示例#1
0
文件: PyomoModel.py 项目: Pyomo/pyomo
 def __init__(self, *args, **kw):
     Container.__init__(self, *args, **kw)
     self.set_name('PyomoConfig')
     #
     # Create the nested options specified by the the PyomoConfig._option
     # dictionary, which has been populated with the global_option decorator.
     #
     for item in PyomoConfig._option:
         d = self
         for attr in item[:-1]:
             if not attr in d:
                 d[attr] = Container()
             d = d[attr]
         d[item[-1]] = PyomoConfig._option[item]
示例#2
0
 def __init__(self, *args, **kw):
     Container.__init__(self, *args, **kw)
     self.set_name('PyomoConfig')
     #
     # Create the nested options specified by the the PyomoConfig._option
     # dictionary, which has been populated with the global_option decorator.
     #
     for item in PyomoConfig._option:
         d = self
         for attr in item[:-1]:
             if not attr in d:
                 d[attr] = Container()
             d = d[attr]
         d[item[-1]] = PyomoConfig._option[item]
def parse_simple_impact(filename):
    if filename.endswith('.gz'):
        f = gzip.open(filename, 'rb')
        f.read().split()
        f.close()
    INPUT = open(filename, 'r')
    INPUT.readline()
    INPUT.readline()
    #
    data = {}
    locations = set()
    newscenario = True
    for line in INPUT:
        tokens = map(eval, re.split('[ \t]+', line.strip()))
        if newscenario:
            data[tokens[0]] = {}
            newscenario = False
        if tokens[1] == -1:
            newscenario = True
        locations.add(tokens[1])
        data[tokens[0]][tokens[1]] = tokens[3]
    #
    INPUT.close()
    locmap = {}
    for loc in locations:
        locmap[loc] = loc
    return Container(impact=data, location_map=locmap)
示例#4
0
def setup_solver_environment(model, config):
    solve_data = GDPoptSolveData()  # data object for storing solver state
    solve_data.config = config
    solve_data.results = SolverResults()
    solve_data.timing = Container()
    min_logging_level = logging.INFO if config.tee else None
    with time_code(solve_data.timing, 'total', is_main_timer=True), \
            lower_logger_level_to(config.logger, min_logging_level), \
            create_utility_block(model, 'GDPopt_utils', solve_data):

        # Create a working copy of the original model
        solve_data.original_model = model
        solve_data.working_model = model.clone()
        setup_results_object(solve_data, config)
        solve_data.active_strategy = config.strategy
        util_block = solve_data.working_model.GDPopt_utils

        # Save model initial values.
        # These can be used later to initialize NLP subproblems.
        solve_data.initial_var_values = list(v.value
                                             for v in util_block.variable_list)
        solve_data.best_solution_found = None

        # Integer cuts exclude particular discrete decisions
        util_block.integer_cuts = ConstraintList(doc='integer cuts')

        # Set up iteration counters
        solve_data.master_iteration = 0
        solve_data.mip_iteration = 0
        solve_data.nlp_iteration = 0

        # set up bounds
        solve_data.LB = float('-inf')
        solve_data.UB = float('inf')
        solve_data.iteration_log = {}

        # Flag indicating whether the solution improved in the past
        # iteration or not
        solve_data.feasible_solution_improved = False

        yield solve_data  # yield setup solver environment

        if (solve_data.best_solution_found is not None
                and solve_data.best_solution_found
                is not solve_data.original_model):
            # Update values on the original model
            copy_var_list_values(
                from_list=solve_data.best_solution_found.GDPopt_utils.
                variable_list,
                to_list=solve_data.original_model.GDPopt_utils.variable_list,
                config=config)

    # Finalize results object
    solve_data.results.problem.lower_bound = solve_data.LB
    solve_data.results.problem.upper_bound = solve_data.UB
    solve_data.results.solver.iterations = solve_data.master_iteration
    solve_data.results.solver.timing = solve_data.timing
    solve_data.results.solver.user_time = solve_data.timing.total
    solve_data.results.solver.wallclock_time = solve_data.timing.total
示例#5
0
def temoa_create_model_container(model):
    """Creates a container (wraps a dictionary) model_data to store
    model, instance and results data for processing after a solve.
    """
    from pyutilib.misc import Container
    model_data = Container()
    model_data.model = model
    return model_data
示例#6
0
def _write_run_config(this_run_dir: Path):
    config_to_store = Container(**this_run_config)
    if 'jobs_failed' in config_to_store:
        config_to_store.jobs_failed = [
            (model, solver) for model, solver in config_to_store.jobs_failed
        ]
    if 'jobs_run' in config_to_store:
        config_to_store.jobs_run = [
            (model, solver) for model, solver in config_to_store.jobs_run
        ]
    with this_run_dir.joinpath(run_config_filename).open('w') as runinfofile:
        yaml.safe_dump(dict(**config_to_store), runinfofile)
示例#7
0
def _collect_run_rows(run_number: int) -> List[Container]:
    this_run_dir = get_run_dir(run_number)
    _load_run_config(this_run_dir)
    rows = []
    # Process successfully complete jobs
    for job in this_run_config.jobs_run - this_run_config.jobs_failed:
        model_name, solver_name = job
        test_model = models[model_name]
        test_solver = solvers[solver_name]
        job_data = Container()
        job_data.model = model_name
        job_data.solver = solver_name
        test_result = _get_job_result(this_run_dir, model_name, solver_name)
        if not test_result:
            continue  # TODO This should be unnecessary. We should detect a failure earlier in analysis.
        job_data.time = test_result.model_build_start_time
        job_data.LB = test_result.LB
        job_data.UB = test_result.UB
        job_data.elapsed = test_result.solver_run_time
        job_data.iterations = test_result.get('iterations', None)
        job_data.tc = test_result.termination_condition
        job_data.sense = test_model.objective_sense
        if job_data.tc != 'infeasible':
            job_data.soln_gap, job_data.opt_gap = _calculate_gaps(
                test_model, test_solver, test_result.LB, test_result.UB)
        else:
            job_data.soln_gap, job_data.opt_gap = None, None

        # Times to solution/optimality
        if job_data.soln_gap is not None and job_data.soln_gap <= options.optcr + options[
                'optcr tolerance']:
            job_data.time_to_soln = test_result.solver_run_time
            job_data.time_to_ok_soln = test_result.solver_run_time
        elif job_data.soln_gap is not None and job_data.soln_gap <= options[
                "ok solution tolerance"]:
            job_data.time_to_soln = float('inf')
            job_data.time_to_ok_soln = test_result.solver_run_time
        else:
            job_data.time_to_soln = float('inf')
            job_data.time_to_ok_soln = float('inf')

        if job_data.opt_gap is not None and job_data.opt_gap <= options.optcr + options[
                'optcr tolerance']:
            job_data.time_to_opt = test_result.solver_run_time
        else:
            job_data.time_to_opt = float('inf')

        rows.append(job_data)
    return rows
示例#8
0
 def __init__(self, name='unknown', **kwargs):
     """Constructor"""
     #
     # NOTE: The 'ctype' keyword argument is not defined here.  Thus,
     # a model is treated as a 'Block' class type.  This simplifies
     # the definition of the block_data_objects() method, since we treat
     # Model and Block objects as the same.  Similarly, this avoids
     # the requirement to import PyomoModel.py in the block.py file.
     #
     SimpleBlock.__init__(self, **kwargs)
     self._name = name
     self.statistics = Container()
     self.config = PyomoConfig()
     self.solutions = ModelSolutions(self)
     self.config.preprocessor = 'pyomo.model.simple_preprocessor'
示例#9
0
def convert(options=Options(), parser=None, model_format=None):
    global _format
    if not model_format is None:
        _format = model_format
    #
    # Import plugins
    #
    import pyomo.environ

    if options.model.save_file is None:
        if _format == ProblemFormat.cpxlp:
            options.model.save_file = 'unknown.lp'
        else:
            options.model.save_file = 'unknown.'+str(_format)
    options.model.save_format = _format

    data = Options(options=options)

    model_data = None
    try:
        pyomo.scripting.util.setup_environment(data)

        pyomo.scripting.util.apply_preprocessing(data, parser=parser)

        if data.error:
            return Container()

        model_data = pyomo.scripting.util.create_model(data)

        model_data.options = options
    except:

