文件: test_mcb.py 项目: nubiofs/pyts
def test_y_none_entropy():
    """Test that an error is raised when y is None and 'entropy' is used."""
    msg_error = "y cannot be None if strategy='entropy'."
    mcb = MultipleCoefficientBinning(n_bins=2, strategy='entropy')
    with pytest.raises(ValueError, match=msg_error):
        mcb.fit(X, None)