def __init__(self, svm_type=TYPE_SVC, kernel=KERNEL_RBF, svr_epsilon=0.1, nu=0.5, random_seed=None, validation_size=0.33, **kwargs): ''' Create an svm. Make sure you choose "classifacition" or "regression". Other parameters control features of the SVM. also passes keyword args to VectorClassifier ''' #TODO: Document constructor #TODO: Add an option to specify SVM parameters directly and disable automatic tuning. self.svm = None self.svm_type = svm_type self.kernel = kernel self.epsilon = svr_epsilon self.nu = nu self.random_seed = random_seed self.validation_size = validation_size if svm_type in (TYPE_C_SVC, TYPE_NU_SVC): VectorClassifier.__init__(self, TYPE_MULTICLASS, **kwargs) else: VectorClassifier.__init__(self, TYPE_REGRESSION, **kwargs)
def __init__(self, training_size=0.67, # The fraction of the data to use for training validation_size=None, # The fraction of the data to use for training kernels= [RBF(gamma=2**i) for i in range(-15,4)], lams = [2.0**i for i in range(-8,9)], random_seed = None, **kwargs): if isinstance(lams,list): self.lams = lams else: self.lams = [lams] if isinstance(kernels,list): self.kernels = kernels else: self.kernels = [kernels] self.training_size = training_size self.validation_size = validation_size # set durring training self.mse = None self.lam = None self.kernel = None self.training_info = [] self.rng = random.Random(random_seed) VectorClassifier.__init__(self,TYPE_REGRESSION,**kwargs)
def __init__(self, order=2, **kwargs): #FIXME: DOcument this code ''' This class fits a polynomial to a function of 2 variables. ''' self.order = order self.x = None VectorClassifier.__init__(self, TYPE_REGRESSION, **kwargs)
def __init__(self,order=2,**kwargs): #FIXME: DOcument this code ''' This class fits a polynomial to a function of 2 variables. ''' self.order = order self.x = None VectorClassifier.__init__(self,TYPE_REGRESSION,**kwargs)
def __init__(self, svm_type=TYPE_SVC, kernel=KERNEL_RBF, svr_epsilon=0.1, nu = 0.5, random_seed=None, validation_size=0.33,**kwargs): ''' Create an svm. Make sure you choose "classifacition" or "regression". Other parameters control features of the SVM. also passes keyword args to VectorClassifier ''' #TODO: Document constructor #TODO: Add an option to specify SVM parameters directly and disable automatic tuning. self.svm = None self.svm_type = svm_type self.kernel = kernel self.epsilon=svr_epsilon self.nu = nu self.random_seed = random_seed self.validation_size = validation_size if svm_type in (TYPE_C_SVC,TYPE_NU_SVC): VectorClassifier.__init__(self,TYPE_MULTICLASS,**kwargs) else: VectorClassifier.__init__(self,TYPE_REGRESSION,**kwargs)
def __init__(self,lam=0.1,**kwargs): self.lam = lam VectorClassifier.__init__(self,TYPE_REGRESSION,**kwargs)