        # TBD: I should be able to call this function in the case of
        #      an exception to perform cleanup. However, as it stands
        #      calling finalize with its default keyword value for
        #      model(=None) results in an a different error related to
        #      task port values.  Not sure how to interpret that.
        pyomo.scripting.util.finalize(data,
                                      model=ConcreteModel(),
                                      instance=None,
                                      results=None)
        raise

    else:

        pyomo.scripting.util.finalize(data, model=model_data.model)

    return model_data
示例#10
0
 def execute(self):
     if len(self.impact_list) is 0:
         raise IOError, "tso2Impact_Task expected non-zero list for input 'impact_list'"
     #
     args = ""
     for impact in self.impact_list:
         args += " --%s" % str(impact)
     if not self.detectionLimit is None:
         args += " --detectionLimit=%s" % str(self.detectionLimit)
     if not self.responseTime is None:
         args += " --responseTime=%s" % str(self.responseTime)
     if self.output_prefix is None:
         impact_tempfiles = True
         self.output_prefix = pyutilib.services.TempfileManager.create_tempfile(
             prefix='tso2Impact_')
     else:
         impact_tempfiles = False
     args += " %s" % str(self.output_prefix)
     args += " %s" % str(self.tso_filename)
     if not self.tai_filename is None:
         args += " %s" % str(self.tai_filename)
     #
     if self.logfile is None:
         self.logfile = pyutilib.services.TempfileManager.create_tempfile(
             suffix=".log")
     # TODO: manage debugging in tasks
     self.resource('tso2Impact').run(args, logfile=self.logfile, debug=True)
     #
     self.impact_data = {}
     for impact in self.impact_list:
         data = Container(
             type=str(impact),
             impact="%s_%s.impact" % (self.output_prefix, impact),
             id="%s_%s.impact.id" % (self.output_prefix, impact),
             nodemap="%s.nodemap" % self.output_prefix,
             scenariomap="%s.scenariomap" % self.output_prefix)
         pyutilib.services.TempfileManager.add_tempfile(data.impact)
         pyutilib.services.TempfileManager.add_tempfile(data.id)
         pyutilib.services.TempfileManager.add_tempfile(data.nodemap)
         pyutilib.services.TempfileManager.add_tempfile(data.scenariomap)
         self.impact_data[impact] = data
示例#11
0
 def test_solve_linear_GDP_unbounded(self):
     m = ConcreteModel()
     m.GDPopt_utils = Block()
     m.x = Var(bounds=(-1, 10))
     m.y = Var(bounds=(2, 3))
     m.z = Var()
     m.d = Disjunction(expr=[[m.x + m.y >= 5], [m.x - m.y <= 3]])
     m.o = Objective(expr=m.z)
     m.GDPopt_utils.variable_list = [m.x, m.y, m.z]
     m.GDPopt_utils.disjunct_list = [
         m.d._autodisjuncts[0], m.d._autodisjuncts[1]
     ]
     output = StringIO()
     with LoggingIntercept(output, 'pyomo.contrib.gdpopt', logging.WARNING):
         solver_data = GDPoptSolveData()
         solver_data.timing = Container()
         with time_code(solver_data.timing, 'main', is_main_timer=True):
             solve_linear_GDP(
                 m, solver_data,
                 GDPoptSolver.CONFIG(dict(mip_solver=mip_solver)))
         self.assertIn(
             "Linear GDP was unbounded. Resolving with arbitrary bound values",
             output.getvalue().strip())
示例#12
0
文件: GDPopt.py 项目: smarie/pyomo
    def solve(self, model, **kwds):
        """Solve the model.

        Warning: this solver is still in beta. Keyword arguments subject to
        change. Undocumented keyword arguments definitely subject to change.

        This function performs all of the GDPopt solver setup and problem
        validation. It then calls upon helper functions to construct the
        initial master approximation and iteration loop.

        Args:
            model (Block): a Pyomo model or block to be solved

        """
        config = self.CONFIG(kwds.pop('options', {}))
        config.set_value(kwds)
        solve_data = GDPoptSolveData()
        solve_data.results = SolverResults()
        solve_data.timing = Container()

        old_logger_level = config.logger.getEffectiveLevel()
        with time_code(solve_data.timing, 'total'), \
                restore_logger_level(config.logger), \
                create_utility_block(model, 'GDPopt_utils', solve_data):
            if config.tee and old_logger_level > logging.INFO:
                # If the logger does not already include INFO, include it.
                config.logger.setLevel(logging.INFO)
            config.logger.info(
                "Starting GDPopt version %s using %s algorithm"
                % (".".join(map(str, self.version())), config.strategy)
            )
            config.logger.info(
                """
If you use this software, you may cite the following:
- Implementation:
    Chen, Q; Johnson, ES; Siirola, JD; Grossmann, IE.
    Pyomo.GDP: Disjunctive Models in Python. 
    Proc. of the 13th Intl. Symposium on Process Systems Eng.
    San Diego, 2018.
- LOA algorithm:
    Türkay, M; Grossmann, IE.
    Logic-based MINLP algorithms for the optimal synthesis of process networks.
    Comp. and Chem. Eng. 1996, 20(8), 959–978.
    DOI: 10.1016/0098-1354(95)00219-7.
- GLOA algorithm:
    Lee, S; Grossmann, IE.
    A Global Optimization Algorithm for Nonconvex Generalized Disjunctive Programming and Applications to Process Systems
    Comp. and Chem. Eng. 2001, 25, 1675-1697.
    DOI: 10.1016/S0098-1354(01)00732-3
                """.strip()
            )
            solve_data.results.solver.name = 'GDPopt %s - %s' % (
                str(self.version()), config.strategy)

            solve_data.original_model = model
            solve_data.working_model = model.clone()
            GDPopt = solve_data.working_model.GDPopt_utils
            setup_results_object(solve_data, config)

            solve_data.current_strategy = config.strategy

            # Verify that objective has correct form
            process_objective(solve_data, config)

            # Save model initial values. These are used later to initialize NLP
            # subproblems.
            solve_data.initial_var_values = list(
                v.value for v in GDPopt.variable_list)
            solve_data.best_solution_found = None

            # Validate the model to ensure that GDPopt is able to solve it.
            if not model_is_valid(solve_data, config):
                return

            # Integer cuts exclude particular discrete decisions
            GDPopt.integer_cuts = ConstraintList(doc='integer cuts')

            # Feasible integer cuts exclude discrete realizations that have
            # been explored via an NLP subproblem. Depending on model
            # characteristics, the user may wish to revisit NLP subproblems
            # (with a different initialization, for example). Therefore, these
            # cuts are not enabled by default, unless the initial model has no
            # discrete decisions.

            # Note: these cuts will only exclude integer realizations that are
            # not already in the primary GDPopt_integer_cuts ConstraintList.
            GDPopt.no_backtracking = ConstraintList(
                doc='explored integer cuts')

            # Set up iteration counters
            solve_data.master_iteration = 0
            solve_data.mip_iteration = 0
            solve_data.nlp_iteration = 0

            # set up bounds
            solve_data.LB = float('-inf')
            solve_data.UB = float('inf')
            solve_data.iteration_log = {}

            # Flag indicating whether the solution improved in the past
            # iteration or not
            solve_data.feasible_solution_improved = False

            # Initialize the master problem
            with time_code(solve_data.timing, 'initialization'):
                GDPopt_initialize_master(solve_data, config)

            # Algorithm main loop
            with time_code(solve_data.timing, 'main loop'):
                GDPopt_iteration_loop(solve_data, config)

            if solve_data.best_solution_found is not None:
                # Update values in working model
                copy_var_list_values(
                    from_list=solve_data.best_solution_found.GDPopt_utils.variable_list,
                    to_list=GDPopt.variable_list,
                    config=config)
                # Update values in original model
                copy_var_list_values(
                    GDPopt.variable_list,
                    solve_data.original_model.GDPopt_utils.variable_list,
                    config)

            solve_data.results.problem.lower_bound = solve_data.LB
            solve_data.results.problem.upper_bound = solve_data.UB

        solve_data.results.solver.timing = solve_data.timing
        solve_data.results.solver.user_time = solve_data.timing.total
        solve_data.results.solver.wallclock_time = solve_data.timing.total

        solve_data.results.solver.iterations = solve_data.master_iteration

        return solve_data.results
示例#13
0
def build_model_size_report(model):
    """Build a model size report object."""
    report = ModelSizeReport()
    activated_disjunctions = ComponentSet()
    activated_disjuncts = ComponentSet()
    fixed_true_disjuncts = ComponentSet()
    activated_constraints = ComponentSet()
    activated_vars = ComponentSet()
    new_containers = (model, )

    while new_containers:
        new_activated_disjunctions = ComponentSet()
        new_activated_disjuncts = ComponentSet()
        new_fixed_true_disjuncts = ComponentSet()
        new_activated_constraints = ComponentSet()

