示例#1
0
def create_graph(messages: list, people: list, reacts: dict, freq: dict,
                 config: dict):

    directed = config['graph']['directed']

    if directed:
        reacts_g = nx.DiGraph()
    else:
        reacts_g = nx.Graph()
    reacts_g.add_nodes_from(people)

    threshold = config['graph']['pair_threshold']

    for pair in itertools.combinations(people, 2):
        make_edge(pair[0], pair[1], reacts, directed, threshold, reacts_g)
        if directed:
            make_edge(pair[1], pair[0], reacts, directed, threshold, reacts_g)

    vis = Network(bgcolor='#222222',
                  font_color="white",
                  height="100%",
                  width="100%",
                  directed=directed)

    vis.from_nx(reacts_g)

    neighs = vis.get_adj_list()
    for edge in vis.edges:
        edge["value"] = get_pair_reacts(edge["from"], edge["to"], reacts,
                                        directed)

    for node in vis.nodes:
        neighbors = vis.neighbors(node['id'])
        n_metadata = []
        for neighbor in neighbors:
            pair = (node['id'], neighbor)
            matching_edge = [
                edge for edge in vis.edges
                if (edge["from"] in pair and edge["to"] in pair)
            ][0]
            n_metadata.append(f'{neighbor} ({matching_edge["value"]})')
        node['title'] = " Reacts:<br>" + "<br>".join(list(n_metadata))
        if config['graph']['adjust_node_size']:
            node['size'] = config['graph']['base_size'] * log10(
                (freq[node['id']]) / 10)
        else:
            node['size'] = config['graph']['base_size']

    return (vis)
示例#2
0
def make_graph(subjects: list):
    # read data
    df = pd.DataFrame()
    for subject in subjects:
        courses = pd.read_json(f"courses/{subject}.json")
        df = pd.concat([df, courses])

    edge_list = make_edge_list(df)
    node_list, title_list = make_node_list(df)

    # make graph
    g = Network(directed=True,
                height="650px",
                width="100%",
                bgcolor="#222222",
                font_color="white")
    g.barnes_hut()  # spring physics on the edges
    g.inherit_edge_colors(False)

    g.add_nodes(node_list, title=title_list)
    for edge in edge_list:
        g.add_edge(edge[0], edge[1], color="#94c4fc")

    # add neighbor data to node hover data
    for node in g.nodes:
        prereq = df[df["label"] == node["label"]]["prereq"]
        prereq = [] if prereq.empty else prereq.item()
        next_courses = g.neighbors(node["label"])
        node["title"] += "<br>Prerequisites:<br>" \
                         + "<br>".join(prereq) \
                         + "<br>Next courses:<br>" \
                         + "<br>".join(next_courses)
        node["value"] = len(next_courses) + len(prereq)
        # highlight the node if it serves as a prerequisites for more than 5 course
        node["font"]["size"] = node["value"] * 5
        if node["value"] >= 8:
            node["color"] = "red"
    return g
jobtype = data['Type']

color = {'PhD' : 'blueviolet' , 'postdoc' : 'magenta' , 'link' : 'turquoise'}

all_people = set(list(people)+list(supervisors))
#node_size = Counter(supervisors)

for person in all_people:
    net.add_node(person, title=person,size=5) #,shape='ellipse')

for person, supervisor, job in zip(people,supervisors, jobtype):
    if job != 'link':
        net.add_edge(supervisor, person, arrow=True,color=color[job])

neighbor_map = net.get_adj_list()

# add neighbor data to node hover data
for node in net.nodes:
    supervised = [x for x in net.neighbors(node["id"])]
    num = len(supervised)
    if num > 0: 
        node["title"] += " Students:<br>" + "<br>".join(neighbor_map[node["id"]])
    node["value"] = num 

for person, supervisor, job in zip(people,supervisors, jobtype):
    if job == 'link':
        net.add_edge(supervisor, person, arrow=False,color=color[job],arrowStrikethrough=True)
        net.add_edge(person, supervisor, arrow=False,color=color[job],arrowStrikethrough=True)

net.show("index.html")
def map_kcs(kc_list,
            kc_matrix,
            node_color="#8B008B",
            edge_color="#03DAC6",
            node_shape="ellipse",
            alg="barnes",
            edge_smooth=None,
            buttons=False,
            treshold=0.5):
    """
    Use this on  a test that has less than 26 KCs, or else there will be problems with
    relations between the edges due to name conflict

    :param threshold: float,
    :param kc_list: np.array, list of all kcs
    :param edge_smooth: string, How the user wants the edges to be, default is continuous
    :param buttons: bool, buttons to edit graph with
    :param node_shape: string, shape of node
    :param edge_color: string, shape of edge
    :param node_color: string, hexvalue of color for node
    :param kc_matrix: 2D np array, mapping of kcs
    :param alg: string, algorithm for graph
    :return: renders a graph in which you can see the relations between nodes and their edges

    """
    g = Network(height="1500px",
                width="75%",
                bgcolor="#222222",
                font_color="white",
                directed=True)

    # if buttons:
    g.width = "75%"
    # nodes, layout, interaction, selection, renderer, physics
    g.show_buttons(filter_=["edges", "physics"])

    # Create the nodes
    for kc_node in kc_list:
        g.add_node(n_id=kc_node,
                   label=kc_node,
                   color=node_color,
                   shape=node_shape)

    # Creates edges between nodes if they're connected (if the value is true in the database)
    n = len(kc_matrix)
    for r in range(n):
        for c in range(n):
            if r != c:
                # Directly logically connnected edge
                if 0.9 <= kc_matrix[r, c] <= 1.0:
                    g.add_edge(kc_list[r], kc_list[c],
                               color="#42cc14")  # green
                # Necessary edge
                elif 0.7 <= kc_matrix[r, c] < 0.9:
                    g.add_edge(kc_list[r], kc_list[c],
                               color="#ff8c00")  # orange
                # Important edge
                elif 0.5 <= kc_matrix[r, c] < 0.7:
                    g.add_edge(kc_list[r], kc_list[c],
                               color="#ffd900")  # orange
                elif kc_matrix[r, c] == -1.0:
                    g.add_edge(kc_list[r], kc_list[c], color="#56f0eb")

    map_algs(g, alg)

    if edge_smooth is not None:
        map_smoothenes(graph=g, smooth=edge_smooth)

    node_list = g.get_nodes()
    for node in g.nodes:
        neighbors = g.neighbors(node_list[node_list.index(node['id'])])
        if neighbors is None:
            title = "Endpoint KC"
        else:
            title = "What to learn next:<br>"
            for neighbor in neighbors:
                title += f"{neighbor}<br>"
        node["title"] = title

    # g.save_graph("../../kc.html")
    g.show("kc_map.html")