示例#1
0
 def test_union_set_attribute(self):
   list_instance = abstract.Instance(self._ctx.convert.list_type, self._ctx)
   cls = abstract.InterpreterClass("obj", [], {}, None, self._ctx)
   cls_instance = abstract.Instance(cls, self._ctx)
   union = abstract.Union([cls_instance, list_instance], self._ctx)
   node = self._ctx.attribute_handler.set_attribute(
       self._ctx.root_node, union, "rumpelstiltskin",
       self._ctx.convert.none_type.to_variable(self._ctx.root_node))
   self.assertEqual(cls_instance.members["rumpelstiltskin"].data.pop(),
                    self._ctx.convert.none_type)
   self.assertIs(node, self._ctx.root_node)
   error, = self._ctx.errorlog.unique_sorted_errors()
   self.assertEqual(error.name, "not-writable")
示例#2
0
 def build_set(self, node, content):
   """Create a VM set from the given sequence."""
   content = list(content)  # content might be a generator
   value = abstract.Instance(self.set_type, self.ctx)
   value.merge_instance_type_parameter(
       node, abstract_utils.T, self.build_content(content))
   return value.to_variable(node)
示例#3
0
 def test_getitem_with_instance_valself(self):
   cls = abstract.InterpreterClass("X", [], {}, None, self.ctx)
   valself = abstract.Instance(cls, self.ctx).to_binding(self.node)
   _, attr_var = self.attribute_handler.get_attribute(
       self.node, cls, "__getitem__", valself)
   # Since we passed in `valself` for this lookup of __getitem__ on a class,
   # it is treated as a normal lookup; X.__getitem__ does not exist.
   self.assertIsNone(attr_var)
示例#4
0
 def create_kwargs(self, node):
     key_type = self.ctx.convert.primitive_class_instances[str].to_variable(
         node)
     value_type = self.ctx.convert.create_new_unknown(node)
     kwargs = abstract.Instance(self.ctx.convert.dict_type, self.ctx)
     kwargs.merge_instance_type_parameter(node, abstract_utils.K, key_type)
     kwargs.merge_instance_type_parameter(node, abstract_utils.V,
                                          value_type)
     return kwargs.to_variable(node)
示例#5
0
def unpack_and_build(state, count, build_concrete, container_type, ctx):
  state, seq = pop_and_unpack_list(state, count, ctx)
  if any(abstract_utils.is_var_splat(x) for x in seq):
    retval = abstract.Instance(container_type, ctx)
    merge_indefinite_iterables(state.node, retval, seq)
    ret = retval.to_variable(state.node)
  else:
    ret = build_concrete(state.node, seq)
  return state.push(ret)
示例#6
0
 def test_instance_no_valself(self):
   instance = abstract.Instance(self.ctx.convert.int_type, self.ctx)
   _, attr_var = self.attribute_handler.get_attribute(
       self.node, instance, "real")
   attr_binding, = attr_var.bindings
   self.assertEqual(attr_binding.data.cls, self.ctx.convert.int_type)
   # Since `valself` was not passed to get_attribute, a binding to
   # `instance` is not among the attribute's origins.
   self.assertNotIn(instance, [o.data for o in _get_origins(attr_binding)])
示例#7
0
 def test_call_empty_type_parameter_instance(self):
   instance = abstract.Instance(self._ctx.convert.list_type, self._ctx)
   t = abstract.TypeParameter(abstract_utils.T, self._ctx)
   t_instance = abstract.TypeParameterInstance(t, instance, self._ctx)
   node, ret = t_instance.call(self._node, t_instance.to_binding(self._node),
                               function.Args(posargs=()))
   self.assertIs(node, self._node)
   retval, = ret.data
   self.assertIs(retval, self._ctx.convert.empty)
示例#8
0
 def test_compatible_with_set(self):
     i = abstract.Instance(self._convert.set_type, self._ctx)
     # Empty set is not compatible with True.
     self.assertFalsy(i)
     # Once a type parameter is set, list is compatible with True and False.
     i.merge_instance_type_parameter(
         self._node, abstract_utils.T,
         self._convert.object_type.to_variable(self._ctx.root_node))
     self.assertAmbiguous(i)
示例#9
0
 def test_instance_with_valself(self):