        for container in new_containers:
            (next_activated_disjunctions, next_fixed_true_disjuncts,
             next_activated_disjuncts, next_activated_constraints
             ) = _process_activated_container(container)
            new_activated_disjunctions.update(next_activated_disjunctions)
            new_activated_disjuncts.update(next_activated_disjuncts)
            new_fixed_true_disjuncts.update(next_fixed_true_disjuncts)
            new_activated_constraints.update(next_activated_constraints)

        new_containers = ((new_activated_disjuncts - activated_disjuncts) |
                          (new_fixed_true_disjuncts - fixed_true_disjuncts))

        activated_disjunctions.update(new_activated_disjunctions)
        activated_disjuncts.update(new_activated_disjuncts)
        fixed_true_disjuncts.update(new_fixed_true_disjuncts)
        activated_constraints.update(new_activated_constraints)

    activated_vars.update(
        var for constr in new_activated_constraints
        for var in EXPR.identify_variables(constr.body, include_fixed=False))
    activated_vars.update(disj.indicator_var for disj in activated_disjuncts)

    report.activated = Container()
    report.activated.variables = len(activated_vars)
    report.activated.binary_variables = sum(1 for v in activated_vars
                                            if v.is_binary())
    report.activated.integer_variables = sum(1 for v in activated_vars
                                             if v.is_integer())
    report.activated.continuous_variables = sum(1 for v in activated_vars
                                                if v.is_continuous())
    report.activated.disjunctions = len(activated_disjunctions)
    report.activated.disjuncts = len(activated_disjuncts)
    report.activated.constraints = len(activated_constraints)
    report.activated.nonlinear_constraints = sum(
        1 for c in activated_constraints
        if c.body.polynomial_degree() not in (1, 0))

    report.overall = Container()
    block_like = (Block, Disjunct)
    all_vars = ComponentSet(
        model.component_data_objects(Var, descend_into=block_like))
    report.overall.variables = len(all_vars)
    report.overall.binary_variables = sum(1 for v in all_vars if v.is_binary())
    report.overall.integer_variables = sum(1 for v in all_vars
                                           if v.is_integer())
    report.overall.continuous_variables = sum(1 for v in all_vars
                                              if v.is_continuous())
    report.overall.disjunctions = sum(1 for d in model.component_data_objects(
        Disjunction, descend_into=block_like))
    report.overall.disjuncts = sum(1 for d in model.component_data_objects(
        Disjunct, descend_into=block_like))
    report.overall.constraints = sum(1 for c in model.component_data_objects(
        Constraint, descend_into=block_like))
    report.overall.nonlinear_constraints = sum(
        1 for c in model.component_data_objects(Constraint,
                                                descend_into=block_like)
        if c.body.polynomial_degree() not in (1, 0))

    report.warning = Container()
    report.warning.unassociated_disjuncts = sum(
        1 for d in model.component_data_objects(Disjunct,
                                                descend_into=block_like)
        if not d.indicator_var.fixed and d not in activated_disjuncts)

    return report
示例#14
0
"""Global registry"""
from datetime import datetime
from pathlib import Path

import yaml
from pyutilib.misc import Container

# Registries for the models and solvers
models = Container()
solvers = Container()
options = Container()

# Make output and runs directories, if they do not exist
runsdir = Path(__file__).parent.joinpath("output/runs/")
runsdir.mkdir(exist_ok=True, parents=True)
outputdir = Path(__file__).parent.joinpath("output/")

# File paths
runner_filepath = Path(__file__).parent.joinpath(
    "pysperf_job_runner.py").resolve()
runner_config_filename = "pysperf_job_runner.config"
job_result_filename = "pysperf_result.log"
job_start_filename = ".job_started.log"
job_stop_filename = ".job_stopped.log"
job_model_built_filename = ".job_model_built.log"
job_solve_done_filename = ".job_solve_done.log"
_internal_config_file = Path(__file__).parent.joinpath(
    '.internal.config.pfcache')
_model_cache_path = Path(__file__).parent.joinpath('model.info.pfcache')
run_config_filename = "run.config.pfdata"
示例#15
0
文件: GDPopt.py 项目: w601sxs/pyomo
    def solve(self, model, **kwds):
        """Solve the model.

        Warning: this solver is still in beta. Keyword arguments subject to
        change. Undocumented keyword arguments definitely subject to change.

        This function performs all of the GDPopt solver setup and problem
        validation. It then calls upon helper functions to construct the
        initial master approximation and iteration loop.

        Args:
            model (Block): a Pyomo model or block to be solved

        """
        config = self.CONFIG(kwds.pop('options', {}))
        config.set_value(kwds)
        solve_data = GDPoptSolveData()
        solve_data.results = SolverResults()
        solve_data.timing = Container()

        old_logger_level = config.logger.getEffectiveLevel()
        with time_code(solve_data.timing, 'total'), \
                restore_logger_level(config.logger), \
                create_utility_block(model, 'GDPopt_utils'):
            if config.tee and old_logger_level > logging.INFO:
                # If the logger does not already include INFO, include it.
                config.logger.setLevel(logging.INFO)
            config.logger.info("---Starting GDPopt---")

            solve_data.original_model = model

            solve_data.working_model = clone_orig_model_with_lists(model)
            GDPopt = solve_data.working_model.GDPopt_utils
            record_original_model_statistics(solve_data, config)

            solve_data.current_strategy = config.strategy

            # Reformulate integer variables to binary
            reformulate_integer_variables(solve_data.working_model, config)
            process_objective(solve_data, config)

            # Save ordered lists of main modeling components, so that data can
            # be easily transferred between future model clones.
            build_ordered_component_lists(solve_data.working_model)
            record_working_model_statistics(solve_data, config)
            solve_data.results.solver.name = 'GDPopt ' + str(self.version())

            # Save model initial values. These are used later to initialize NLP
            # subproblems.
            solve_data.initial_var_values = list(
                v.value for v in GDPopt.working_var_list)

            # Store the initial model state as the best solution found. If we
            # find no better solution, then we will restore from this copy.
            solve_data.best_solution_found = solve_data.initial_var_values

            # Validate the model to ensure that GDPopt is able to solve it.
            if not model_is_valid(solve_data, config):
                return

            # Maps in order to keep track of certain generated constraints
            GDPopt.oa_cut_map = ComponentMap()

            # Integer cuts exclude particular discrete decisions
            GDPopt.integer_cuts = ConstraintList(doc='integer cuts')

            # Feasible integer cuts exclude discrete realizations that have
            # been explored via an NLP subproblem. Depending on model
            # characteristics, the user may wish to revisit NLP subproblems
            # (with a different initialization, for example). Therefore, these
            # cuts are not enabled by default, unless the initial model has no
            # discrete decisions.

            # Note: these cuts will only exclude integer realizations that are
            # not already in the primary GDPopt_integer_cuts ConstraintList.
            GDPopt.no_backtracking = ConstraintList(
                doc='explored integer cuts')

            # Set up iteration counters
            solve_data.master_iteration = 0
            solve_data.mip_iteration = 0
            solve_data.nlp_iteration = 0

            # set up bounds
            solve_data.LB = float('-inf')
            solve_data.UB = float('inf')
            solve_data.iteration_log = {}

            # Flag indicating whether the solution improved in the past
            # iteration or not
            solve_data.feasible_solution_improved = False

            # Initialize the master problem
            with time_code(solve_data.timing, 'initialization'):
                GDPopt_initialize_master(solve_data, config)

            # Algorithm main loop
            with time_code(solve_data.timing, 'main loop'):
                GDPopt_iteration_loop(solve_data, config)

            # Update values in working model
            copy_var_list_values(from_list=solve_data.best_solution_found,
                                 to_list=GDPopt.working_var_list,
                                 config=config)
            GDPopt.objective_value.set_value(
                value(solve_data.working_objective_expr, exception=False))

            # Update values in original model
            copy_var_list_values(
                GDPopt.orig_var_list,
                solve_data.original_model.GDPopt_utils.orig_var_list, config)

            solve_data.results.problem.lower_bound = solve_data.LB
            solve_data.results.problem.upper_bound = solve_data.UB

        solve_data.results.solver.timing = solve_data.timing

        return solve_data.results
示例#16
0
    def solve(self, model, **kwds):
        config = self.CONFIG(kwds.pop('options', {}))
        config.set_value(kwds)
        return SolverFactory('gdpopt').solve(
            model,
            strategy='LBB',
            minlp_solver=config.solver,
            minlp_solver_args=config.solver_args,
            tee=config.tee,
            check_sat=config.check_sat,
            logger=config.logger,
            time_limit=config.time_limit)

