"M_mil_hi" : M_lsm_hi, "R_mil_mu" : R_lsm_mu, "R_mil_lo" : R_lsm_lo, "R_mil_hi" : R_lsm_hi } ) df.to_csv("../../data/an_mil_c{0:}.csv".format(MYCASE)) ################################################## # Report ################################################## print("Execution time: {} sec".format(t1-t0)) Colors = linspecer(5) ### Effective margin plt.figure() ## Data # Basis Value plt.plot(N_ALL,100*M_bv_lo, color = Colors[0,:], linewidth = 1.0, linestyle = ":") plt.plot(N_ALL,100*M_bv_mu, color = Colors[0,:], linewidth = 2.0, label='AN + BV') for i in range(len(N_ALL)): plt.plot([N_ALL[i]*0.95, N_ALL[i]*0.95], [100*M_bv_mu[i], 100*M_bv_lo[i]], color = Colors[0,:], linewidth = 0.5)
# matplotlib import block import matplotlib # choose the backend to handle window geometry matplotlib.use("Qt4Agg") # Import pyplot import matplotlib.pyplot as plt # Plot settings offset = [(0,500),(700,500),(1400,500)] # window locations # Example details import numpy as np import pyutil.plotting as ut # Example plots C = ut.linspecer(len(offset)) for i in range(len(offset)): # Generate some fake data X = np.linspace(-1,1) Y = np.random.random(len(X)) # Plot plt.figure() plt.plot(X,Y,color=C[i]) plt.xlabel('X') plt.ylabel('Y') plt.title('Data Set {}'.format(i+1)) # Set plot location on screen manager = plt.get_current_fig_manager() # Grab window dimensions x,y,dx,dy = manager.window.geometry().getRect()
df["R_pri{0:d}_mu".format(p)] = R_pri_mc_mu[:, lnd] df["R_pri{0:d}_lo".format(p)] = R_pri_mc_lo[:, lnd] df["R_pri{0:d}_hi".format(p)] = R_pri_mc_hi[:, lnd] df.to_csv("../../data/mc_mip_c{0:}{1:}.csv".format(MYCASE, suffix)) ################################################## # Report ################################################## print("Execution time: {} sec".format(t1 - t0)) ### Label formatting Labels = ['L={0:1.0e}'.format(l) for l in L_ALL] nplt = len(pIdx) Colors = linspecer(len(L_ALL) * nplt) ### Effective margin -------------------------------------------------- plt.figure() ## Data for lnd in range(len(L_ALL)): # MC mip if 0 in pIdx: plt.plot(N_ALL, 100 * M_mip_mc_lo[:, lnd], color=Colors[0 + nplt * lnd, :], linewidth=1.0, linestyle=":") plt.plot(N_ALL, 100 * M_mip_mc_mu[:, lnd], color=Colors[0 + nplt * lnd, :],
""" # matplotlib import block import matplotlib # choose the backend to handle window geometry matplotlib.use("Qt4Agg") # Import pyplot import matplotlib.pyplot as plt # Plot settings offset = [(0, 500), (700, 500), (1400, 500)] # window locations # Example details import numpy as np import pyutil.plotting as ut # Example plots C = ut.linspecer(len(offset)) for i in range(len(offset)): # Generate some fake data X = np.linspace(-1, 1) Y = np.random.random(len(X)) # Plot plt.figure() plt.plot(X, Y, color=C[i]) plt.xlabel('X') plt.ylabel('Y') plt.title('Data Set {}'.format(i + 1)) # Set plot location on screen manager = plt.get_current_fig_manager() # Grab window dimensions x, y, dx, dy = manager.window.geometry().getRect()
if dist != None: print "Subspace Dist = \n{}".format(dist) print "Leading Vectors:" for i in range(m_des): print "W[:," + str(i) + "] = \n{}".format(W[:, i]) ################################################## # Plotting ################################################## if plotting: ### Residual sequences length = len(Res_full) label_len = min(length, 10) longest = 0 colors = linspecer(length) sty = '-' mkr = 'o' fig = plt.figure() for i in range(length): plt.plot(Res_full[i], color=colors[i], linestyle=sty, marker=mkr) longest = max(longest, len(Res_full[i])) plt.yscale('log') plt.xlim([-0.5, longest + 0.5]) # Annotation plt.title("Residual Sequences: " + title_case) plt.xlabel("Iteration") plt.ylabel("Residual") plt.legend(['Stage ' + str(i + 1) for i in range(label_len)])
W_all.append(W_r) L_all.append(L_r) D_all.append(d_r) # Form numpy arrays L_all = np.array(L_all) D_all = np.array(D_all) # Bootstrap analysis L_mean = np.array([L_all[:,i].mean() for i in range(L_all.shape[1])]) L_std = np.array([L_all[:,i].std() for i in range(L_all.shape[1])]) D_mean = np.array([D_all[:,i].mean() for i in range(D_all.shape[1])]) D_std = np.array([D_all[:,i].std() for i in range(D_all.shape[1])]) # Plot results # -------------------------------------------------- colors = linspecer(2) sig = 2. # Number of sigma to plot as interval # Subspace Distance ind = range(1,m) D_lo= D_mean-D_std*sig; D_lo = [max(d,1e-25) for d in D_lo] D_hi= D_mean+D_std*sig plt.figure() plt.plot(ind,D_mean,color=colors[0],marker='*',linestyle='-') plt.fill_between(ind,D_lo,D_hi,alpha=0.5,color=colors[0]) plt.title('Subspace Distance') plt.yscale('log') plt.ylim((1e-15,max(D_mean)*10)) plt.xlim((0,m)) # Set plot location on screen