   instance = abstract.Instance(self.ctx.convert.int_type, self.ctx)
   valself = instance.to_binding(self.node)
   _, attr_var = self.attribute_handler.get_attribute(
       self.node, instance, "real", valself)
   attr_binding, = attr_var.bindings
   self.assertEqual(attr_binding.data.cls, self.ctx.convert.int_type)
   # Since `valself` was passed to get_attribute, it is added to the
   # attribute's origins.
   self.assertIn(valself, _get_origins(attr_binding))
示例#10
0
 def test_empty_type_parameter_instance(self):
   t = abstract.TypeParameter(
       abstract_utils.T, self._ctx, bound=self._ctx.convert.int_type)
   instance = abstract.Instance(self._ctx.convert.list_type, self._ctx)
   t_instance = abstract.TypeParameterInstance(t, instance, self._ctx)
   node, var = self._ctx.attribute_handler.get_attribute(
       self._ctx.root_node, t_instance, "real")
   self.assertIs(node, self._ctx.root_node)
   attr, = var.data
   self.assertIs(attr, self._ctx.convert.primitive_class_instances[int])
示例#11
0
 def test_class_with_instance_valself(self):
   meta_members = {"x": self.ctx.convert.none.to_variable(self.node)}
   meta = abstract.InterpreterClass("M", [], meta_members, None, self.ctx)
   cls = abstract.InterpreterClass("X", [], {}, meta, self.ctx)
   valself = abstract.Instance(cls, self.ctx).to_binding(self.node)
   _, attr_var = self.attribute_handler.get_attribute(
       self.node, cls, "x", valself)
   # Since `valself` is an instance of X, we do not look at the metaclass, so
   # M.x is not returned.
   self.assertIsNone(attr_var)
示例#12
0
 def test_call_type_parameter_instance(self):
   instance = abstract.Instance(self._ctx.convert.list_type, self._ctx)
   instance.merge_instance_type_parameter(
       self._ctx.root_node, abstract_utils.T,
       self._ctx.convert.int_type.to_variable(self._ctx.root_node))
   t = abstract.TypeParameter(abstract_utils.T, self._ctx)
   t_instance = abstract.TypeParameterInstance(t, instance, self._ctx)
   node, ret = t_instance.call(self._node, t_instance.to_binding(self._node),
                               function.Args(posargs=()))
   self.assertIs(node, self._node)
   retval, = ret.data
   self.assertEqual(retval.cls, self._ctx.convert.int_type)
示例#13
0
 def test_call_type_parameter_instance_with_wrong_args(self):
   instance = abstract.Instance(self._ctx.convert.list_type, self._ctx)
   instance.merge_instance_type_parameter(
       self._ctx.root_node, abstract_utils.T,
       self._ctx.convert.int_type.to_variable(self._ctx.root_node))
   t = abstract.TypeParameter(abstract_utils.T, self._ctx)
   t_instance = abstract.TypeParameterInstance(t, instance, self._ctx)
   posargs = (self._ctx.new_unsolvable(self._node),) * 3
   node, ret = t_instance.call(self._node, t_instance.to_binding(self._node),
                               function.Args(posargs=posargs))
   self.assertIs(node, self._node)
   self.assertTrue(ret.bindings)
   error, = self._ctx.errorlog
   self.assertEqual(error.name, "wrong-arg-count")
示例#14
0
 def build_collection_of_type(self, node, typ, var):
   """Create a collection Typ[T] with T derived from the given variable."""
   ret = abstract.Instance(typ, self.ctx)
   ret.merge_instance_type_parameter(node, abstract_utils.T, var)
   return ret.to_variable(node)
示例#15
0
 def test_compare_frozensets(self):
     """Test that two frozensets can be compared for equality."""
     fset = self._convert.frozenset_type
     i = abstract.Instance(fset, self._ctx)
     j = abstract.Instance(fset, self._ctx)
     self.assertIs(None, compare.cmp_rel(self._ctx, slots.EQ, i, j))
示例#16
0
 def test_compatible_with_none(self):
     # This test is specifically for abstract.Instance, so we don't use
     # self._convert.none, which is a ConcreteValue.
     i = abstract.Instance(self._convert.none_type, self._ctx)
     self.assertFalsy(i)
示例#17
0
  def __init__(self, ctx):
    super().__init__(ctx)
    ctx.convert = self  # to make constant_to_value calls below work