        # Validate model to be used with gdpbb
        self.validate_model(model)
        # Set solver as an MINLP
        solve_data = GDPbbSolveData()
        solve_data.timing = Container()
        solve_data.original_model = model
        solve_data.results = SolverResults()

        old_logger_level = config.logger.getEffectiveLevel()
        with time_code(solve_data.timing, 'total', is_main_timer=True), \
                restore_logger_level(config.logger), \
                create_utility_block(model, 'GDPbb_utils', solve_data):
            if config.tee and old_logger_level > logging.INFO:
                # If the logger does not already include INFO, include it.
                config.logger.setLevel(logging.INFO)
            config.logger.info(
                "Starting GDPbb version %s using %s as subsolver" %
                (".".join(map(str, self.version())), config.solver))

            # Setup results
            solve_data.results.solver.name = 'GDPbb - %s' % (str(
                config.solver))
            setup_results_object(solve_data, config)

            # clone original model for root node of branch and bound
            root = solve_data.working_model = solve_data.original_model.clone()

            # get objective sense
            process_objective(solve_data, config)
            objectives = solve_data.original_model.component_data_objects(
                Objective, active=True)
            obj = next(objectives, None)
            solve_data.results.problem.sense = obj.sense

            # set up lists to keep track of which disjunctions have been covered.

            # this list keeps track of the relaxed disjunctions
            root.GDPbb_utils.unenforced_disjunctions = list(
                disjunction
                for disjunction in root.GDPbb_utils.disjunction_list
                if disjunction.active)

            root.GDPbb_utils.deactivated_constraints = ComponentSet([
                constr
                for disjunction in root.GDPbb_utils.unenforced_disjunctions
                for disjunct in disjunction.disjuncts
                for constr in disjunct.component_data_objects(ctype=Constraint,
                                                              active=True)
                if constr.body.polynomial_degree() not in (1, 0)
            ])
            # Deactivate nonlinear constraints in unenforced disjunctions
            for constr in root.GDPbb_utils.deactivated_constraints:
                constr.deactivate()

            # Add the BigM suffix if it does not already exist. Used later during nonlinear constraint activation.
            if not hasattr(root, 'BigM'):
                root.BigM = Suffix()

            # Pre-screen that none of the disjunctions are already predetermined due to the disjuncts being fixed
            # to True/False values.
            # TODO this should also be done within the loop, but we aren't handling it right now.
            # Should affect efficiency, but not correctness.
            root.GDPbb_utils.disjuncts_fixed_True = ComponentSet()
            # Only find top-level (non-nested) disjunctions
            for disjunction in root.component_data_objects(Disjunction,
                                                           active=True):
                fixed_true_disjuncts = [
                    disjunct for disjunct in disjunction.disjuncts
                    if disjunct.indicator_var.fixed
                    and disjunct.indicator_var.value == 1
                ]
                fixed_false_disjuncts = [
                    disjunct for disjunct in disjunction.disjuncts
                    if disjunct.indicator_var.fixed
                    and disjunct.indicator_var.value == 0
                ]
                for disjunct in fixed_false_disjuncts:
                    disjunct.deactivate()
                if len(fixed_false_disjuncts) == len(
                        disjunction.disjuncts) - 1:
                    # all but one disjunct in the disjunction is fixed to False. Remaining one must be true.
                    if not fixed_true_disjuncts:
                        fixed_true_disjuncts = [
                            disjunct for disjunct in disjunction.disjuncts
                            if disjunct not in fixed_false_disjuncts
                        ]
                # Reactivate the fixed-true disjuncts
                for disjunct in fixed_true_disjuncts:
                    newly_activated = ComponentSet()
                    for constr in disjunct.component_data_objects(Constraint):
                        if constr in root.GDPbb_utils.deactivated_constraints:
                            newly_activated.add(constr)
                            constr.activate()
                            # Set the big M value for the constraint
                            root.BigM[constr] = 1
                            # Note: we use a default big M value of 1
                            # because all non-selected disjuncts should be deactivated.
                            # Therefore, none of the big M transformed nonlinear constraints will need to be relaxed.
                            # The default M value should therefore be irrelevant.
                    root.GDPbb_utils.deactivated_constraints -= newly_activated
                    root.GDPbb_utils.disjuncts_fixed_True.add(disjunct)

                if fixed_true_disjuncts:
                    assert disjunction.xor, "GDPbb only handles disjunctions in which one term can be selected. " \
                        "%s violates this assumption." % (disjunction.name, )
                    root.GDPbb_utils.unenforced_disjunctions.remove(
                        disjunction)

            # Check satisfiability
            if config.check_sat and satisfiable(root, config.logger) is False:
                # Problem is not satisfiable. Problem is infeasible.
                obj_value = obj_sign * float('inf')
            else:
                # solve the root node
                config.logger.info("Solving the root node.")
                obj_value, result, var_values = self.subproblem_solve(
                    root, config)

            if obj_sign * obj_value == float('inf'):
                config.logger.info(
                    "Model was found to be infeasible at the root node. Elapsed %.2f seconds."
                    % get_main_elapsed_time(solve_data.timing))
                if solve_data.results.problem.sense == minimize:
                    solve_data.results.problem.lower_bound = float('inf')
                    solve_data.results.problem.upper_bound = None
                else:
                    solve_data.results.problem.lower_bound = None
                    solve_data.results.problem.upper_bound = float('-inf')
                solve_data.results.solver.timing = solve_data.timing
                solve_data.results.solver.iterations = 0
                solve_data.results.solver.termination_condition = tc.infeasible
                return solve_data.results

            # initialize minheap for Branch and Bound algorithm
            # Heap structure: (ordering tuple, model)
            # Ordering tuple: (objective value, disjunctions_left, -total_nodes_counter)
            #  - select solutions with lower objective value,
            #    then fewer disjunctions left to explore (depth first),
            #    then more recently encountered (tiebreaker)
            heap = []
            total_nodes_counter = 0
            disjunctions_left = len(root.GDPbb_utils.unenforced_disjunctions)
            heapq.heappush(heap,
                           ((obj_sign * obj_value, disjunctions_left,
                             -total_nodes_counter), root, result, var_values))

            # loop to branch through the tree
            while len(heap) > 0:
                # pop best model off of heap
                sort_tuple, incumbent_model, incumbent_results, incumbent_var_values = heapq.heappop(
                    heap)
                incumbent_obj_value, disjunctions_left, _ = sort_tuple

                config.logger.info(
                    "Exploring node with LB %.10g and %s inactive disjunctions."
                    % (incumbent_obj_value, disjunctions_left))

                # if all the originally active disjunctions are active, solve and
                # return solution
                if disjunctions_left == 0:
                    config.logger.info("Model solved.")
                    # Model is solved. Copy over solution values.
                    original_model = solve_data.original_model
                    for orig_var, val in zip(
                            original_model.GDPbb_utils.variable_list,
                            incumbent_var_values):
                        orig_var.value = val

                    solve_data.results.problem.lower_bound = incumbent_results.problem.lower_bound
                    solve_data.results.problem.upper_bound = incumbent_results.problem.upper_bound
                    solve_data.results.solver.timing = solve_data.timing
                    solve_data.results.solver.iterations = total_nodes_counter
                    solve_data.results.solver.termination_condition = incumbent_results.solver.termination_condition
                    return solve_data.results

                # Pick the next disjunction to branch on
                next_disjunction = incumbent_model.GDPbb_utils.unenforced_disjunctions[
                    0]
                config.logger.info("Branching on disjunction %s" %
                                   next_disjunction.name)
                assert next_disjunction.xor, "GDPbb only handles disjunctions in which one term can be selected. " \
                    "%s violates this assumption." % (next_disjunction.name, )

                new_nodes_counter = 0

                for i, disjunct in enumerate(next_disjunction.disjuncts):
                    # Create one branch for each of the disjuncts on the disjunction

                    if any(disj.indicator_var.fixed
                           and disj.indicator_var.value == 1
                           for disj in next_disjunction.disjuncts
                           if disj is not disjunct):
                        # If any other disjunct is fixed to 1 and an xor relationship applies,
                        # then this disjunct cannot be activated.
                        continue

                    # Check time limit
                    if get_main_elapsed_time(
                            solve_data.timing) >= config.time_limit:
                        if solve_data.results.problem.sense == minimize:
                            solve_data.results.problem.lower_bound = incumbent_obj_value
                            solve_data.results.problem.upper_bound = float(
                                'inf')
                        else:
                            solve_data.results.problem.lower_bound = float(
                                '-inf')
                            solve_data.results.problem.upper_bound = incumbent_obj_value
                        config.logger.info('GDPopt unable to converge bounds '
                                           'before time limit of {} seconds. '
                                           'Elapsed: {} seconds'.format(
                                               config.time_limit,
                                               get_main_elapsed_time(
                                                   solve_data.timing)))
                        config.logger.info(
                            'Final bound values: LB: {}  UB: {}'.format(
                                solve_data.results.problem.lower_bound,
                                solve_data.results.problem.upper_bound))
                        solve_data.results.solver.timing = solve_data.timing
                        solve_data.results.solver.iterations = total_nodes_counter
                        solve_data.results.solver.termination_condition = tc.maxTimeLimit
                        return solve_data.results