    self._convert_cache = {}
    self._resolved_late_types = {}  # performance cache

    # Initialize primitive_classes to empty to allow constant_to_value to run.
    self.primitive_classes = ()

    # object_type is needed to initialize the primitive class values.
    self.object_type = self.constant_to_value(object)

    self.unsolvable = abstract.Unsolvable(self.ctx)
    self.type_type = self.constant_to_value(type)
    self.ctx.converter_minimally_initialized = True

    self.empty = abstract.Empty(self.ctx)
    self.no_return = typing_overlay.NoReturn(self.ctx)

    # Now fill primitive_classes with the real values using constant_to_value.
    primitive_classes = [
        int, float, str, bytes, object, NoneType, complex, bool, slice,
        types.CodeType, EllipsisType, super,
    ]
    self.primitive_classes = {
        v: self.constant_to_value(v) for v in primitive_classes
    }
    self.primitive_class_names = [
        self._type_to_name(x) for x in self.primitive_classes]
    self.none = abstract.ConcreteValue(None, self.primitive_classes[NoneType],
                                       self.ctx)
    self.true = abstract.ConcreteValue(True, self.primitive_classes[bool],
                                       self.ctx)
    self.false = abstract.ConcreteValue(False, self.primitive_classes[bool],
                                        self.ctx)
    self.ellipsis = abstract.ConcreteValue(Ellipsis,
                                           self.primitive_classes[EllipsisType],
                                           self.ctx)

    self.primitive_class_instances = {}
    for name, cls in self.primitive_classes.items():
      if name == NoneType:
        # This is possible because all None instances are the same.
        # Without it pytype could not reason that "x is None" is always true, if
        # x is indeed None.
        instance = self.none
      elif name == EllipsisType:
        instance = self.ellipsis
      else:
        instance = abstract.Instance(cls, self.ctx)
      self.primitive_class_instances[name] = instance
      self._convert_cache[(abstract.Instance, cls.pytd_cls)] = instance

    self.none_type = self.primitive_classes[NoneType]
    self.super_type = self.primitive_classes[super]
    self.str_type = self.primitive_classes[str]
    self.int_type = self.primitive_classes[int]
    self.bool_type = self.primitive_classes[bool]
    self.bytes_type = self.primitive_classes[bytes]

    self.list_type = self.constant_to_value(list)
    self.set_type = self.constant_to_value(set)
    self.frozenset_type = self.constant_to_value(frozenset)
    self.dict_type = self.constant_to_value(dict)
    self.module_type = self.constant_to_value(types.ModuleType)
    self.function_type = self.constant_to_value(types.FunctionType)
    self.tuple_type = self.constant_to_value(tuple)
    self.generator_type = self.constant_to_value(types.GeneratorType)
    self.iterator_type = self.constant_to_value(IteratorType)
    self.coroutine_type = self.constant_to_value(CoroutineType)
    self.awaitable_type = self.constant_to_value(AwaitableType)
    self.async_generator_type = self.constant_to_value(AsyncGeneratorType)
    self.bool_values = {
        True: self.true,
        False: self.false,
        None: self.primitive_class_instances[bool],
    }
示例#18
0
 def test_compatible_with_numeric(self):
     # Numbers can evaluate to True or False
     i = abstract.Instance(self._convert.int_type, self._ctx)
     self.assertAmbiguous(i)
示例#19
0
 def create_varargs(self, node):
     value = abstract.Instance(self.ctx.convert.tuple_type, self.ctx)
     value.merge_instance_type_parameter(
         node, abstract_utils.T, self.ctx.convert.create_new_unknown(node))
     return value.to_variable(node)
示例#20
0
 def test_cmp_rel__unknown(self):
     tup1 = self._convert.constant_to_value((3, 1))
     tup2 = abstract.Instance(self._convert.tuple_type, self._ctx)
     for op in (slots.LT, slots.LE, slots.EQ, slots.NE, slots.GE, slots.GT):
         self.assertIsNone(compare.cmp_rel(self._ctx, op, tup1, tup2))
         self.assertIsNone(compare.cmp_rel(self._ctx, op, tup2, tup1))
示例#21
0
 def test_compatible_with_object(self):
     # object() is not compatible with False
     i = abstract.Instance(self._convert.object_type, self._ctx)
     self.assertTruthy(i)
示例#22
0
  def _constant_to_value(self, pyval, subst, get_node):
    """Create a BaseValue that represents a python constant.

    This supports both constant from code constant pools and PyTD constants such
    as classes. This also supports builtin python objects such as int and float.

    Args:
      pyval: The python or PyTD value to convert.
      subst: The current type parameters.
      get_node: A getter function for the current node.