                    # Branch on the disjunct
                    child = incumbent_model.clone()
                    # TODO I am leaving the old branching system in place, but there should be
                    # something better, ideally that deals with nested disjunctions as well.
                    disjunction_to_branch = child.GDPbb_utils.unenforced_disjunctions.pop(
                        0)
                    child_disjunct = disjunction_to_branch.disjuncts[i]
                    child_disjunct.indicator_var.fix(1)
                    # Deactivate (and fix to 0) other disjuncts on the disjunction
                    for disj in disjunction_to_branch.disjuncts:
                        if disj is not child_disjunct:
                            disj.deactivate()
                    # Activate nonlinear constraints on the newly fixed child disjunct
                    newly_activated = ComponentSet()
                    for constr in child_disjunct.component_data_objects(
                            Constraint):
                        if constr in child.GDPbb_utils.deactivated_constraints:
                            newly_activated.add(constr)
                            constr.activate()
                            # Set the big M value for the constraint
                            child.BigM[constr] = 1
                            # Note: we use a default big M value of 1
                            # because all non-selected disjuncts should be deactivated.
                            # Therefore, none of the big M transformed nonlinear constraints will need to be relaxed.
                            # The default M value should therefore be irrelevant.
                    child.GDPbb_utils.deactivated_constraints -= newly_activated
                    child.GDPbb_utils.disjuncts_fixed_True.add(child_disjunct)

                    if disjunct in incumbent_model.GDPbb_utils.disjuncts_fixed_True:
                        # If the disjunct was already branched to True from a parent disjunct branching, just pass
                        # through the incumbent value without resolving. The solution should be the same as the parent.
                        total_nodes_counter += 1
                        ordering_tuple = (obj_sign * incumbent_obj_value,
                                          disjunctions_left - 1,
                                          -total_nodes_counter)
                        heapq.heappush(heap, (ordering_tuple, child, result,
                                              incumbent_var_values))
                        new_nodes_counter += 1
                        continue

                    if config.check_sat and satisfiable(
                            child, config.logger) is False:
                        # Problem is not satisfiable. Skip this disjunct.
                        continue

                    obj_value, result, var_values = self.subproblem_solve(
                        child, config)
                    total_nodes_counter += 1
                    ordering_tuple = (obj_sign * obj_value,
                                      disjunctions_left - 1,
                                      -total_nodes_counter)
                    heapq.heappush(heap,
                                   (ordering_tuple, child, result, var_values))
                    new_nodes_counter += 1

                config.logger.info(
                    "Added %s new nodes with %s relaxed disjunctions to the heap. Size now %s."
                    % (new_nodes_counter, disjunctions_left - 1, len(heap)))
示例#17
0
import yaml
from pyutilib.misc import Container

from .model_types import ModelType
from pysperf.model_library import models
from pysperf.solver_library import solvers
from .config import (
    cache_internal_options_to_file,
    options,
    run_config_filename,
    runner_filepath,
    runsdir,
)

this_run_config = Container()


def _write_run_config(this_run_dir: Path):
    config_to_store = Container(**this_run_config)
    if 'jobs_failed' in config_to_store:
        config_to_store.jobs_failed = [
            (model, solver) for model, solver in config_to_store.jobs_failed
        ]
    if 'jobs_run' in config_to_store:
        config_to_store.jobs_run = [
            (model, solver) for model, solver in config_to_store.jobs_run
        ]
    with this_run_dir.joinpath(run_config_filename).open('w') as runinfofile:
        yaml.safe_dump(dict(**config_to_store), runinfofile)
示例#18
0
    def solve(self, model, **kwds):
        """Solve the model.
        Warning: this solver is still in beta. Keyword arguments subject to
        change. Undocumented keyword arguments definitely subject to change.
        Warning: at this point in time, if you try to use PSC or GBD with
        anything other than IPOPT as the NLP solver, bad things will happen.
        This is because the suffixes are not in place to extract dual values
        from the variable bounds for any other solver.
        TODO: fix needed with the GBD implementation.
        Args:
            model (Block): a Pyomo model or block to be solved
        """
        config = self.CONFIG(kwds.pop('options', {}))
        config.set_value(kwds)

        # configuration confirmation
        if config.single_tree:
            config.iteration_limit = 1
            config.add_slack = False
            config.add_nogood_cuts = False
            config.mip_solver = 'cplex_persistent'
            config.logger.info(
                "Single tree implementation is activated. The defalt MIP solver is 'cplex_persistent'"
            )
        # if the slacks fix to zero, just don't add them
        if config.max_slack == 0.0:
            config.add_slack = False

        if config.strategy == "GOA":
            config.add_nogood_cuts = True
            config.add_slack = True
            config.use_mcpp = True
            config.integer_to_binary = True
            config.use_dual = False
            config.use_fbbt = True

        if config.nlp_solver == "baron":
            config.use_dual = False
        # if ecp tolerance is not provided use bound tolerance
        if config.ecp_tolerance is None:
            config.ecp_tolerance = config.bound_tolerance

        # if the objective function is a constant, dual bound constraint is not added.
        obj = next(model.component_data_objects(ctype=Objective, active=True))
        if obj.expr.polynomial_degree() == 0:
            config.use_dual_bound = False

        solve_data = MindtPySolveData()
        solve_data.results = SolverResults()
        solve_data.timing = Container()
        solve_data.curr_int_sol = []
        solve_data.prev_int_sol = []

        if config.use_fbbt:
            fbbt(model)
            config.logger.info(
                "Use the fbbt to tighten the bounds of variables")

        solve_data.original_model = model
        solve_data.working_model = model.clone()
        if config.integer_to_binary:
            TransformationFactory('contrib.integer_to_binary'). \
                apply_to(solve_data.working_model)

        new_logging_level = logging.INFO if config.tee else None
        with time_code(solve_data.timing, 'total', is_main_timer=True), \
                lower_logger_level_to(config.logger, new_logging_level), \
                create_utility_block(solve_data.working_model, 'MindtPy_utils', solve_data):
            config.logger.info("---Starting MindtPy---")

            MindtPy = solve_data.working_model.MindtPy_utils
            setup_results_object(solve_data, config)
            process_objective(solve_data, config, use_mcpp=config.use_mcpp)

            # Save model initial values.
            solve_data.initial_var_values = list(
                v.value for v in MindtPy.variable_list)

            # Store the initial model state as the best solution found. If we
            # find no better solution, then we will restore from this copy.
            solve_data.best_solution_found = None
            solve_data.best_solution_found_time = None

            # Record solver name
            solve_data.results.solver.name = 'MindtPy' + str(config.strategy)

            # Validate the model to ensure that MindtPy is able to solve it.
            if not model_is_valid(solve_data, config):
                return

            # Create a model block in which to store the generated feasibility
            # slack constraints. Do not leave the constraints on by default.
            feas = MindtPy.MindtPy_feas = Block()
            feas.deactivate()
            feas.feas_constraints = ConstraintList(
                doc='Feasibility Problem Constraints')

            # Create a model block in which to store the generated linear
            # constraints. Do not leave the constraints on by default.
            lin = MindtPy.MindtPy_linear_cuts = Block()
            lin.deactivate()

            # Integer cuts exclude particular discrete decisions
            lin.integer_cuts = ConstraintList(doc='integer cuts')
            # Feasible integer cuts exclude discrete realizations that have
            # been explored via an NLP subproblem. Depending on model
            # characteristics, the user may wish to revisit NLP subproblems
            # (with a different initialization, for example). Therefore, these
            # cuts are not enabled by default.
            #
            # Note: these cuts will only exclude integer realizations that are
            # not already in the primary integer_cuts ConstraintList.
            lin.feasible_integer_cuts = ConstraintList(
                doc='explored integer cuts')
            lin.feasible_integer_cuts.deactivate()

            # Set up iteration counters
            solve_data.nlp_iter = 0
            solve_data.mip_iter = 0
            solve_data.mip_subiter = 0

            # set up bounds
            solve_data.LB = float('-inf')
            solve_data.UB = float('inf')
            solve_data.LB_progress = [solve_data.LB]
            solve_data.UB_progress = [solve_data.UB]
            if config.single_tree and config.add_nogood_cuts:
                solve_data.stored_bound = {}
            if config.strategy == 'GOA' and config.add_nogood_cuts:
                solve_data.num_no_good_cuts_added = {}

            # Set of NLP iterations for which cuts were generated
            lin.nlp_iters = Set(dimen=1)

            # Set of MIP iterations for which cuts were generated in ECP
            lin.mip_iters = Set(dimen=1)

            if config.feasibility_norm == 'L1' or config.feasibility_norm == 'L2':
                feas.nl_constraint_set = Set(
                    initialize=[
                        i
                        for i, constr in enumerate(MindtPy.constraint_list, 1)
                        if constr.body.polynomial_degree() not in (1, 0)
                    ],
                    doc="Integer index set over the nonlinear constraints."
                    "The set corresponds to the index of nonlinear constraint in constraint_set"
                )
                # Create slack variables for feasibility problem
                feas.slack_var = Var(feas.nl_constraint_set,
                                     domain=NonNegativeReals,
                                     initialize=1)
            else:
                feas.slack_var = Var(domain=NonNegativeReals, initialize=1)

            # Create slack variables for OA cuts
            if config.add_slack:
                lin.slack_vars = VarList(bounds=(0, config.max_slack),
                                         initialize=0,
                                         domain=NonNegativeReals)

            # Flag indicating whether the solution improved in the past
            # iteration or not
            solve_data.solution_improved = False

            if config.nlp_solver == 'ipopt':
                if not hasattr(solve_data.working_model, 'ipopt_zL_out'):
                    solve_data.working_model.ipopt_zL_out = Suffix(
                        direction=Suffix.IMPORT)
                if not hasattr(solve_data.working_model, 'ipopt_zU_out'):
                    solve_data.working_model.ipopt_zU_out = Suffix(
                        direction=Suffix.IMPORT)

            # Initialize the master problem
            with time_code(solve_data.timing, 'initialization'):
                MindtPy_initialize_master(solve_data, config)

            # Algorithm main loop
            with time_code(solve_data.timing, 'main loop'):
                MindtPy_iteration_loop(solve_data, config)

            if solve_data.best_solution_found is not None:
                # Update values in original model
                copy_var_list_values(from_list=solve_data.best_solution_found.
                                     MindtPy_utils.variable_list,
                                     to_list=MindtPy.variable_list,
                                     config=config)
                # MindtPy.objective_value.set_value(
                #     value(solve_data.working_objective_expr, exception=False))
                copy_var_list_values(
                    MindtPy.variable_list,
                    solve_data.original_model.component_data_objects(Var),
                    config)

            solve_data.results.problem.lower_bound = solve_data.LB
            solve_data.results.problem.upper_bound = solve_data.UB

        solve_data.results.solver.timing = solve_data.timing
        solve_data.results.solver.user_time = solve_data.timing.total
        solve_data.results.solver.wallclock_time = solve_data.timing.total

        solve_data.results.solver.iterations = solve_data.mip_iter
        solve_data.results.solver.best_solution_found_time = solve_data.best_solution_found_time

        if config.single_tree:
            solve_data.results.solver.num_nodes = solve_data.nlp_iter - \
                (1 if config.init_strategy == 'rNLP' else 0)

        return solve_data.results
示例#19
0
    def solve(self, model, **kwds):
        """Solve the model.
        Warning: this solver is still in beta. Keyword arguments subject to
        change. Undocumented keyword arguments definitely subject to change.
        Warning: at this point in time, if you try to use PSC or GBD with
        anything other than IPOPT as the NLP solver, bad things will happen.
        This is because the suffixes are not in place to extract dual values
        from the variable bounds for any other solver.
        TODO: fix needed with the GBD implementation.
        Args:
            model (Block): a Pyomo model or block to be solved
        """
        config = self.CONFIG(kwds.pop('options', {}))
        config.set_value(kwds)
        solve_data = MindtPySolveData()
        solve_data.results = SolverResults()
        solve_data.timing = Container()

        solve_data.original_model = model
        solve_data.working_model = model.clone()
        if config.integer_to_binary:
            TransformationFactory('contrib.integer_to_binary'). \
                apply_to(solve_data.working_model)

        new_logging_level = logging.INFO if config.tee else None
        with time_code(solve_data.timing, 'total', is_main_timer=True), \
             lower_logger_level_to(config.logger, new_logging_level), \
             create_utility_block(solve_data.working_model, 'MindtPy_utils', solve_data):
            config.logger.info("---Starting MindtPy---")

            MindtPy = solve_data.working_model.MindtPy_utils
            setup_results_object(solve_data, config)
            process_objective(solve_data, config)

            # Save model initial values.
            solve_data.initial_var_values = list(
                v.value for v in MindtPy.variable_list)

            # Store the initial model state as the best solution found. If we
            # find no better solution, then we will restore from this copy.
            solve_data.best_solution_found = None

            # Record solver name
            solve_data.results.solver.name = 'MindtPy' + str(config.strategy)

            # Validate the model to ensure that MindtPy is able to solve it.
            if not model_is_valid(solve_data, config):
                return

            # Create a model block in which to store the generated feasibility
            # slack constraints. Do not leave the constraints on by default.
            feas = MindtPy.MindtPy_feas = Block()
            feas.deactivate()
            feas.feas_constraints = ConstraintList(
                doc='Feasibility Problem Constraints')

            # Create a model block in which to store the generated linear
            # constraints. Do not leave the constraints on by default.
            lin = MindtPy.MindtPy_linear_cuts = Block()
            lin.deactivate()

            # Integer cuts exclude particular discrete decisions
            lin.integer_cuts = ConstraintList(doc='integer cuts')
            # Feasible integer cuts exclude discrete realizations that have
            # been explored via an NLP subproblem. Depending on model
            # characteristics, the user may wish to revisit NLP subproblems
            # (with a different initialization, for example). Therefore, these
            # cuts are not enabled by default.
            #
            # Note: these cuts will only exclude integer realizations that are
            # not already in the primary integer_cuts ConstraintList.
            lin.feasible_integer_cuts = ConstraintList(
                doc='explored integer cuts')
            lin.feasible_integer_cuts.deactivate()

            # Set up iteration counters
            solve_data.nlp_iter = 0
            solve_data.mip_iter = 0
            solve_data.mip_subiter = 0

            # set up bounds
            solve_data.LB = float('-inf')
            solve_data.UB = float('inf')
            solve_data.LB_progress = [solve_data.LB]
            solve_data.UB_progress = [solve_data.UB]

            # Set of NLP iterations for which cuts were generated
            lin.nlp_iters = Set(dimen=1)

            # Set of MIP iterations for which cuts were generated in ECP
            lin.mip_iters = Set(dimen=1)

            nonlinear_constraints = [
                c for c in MindtPy.constraint_list
                if c.body.polynomial_degree() not in (1, 0)
            ]
            lin.nl_constraint_set = RangeSet(
                len(nonlinear_constraints),
                doc="Integer index set over the nonlinear constraints")
            feas.constraint_set = RangeSet(
                len(MindtPy.constraint_list),
                doc="integer index set over the constraints")

            # # Mapping Constraint -> integer index
            # MindtPy.feas_map = {}
            # # Mapping integer index -> Constraint
            # MindtPy.feas_inverse_map = {}
            # # Generate the two maps. These maps may be helpful for later
            # # interpreting indices on the slack variables or generated cuts.
            # for c, n in zip(MindtPy.constraint_list, feas.constraint_set):
            #     MindtPy.feas_map[c] = n
            #     MindtPy.feas_inverse_map[n] = c

            # Create slack variables for OA cuts
            lin.slack_vars = VarList(bounds=(0, config.max_slack),
                                     initialize=0,
                                     domain=NonNegativeReals)
            # Create slack variables for feasibility problem
            feas.slack_var = Var(feas.constraint_set,
                                 domain=NonNegativeReals,
                                 initialize=1)

            # Flag indicating whether the solution improved in the past
            # iteration or not
            solve_data.solution_improved = False

            if not hasattr(solve_data.working_model, 'ipopt_zL_out'):
                solve_data.working_model.ipopt_zL_out = Suffix(
                    direction=Suffix.IMPORT)
            if not hasattr(solve_data.working_model, 'ipopt_zU_out'):
                solve_data.working_model.ipopt_zU_out = Suffix(
                    direction=Suffix.IMPORT)

            # Initialize the master problem
            with time_code(solve_data.timing, 'initialization'):
                MindtPy_initialize_master(solve_data, config)

            # Algorithm main loop
            with time_code(solve_data.timing, 'main loop'):
                MindtPy_iteration_loop(solve_data, config)

            if solve_data.best_solution_found is not None:
                # Update values in original model
                copy_var_list_values(from_list=solve_data.best_solution_found.
                                     MindtPy_utils.variable_list,
                                     to_list=MindtPy.variable_list,
                                     config=config)
                # MindtPy.objective_value.set_value(
                #     value(solve_data.working_objective_expr, exception=False))
                copy_var_list_values(
                    MindtPy.variable_list,
                    solve_data.original_model.component_data_objects(Var),
                    config)

            solve_data.results.problem.lower_bound = solve_data.LB
            solve_data.results.problem.upper_bound = solve_data.UB

        solve_data.results.solver.timing = solve_data.timing
        solve_data.results.solver.user_time = solve_data.timing.total
        solve_data.results.solver.wallclock_time = solve_data.timing.total

        solve_data.results.solver.iterations = solve_data.mip_iter

        return solve_data.results
示例#20
0
def run_command(command=None,
                parser=None,
                args=None,
                name='unknown',
                data=None,
                options=None):
    """
    Execute a function that processes command-line arguments and
    then calls a command-line driver.