    Returns:
      A Value that represents the constant, or None if we couldn't convert.
    Raises:
      NotImplementedError: If we don't know how to convert a value.
      TypeParameterError: If we can't find a substitution for a type parameter.
    """
    if isinstance(pyval, str):
      return abstract.ConcreteValue(pyval, self.str_type, self.ctx)
    elif isinstance(pyval, bytes):
      return abstract.ConcreteValue(pyval, self.bytes_type, self.ctx)
    elif isinstance(pyval, bool):
      return self.true if pyval else self.false
    elif isinstance(pyval, int) and -1 <= pyval <= _MAX_IMPORT_DEPTH:
      # For small integers, preserve the actual value (for things like the
      # level in IMPORT_NAME).
      return abstract.ConcreteValue(pyval, self.int_type, self.ctx)
    elif pyval.__class__ in self.primitive_classes:
      return self.primitive_class_instances[pyval.__class__]
    elif pyval.__class__ is frozenset:
      instance = abstract.Instance(self.frozenset_type, self.ctx)
      for element in pyval:
        instance.merge_instance_type_parameter(
            self.ctx.root_node, abstract_utils.T,
            self.constant_to_var(element, subst, self.ctx.root_node))
      return instance
    elif isinstance(pyval, (loadmarshal.CodeType, blocks.OrderedCode)):
      return abstract.ConcreteValue(pyval,
                                    self.primitive_classes[types.CodeType],
                                    self.ctx)
    elif pyval is super:
      return special_builtins.Super(self.ctx)
    elif pyval is object:
      return special_builtins.Object(self.ctx)
    elif pyval.__class__ is type:
      try:
        return self.name_to_value(self._type_to_name(pyval), subst)
      except (KeyError, AttributeError):
        log.debug("Failed to find pytd", exc_info=True)
        raise
    elif isinstance(pyval, pytd.LateType):
      actual = self._load_late_type(pyval)
      return self._constant_to_value(actual, subst, get_node)
    elif isinstance(pyval, pytd.TypeDeclUnit):
      return self._create_module(pyval)
    elif isinstance(pyval, pytd.Module):
      mod = self.ctx.loader.import_name(pyval.module_name)
      return self._create_module(mod)
    elif isinstance(pyval, pytd.Class):
      if pyval.name == "builtins.super":
        return self.ctx.special_builtins["super"]
      elif pyval.name == "builtins.object":
        return self.object_type
      elif pyval.name == "types.ModuleType":
        return self.module_type
      elif pyval.name == "_importlib_modulespec.ModuleType":
        # Python 3's typeshed uses a stub file indirection to define ModuleType
        # even though it is exported via types.pyi.
        return self.module_type
      elif pyval.name == "types.FunctionType":
        return self.function_type
      else:
        module, dot, base_name = pyval.name.rpartition(".")
        # typing.TypingContainer intentionally loads the underlying pytd types.
        if (module not in ("typing", "typing_extensions") and
            module in overlay_dict.overlays):
          overlay = self.ctx.vm.import_module(module, module, 0)
          if overlay.get_module(base_name) is overlay:
            overlay.load_lazy_attribute(base_name)
            return abstract_utils.get_atomic_value(overlay.members[base_name])
        try:
          cls = abstract.PyTDClass.make(base_name, pyval, self.ctx)
        except mro.MROError as e:
          self.ctx.errorlog.mro_error(self.ctx.vm.frames, base_name, e.mro_seqs)
          cls = self.unsolvable
        else:
          if dot:
            cls.module = module
          cls.call_metaclass_init(get_node())
        return cls
    elif isinstance(pyval, pytd.Function):
      signatures = [
          abstract.PyTDSignature(pyval.name, sig, self.ctx)
          for sig in pyval.signatures
      ]
      type_new = self.ctx.loader.lookup_builtin("builtins.type").Lookup(
          "__new__")
      if pyval is type_new:
        f_cls = special_builtins.TypeNew
      else:
        f_cls = abstract.PyTDFunction
      f = f_cls(pyval.name, signatures, pyval.kind, self.ctx)
      f.is_abstract = pyval.is_abstract
      return f
    elif isinstance(pyval, pytd.ClassType):
      if pyval.cls:
        cls = pyval.cls
      else:
        # If pyval is a reference to a class in builtins or typing, we can fill
        # in the class ourselves. lookup_builtin raises a KeyError if the name
        # is not found.
        cls = self.ctx.loader.lookup_builtin(pyval.name)
        assert isinstance(cls, pytd.Class)
      return self.constant_to_value(cls, subst, self.ctx.root_node)
    elif isinstance(pyval, pytd.NothingType):
      return self.empty
    elif isinstance(pyval, pytd.AnythingType):
      return self.unsolvable
    elif (isinstance(pyval, pytd.Constant) and
          isinstance(pyval.type, pytd.AnythingType)):
      # We allow "X = ... # type: Any" to declare X as a type.
      return self.unsolvable
    elif (isinstance(pyval, pytd.Constant) and
          isinstance(pyval.type, pytd.GenericType) and
          pyval.type.name == "builtins.type"):
      # `X: Type[other_mod.X]` is equivalent to `X = other_mod.X`.
      param, = pyval.type.parameters
      return self.constant_to_value(param, subst, self.ctx.root_node)
    elif isinstance(pyval, pytd.UnionType):
      options = [
          self.constant_to_value(t, subst, self.ctx.root_node)
          for t in pyval.type_list
      ]
      if len(options) > 1:
        return abstract.Union(options, self.ctx)
      else:
        return options[0]
    elif isinstance(pyval, pytd.TypeParameter):
      constraints = tuple(
          self.constant_to_value(c, {}, self.ctx.root_node)
          for c in pyval.constraints)
      bound = (
          pyval.bound and
          self.constant_to_value(pyval.bound, {}, self.ctx.root_node))
      return abstract.TypeParameter(
          pyval.name,
          self.ctx,
          constraints=constraints,
          bound=bound,
          module=pyval.scope)
    elif isinstance(pyval, abstract_utils.AsInstance):
      cls = pyval.cls
      if isinstance(cls, pytd.LateType):
        actual = self._load_late_type(cls)
        if not isinstance(actual, pytd.ClassType):
          return self.unsolvable
        cls = actual.cls
      if isinstance(cls, pytd.ClassType):
        cls = cls.cls
      if isinstance(cls, pytd.GenericType) and cls.name == "typing.ClassVar":
        param, = cls.parameters
        return self.constant_to_value(
            abstract_utils.AsInstance(param), subst, self.ctx.root_node)
      elif isinstance(cls, pytd.GenericType) or (isinstance(cls, pytd.Class) and
                                                 cls.template):
        # If we're converting a generic Class, need to create a new instance of
        # it. See test_classes.testGenericReinstantiated.
        if isinstance(cls, pytd.Class):
          params = tuple(t.type_param.upper_value for t in cls.template)
          cls = pytd.GenericType(base_type=pytd.ClassType(cls.name, cls),
                                 parameters=params)
        if isinstance(cls.base_type, pytd.LateType):
          actual = self._load_late_type(cls.base_type)
          if not isinstance(actual, pytd.ClassType):
            return self.unsolvable
          base_cls = actual.cls
        else:
          base_type = cls.base_type
          assert isinstance(base_type, pytd.ClassType)
          base_cls = base_type.cls
        assert isinstance(base_cls, pytd.Class), base_cls
        if base_cls.name == "builtins.type":
          c, = cls.parameters
          if isinstance(c, pytd.TypeParameter):
            if not subst or c.full_name not in subst:
              raise self.TypeParameterError(c.full_name)
            # deformalize gets rid of any unexpected TypeVars, which can appear
            # if something is annotated as Type[T].
            return self.ctx.annotation_utils.deformalize(
                self.merge_classes(subst[c.full_name].data))
          else:
            return self.constant_to_value(c, subst, self.ctx.root_node)
        elif isinstance(cls, pytd.TupleType):
          content = tuple(self.constant_to_var(abstract_utils.AsInstance(p),
                                               subst, get_node())
                          for p in cls.parameters)
          return self.tuple_to_value(content)
        elif isinstance(cls, pytd.CallableType):
          clsval = self.constant_to_value(cls, subst, self.ctx.root_node)
          return abstract.Instance(clsval, self.ctx)
        else:
          clsval = self.constant_to_value(base_cls, subst, self.ctx.root_node)
          instance = abstract.Instance(clsval, self.ctx)
          num_params = len(cls.parameters)
          assert num_params <= len(base_cls.template)
          for i, formal in enumerate(base_cls.template):
            if i < num_params:
              node = get_node()
              p = self.constant_to_var(
                  abstract_utils.AsInstance(cls.parameters[i]), subst, node)
            else:
              # An omitted type parameter implies `Any`.
              node = self.ctx.root_node
              p = self.unsolvable.to_variable(node)
            instance.merge_instance_type_parameter(node, formal.name, p)