    This function provides a generic facility for executing a command
    function is rather generic.  This function is segregated from
    the driver to enable profiling of the command-line execution.

    Required:
        command:    The name of a function that will be executed to perform process the command-line
                    options with a parser object.
        parser:     The parser object that is used by the command-line function.

    Optional:
        options:    If this is not None, then ignore the args option and use
                    this to specify command options.
        args:       Command-line arguments that are parsed.  If this value is `None`, then the
                    arguments in `sys.argv` are used to parse the command-line.
        name:       Specifying the name of the command-line (for error messages).
        data:       A container of labeled data.

    Returned:
        retval:     Return values from the command-line execution.
        errorcode:  0 if Pyomo ran successfully
    """
    #
    #
    # Parse command-line options
    #
    #
    retval = None
    errorcode = 0
    if options is None:
        try:
            if type(args) is argparse.Namespace:
                _options = args
            else:
                _options = parser.parse_args(args=args)
            # Replace the parser options object with a pyutilib.misc.Options object
            options = pyutilib.misc.Options()
            for key in dir(_options):
                if key[0] != '_':
                    val = getattr(_options, key)
                    if not isinstance(val, types.MethodType):
                        options[key] = val
        except SystemExit:
            # the parser throws a system exit if "-h" is specified - catch
            # it to exit gracefully.
            return Container(retval=retval, errorcode=errorcode)
    #
    # Configure loggers
    #
    configure_loggers(options=options)
    #
    # Setup I/O redirect to a file
    #
    logfile = options.runtime.logfile
    if not logfile is None:
        pyutilib.misc.setup_redirect(logfile)
    #
    # Call the main Pyomo runner with profiling
    #
    TempfileManager.push()
    pcount = options.runtime.profile_count
    if pcount > 0:
        if not pstats_available:
            if not logfile is None:
                pyutilib.misc.reset_redirect()
            msg = "Cannot use the 'profile' option.  The Python 'pstats' "    \
                  'package cannot be imported!'
            raise ValueError(msg)
        tfile = TempfileManager.create_tempfile(suffix=".profile")
        tmp = profile.runctx(
            command.__name__ + '(options=options,parser=parser)',
            command.__globals__, locals(), tfile)
        p = pstats.Stats(tfile).strip_dirs()
        p.sort_stats('time', 'cumulative')
        p = p.print_stats(pcount)
        p.print_callers(pcount)
        p.print_callees(pcount)
        p = p.sort_stats('cumulative', 'calls')
        p.print_stats(pcount)
        p.print_callers(pcount)
        p.print_callees(pcount)
        p = p.sort_stats('calls')
        p.print_stats(pcount)
        p.print_callers(pcount)
        p.print_callees(pcount)
        retval = tmp
    else:
        #
        # Call the main Pyomo runner without profiling
        #
        TempfileManager.push()
        try:
            retval = command(options=options, parser=parser)
        except SystemExit:
            err = sys.exc_info()[1]
            #
            # If debugging is enabled or the 'catch' option is specified, then
            # exit.  Otherwise, print an "Exiting..." message.
            #
            if __debug__ and (options.runtime.logging == 'debug'
                              or options.runtime.catch_errors):
                sys.exit(0)
            print('Exiting %s: %s' % (name, str(err)))
            errorcode = err.code
        except Exception:
            err = sys.exc_info()[1]
            #
            # If debugging is enabled or the 'catch' option is specified, then
            # pass the exception up the chain (to pyomo_excepthook)
            #
            if __debug__ and (options.runtime.logging == 'debug'
                              or options.runtime.catch_errors):
                if not logfile is None:
                    pyutilib.misc.reset_redirect()
                TempfileManager.pop(remove=not options.runtime.keep_files)
                raise

            if not options.model is None and not options.model.save_file is None:
                model = "model " + options.model.save_file
            else:
                model = "model"

            global filter_excepthook
            if filter_excepthook:
                action = "loading"
            else:
                action = "running"

            msg = "Unexpected exception while %s %s:\n" % (action, model)
            #
            # This handles the case where the error is propagated by a KeyError.
            # KeyError likes to pass raw strings that don't handle newlines
            # (they translate "\n" to "\\n"), as well as tacking on single
            # quotes at either end of the error message. This undoes all that.
            #
            errStr = str(err)
            if type(err) == KeyError and errStr != "None":
                errStr = str(err).replace(r"\n", "\n")[1:-1]

            logging.getLogger('pyomo.core').error(msg + errStr)
            errorcode = 1

    if not logfile is None:
        pyutilib.misc.reset_redirect()

    if options.runtime.disable_gc:
        gc.enable()
    TempfileManager.pop(remove=not options.runtime.keep_files)
    return Container(retval=retval, errorcode=errorcode)
示例#21
0
    def solve(self, model, **kwds):
        config = self.CONFIG(kwds.pop('options', {}))
        config.set_value(kwds)

        # Validate model to be used with gdpbb
        self.validate_model(model)
        # Set solver as an MINLP
        solver = SolverFactory(config.solver)
        solve_data = GDPbbSolveData()
        solve_data.timing = Container()
        solve_data.original_model = model
        solve_data.results = SolverResults()

        old_logger_level = config.logger.getEffectiveLevel()
        with time_code(solve_data.timing, 'total'), \
                restore_logger_level(config.logger), \
                create_utility_block(model, 'GDPbb_utils', solve_data):
            if config.tee and old_logger_level > logging.INFO:
                # If the logger does not already include INFO, include it.
                config.logger.setLevel(logging.INFO)
            config.logger.info(
                "Starting GDPbb version %s using %s as subsolver" %
                (".".join(map(str, self.version())), config.solver))

            # Setup results
            solve_data.results.solver.name = 'GDPbb - %s' % (str(
                config.solver))
            setup_results_object(solve_data, config)
            # Initialize list containing indicator vars for reupdating model after solving
            indicator_list_name = unique_component_name(
                model, "_indicator_list")
            indicator_vars = []
            for disjunction in model.component_data_objects(ctype=Disjunction,
                                                            active=True):
                for disjunct in disjunction.disjuncts:
                    indicator_vars.append(disjunct.indicator_var)
            setattr(model, indicator_list_name, indicator_vars)

            # get objective sense
            objectives = model.component_data_objects(Objective, active=True)
            obj = next(objectives, None)
            obj_sign = 1 if obj.sense == minimize else -1
            solve_data.results.problem.sense = obj.sense
            # clone original model for root node of branch and bound
            root = model.clone()

            # set up lists to keep track of which disjunctions have been covered.

            # this list keeps track of the original disjunctions that were active and are soon to be inactive
            root.GDPbb_utils.unenforced_disjunctions = list(
                disjunction
                for disjunction in root.GDPbb_utils.disjunction_list
                if disjunction.active)

            # this list keeps track of the disjunctions that have been activated by the branch and bound
            root.GDPbb_utils.curr_active_disjunctions = []

            # deactivate all disjunctions in the model
            # self.indicate(root)
            for djn in root.GDPbb_utils.unenforced_disjunctions:
                djn.deactivate()
            # Deactivate all disjuncts in model. To be reactivated when disjunction
            # is reactivated.
            for disj in root.component_data_objects(Disjunct, active=True):
                disj._deactivate_without_fixing_indicator()

            # Satisfiability check would go here

            # solve the root node
            config.logger.info("Solving the root node.")
            obj_value, result, _ = self.subproblem_solve(root, solver, config)