          return instance
      elif isinstance(cls, pytd.Class):
        assert not cls.template
        # This key is also used in __init__
        key = (abstract.Instance, cls)
        if key not in self._convert_cache:
          if cls.name in ["builtins.type", "builtins.property"]:
            # An instance of "type" or of an anonymous property can be anything.
            instance = self._create_new_unknown_value("type")
          else:
            mycls = self.constant_to_value(cls, subst, self.ctx.root_node)
            instance = abstract.Instance(mycls, self.ctx)
          log.info("New pytd instance for %s: %r", cls.name, instance)
          self._convert_cache[key] = instance
        return self._convert_cache[key]
      elif isinstance(cls, pytd.Literal):
        return self.constant_to_value(
            self._get_literal_value(cls.value), subst, self.ctx.root_node)
      else:
        return self.constant_to_value(cls, subst, self.ctx.root_node)
    elif (isinstance(pyval, pytd.GenericType) and
          pyval.name == "typing.ClassVar"):
      param, = pyval.parameters
      return self.constant_to_value(param, subst, self.ctx.root_node)
    elif isinstance(pyval, pytd.GenericType):
      if isinstance(pyval.base_type, pytd.LateType):
        actual = self._load_late_type(pyval.base_type)
        if not isinstance(actual, pytd.ClassType):
          return self.unsolvable
        base = actual.cls
      else:
        assert isinstance(pyval.base_type, pytd.ClassType), pyval
        base = pyval.base_type.cls
      assert isinstance(base, pytd.Class), base
      base_cls = self.constant_to_value(base, subst, self.ctx.root_node)
      if not isinstance(base_cls, abstract.Class):
        # base_cls can be, e.g., an unsolvable due to an mro error.
        return self.unsolvable
      if isinstance(pyval, pytd.TupleType):
        abstract_class = abstract.TupleClass
        template = list(range(len(pyval.parameters))) + [abstract_utils.T]
        combined_parameter = pytd_utils.JoinTypes(pyval.parameters)
        parameters = pyval.parameters + (combined_parameter,)
      elif isinstance(pyval, pytd.CallableType):
        abstract_class = abstract.CallableClass
        template = list(range(len(pyval.args))) + [abstract_utils.ARGS,
                                                   abstract_utils.RET]
        parameters = pyval.args + (pytd_utils.JoinTypes(pyval.args), pyval.ret)
      else:
        abstract_class = abstract.ParameterizedClass
        if pyval.name == "typing.Generic":
          pyval_template = pyval.parameters
        else:
          pyval_template = base.template
        template = tuple(t.name for t in pyval_template)
        parameters = pyval.parameters
      assert (pyval.name in ("typing.Generic", "typing.Protocol") or
              len(parameters) <= len(template))
      # Delay type parameter loading to handle recursive types.
      # See the ParameterizedClass.formal_type_parameters() property.
      type_parameters = abstract_utils.LazyFormalTypeParameters(
          template, parameters, subst)
      return abstract_class(base_cls, type_parameters, self.ctx)
    elif isinstance(pyval, pytd.Literal):
      value = self.constant_to_value(
          self._get_literal_value(pyval.value), subst, self.ctx.root_node)
      return abstract.LiteralClass(value, self.ctx)
    elif isinstance(pyval, pytd.Annotated):
      typ = self.constant_to_value(pyval.base_type, subst, self.ctx.root_node)
      if pyval.annotations[0] == "'pytype_metadata'":
        try:
          md = metadata.from_string(pyval.annotations[1])
          if md["tag"] == "attr.ib":
            ret = attr_overlay.AttribInstance.from_metadata(
                self.ctx, self.ctx.root_node, typ, md)
            return ret
          elif md["tag"] == "attr.s":
            ret = attr_overlay.Attrs.from_metadata(self.ctx, md)
            return ret
        except (IndexError, ValueError, TypeError, KeyError):
          details = "Wrong format for pytype_metadata."
          self.ctx.errorlog.invalid_annotation(self.ctx.vm.frames,
                                               pyval.annotations[1], details)
          return typ
      else:
        return typ
    elif pyval.__class__ is tuple:  # only match raw tuple, not namedtuple/Node
      return self.tuple_to_value([
          self.constant_to_var(item, subst, self.ctx.root_node)
          for i, item in enumerate(pyval)
      ])
    else:
      raise NotImplementedError("Can't convert constant %s %r" %
                                (type(pyval), pyval))