            # initialize minheap for Branch and Bound algorithm
            # Heap structure: (ordering tuple, model)
            # Ordering tuple: (objective value, disjunctions_left, -counter)
            #  - select solutions with lower objective value,
            #    then fewer disjunctions left to explore (depth first),
            #    then more recently encountered (tiebreaker)
            heap = []
            counter = 0
            disjunctions_left = len(root.GDPbb_utils.unenforced_disjunctions)
            heapq.heappush(
                heap, ((obj_sign * obj_value, disjunctions_left, -counter),
                       root, result, root.GDPbb_utils.variable_list))
            # loop to branch through the tree
            while len(heap) > 0:
                # pop best model off of heap
                sort_tup, mdl, mdl_results, vars = heapq.heappop(heap)
                old_obj_val, disjunctions_left, _ = sort_tup
                config.logger.info(
                    "Exploring node with LB %.10g and %s inactive disjunctions."
                    % (old_obj_val, disjunctions_left))

                # if all the originally active disjunctions are active, solve and
                # return solution
                if disjunctions_left == 0:
                    config.logger.info("Model solved.")
                    # Model is solved. Copy over solution values.
                    for orig_var, soln_var in zip(
                            model.GDPbb_utils.variable_list, vars):
                        orig_var.value = soln_var.value

                    solve_data.results.problem.lower_bound = mdl_results.problem.lower_bound
                    solve_data.results.problem.upper_bound = mdl_results.problem.upper_bound
                    solve_data.results.solver.timing = solve_data.timing
                    solve_data.results.solver.termination_condition = mdl_results.solver.termination_condition
                    return solve_data.results

                next_disjunction = mdl.GDPbb_utils.unenforced_disjunctions.pop(
                    0)
                config.logger.info("Activating disjunction %s" %
                                   next_disjunction.name)
                next_disjunction.activate()
                mdl.GDPbb_utils.curr_active_disjunctions.append(
                    next_disjunction)
                djn_left = len(mdl.GDPbb_utils.unenforced_disjunctions)
                for disj in next_disjunction.disjuncts:
                    disj._activate_without_unfixing_indicator()
                    if not disj.indicator_var.fixed:
                        disj.indicator_var = 0  # initially set all indicator vars to zero
                added_disj_counter = 0
                for disj in next_disjunction.disjuncts:
                    if not disj.indicator_var.fixed:
                        disj.indicator_var = 1
                    mnew = mdl.clone()
                    if not disj.indicator_var.fixed:
                        disj.indicator_var = 0

                    # Check feasibility
                    if config.check_sat and satisfiable(
                            mnew, config.logger) is False:
                        # problem is not satisfiable. Skip this disjunct.
                        continue

                    obj_value, result, vars = self.subproblem_solve(
                        mnew, solver, config)
                    counter += 1
                    ordering_tuple = (obj_sign * obj_value, djn_left, -counter)
                    heapq.heappush(heap, (ordering_tuple, mnew, result, vars))
                    added_disj_counter = added_disj_counter + 1
                config.logger.info(
                    "Added %s new nodes with %s relaxed disjunctions to the heap. Size now %s."
                    % (added_disj_counter, djn_left, len(heap)))
示例#22
0
def run_pyomo(options=Options(), parser=None):
    data = Options(options=options)

    if options.model.filename == '':
        parser.print_help()
        return Container()

    try:
        pyomo.scripting.util.setup_environment(data)

        pyomo.scripting.util.apply_preprocessing(data, parser=parser)
    except:
        # TBD: I should be able to call this function in the case of
        #      an exception to perform cleanup. However, as it stands
        #      calling finalize with its default keyword value for
        #      model(=None) results in an a different error related to
        #      task port values.  Not sure how to interpret that.
        pyomo.scripting.util.finalize(data,
                                      model=ConcreteModel(),
                                      instance=None,
                                      results=None)
        raise
    else:
        if data.error:
            # TBD: I should be able to call this function in the case of
            #      an exception to perform cleanup. However, as it stands
            #      calling finalize with its default keyword value for
            #      model(=None) results in an a different error related to
            #      task port values.  Not sure how to interpret that.
            pyomo.scripting.util.finalize(data,
                                          model=ConcretModel(),
                                          instance=None,
                                          results=None)
            return Container()  #pragma:nocover

    try:
        model_data = pyomo.scripting.util.create_model(data)
    except:
        # TBD: I should be able to call this function in the case of
        #      an exception to perform cleanup. However, as it stands
        #      calling finalize with its default keyword value for
        #      model(=None) results in an a different error related to
        #      task port values.  Not sure how to interpret that.
        pyomo.scripting.util.finalize(data,
                                      model=ConcreteModel(),
                                      instance=None,
                                      results=None)
        raise
    else:
        if (((not options.runtime.logging == 'debug') and \
             options.model.save_file) or \
            options.runtime.only_instance):
            pyomo.scripting.util.finalize(data,
                                          model=model_data.model,
                                          instance=model_data.instance,
                                          results=None)
            return Container(instance=model_data.instance)

    try:
        opt_data = pyomo.scripting.util.apply_optimizer(
            data, instance=model_data.instance)

        pyomo.scripting.util.process_results(data,
                                             instance=model_data.instance,
                                             results=opt_data.results,
                                             opt=opt_data.opt)

        pyomo.scripting.util.apply_postprocessing(data,
                                                  instance=model_data.instance,
                                                  results=opt_data.results)
    except:
        # TBD: I should be able to call this function in the case of
        #      an exception to perform cleanup. However, as it stands
        #      calling finalize with its default keyword value for
        #      model(=None) results in an a different error related to
        #      task port values.  Not sure how to interpret that.
        pyomo.scripting.util.finalize(data,
                                      model=ConcreteModel(),
                                      instance=None,
                                      results=None)
        raise
    else:
        pyomo.scripting.util.finalize(data,
                                      model=model_data.model,
                                      instance=model_data.instance,
                                      results=opt_data.results)

        return Container(options=options,
                         instance=model_data.instance,
                         results=opt_data.results,
                         local=opt_data.local)
示例#23
0
def export_to_excel(run_number: Optional[int] = None):
    this_run_dir = get_run_dir(run_number)
    _load_run_config(this_run_dir)
    excel_columns = [
        "time", "model", "solver", "LB", "UB", "elapsed", "iterations", "tc",
        "sense", "soln_gap", "time_to_ok_soln", "time_to_soln", "opt_gap",
        "time_to_opt", "err_msg"
    ]
    rows = []
    # Process successfully complete jobs
    for job in this_run_config.jobs_run - this_run_config.jobs_failed:
        model_name, solver_name = job
        test_model = models[model_name]
        test_solver = solvers[solver_name]
        job_data = Container()
        job_data.model = model_name
        job_data.solver = solver_name
        test_result = _get_job_result(this_run_dir, model_name, solver_name)
        if not test_result:
            continue  # TODO This should be unnecessary. We should detect a failure earlier in analysis.
        job_data.time = test_result.model_build_start_time
        job_data.LB = test_result.LB
        job_data.UB = test_result.UB
        job_data.elapsed = test_result.solver_run_time
        job_data.iterations = test_result.get('iterations', None)
        job_data.tc = test_result.termination_condition
        job_data.sense = test_model.objective_sense
        if job_data.tc != 'infeasible':
            job_data.soln_gap, job_data.opt_gap = _calculate_gaps(
                test_model, test_solver, test_result.LB, test_result.UB)
        else:
            job_data.soln_gap, job_data.opt_gap = None, None

        # Times to solution/optimality
        if job_data.soln_gap is not None and job_data.soln_gap <= options.optcr + options[
                'optcr tolerance']:
            job_data.time_to_soln = test_result.solver_run_time
            job_data.time_to_ok_soln = test_result.solver_run_time
        elif job_data.soln_gap is not None and job_data.soln_gap <= options[
                "ok solution tolerance"]:
            job_data.time_to_soln = float('inf')
            job_data.time_to_ok_soln = test_result.solver_run_time
        else:
            job_data.time_to_soln = float('inf')
            job_data.time_to_ok_soln = float('inf')

        if job_data.opt_gap is not None and job_data.opt_gap <= options.optcr + options[
                'optcr tolerance']:
            job_data.time_to_opt = test_result.solver_run_time
        else:
            job_data.time_to_opt = float('inf')

        rows.append(job_data)
    # Use Pandas to export to excel
    df = pandas.DataFrame.from_records(
        rows,
        columns=excel_columns).replace(  # replace infinity with empty cells
            [float('inf'), float('-inf')], [None, None])
    with pandas.ExcelWriter(str(outputdir.joinpath("results.xlsx"))) as writer:
        df.to_excel(writer, sheet_name="data")
    _autoformat_excel()