示例#1
0
        if 'train' in cfg.data:
            cfg.data.train.data_dir = args.data_dir
        if 'val' in cfg.data:
            cfg.data.val.data_dir = args.data_dir
        if 'test' in cfg.data:
            cfg.data.test.data_dir = args.data_dir

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # init logger before other steps
    logger = get_root_logger(log_level=cfg.log_level)

    # set random seeds
    if args.seed is not None:
        logger.info('Set random seed to {}'.format(args.seed))
        set_random_seed(args.seed)

    model = build_model(cfg.model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    test_dataset = build_dataset(cfg.data.val)

    test_network(model,
                 test_dataset,
                 cfg=cfg,
示例#2
0
                                         dict(type='GroupScale',
                                              scales=[(171, 128)]),
                                         dict(type='GroupCenterCrop',
                                              out_size=112),
                                         dict(type='GroupToTensor',
                                              switch_rgb_channels=True,
                                              div255=True,
                                              mean=(0.485, 0.456, 0.406),
                                              std=(0.229, 0.224, 0.225))
                                     ])),
    )
    return Dict(data)


if __name__ == '__main__':
    logger = get_root_logger(log_level='INFO')

    args = parse_args()
    _cfg = Config.fromfile(args.cfg)
    cfg = dict(model=prepare_model_config(_cfg['model']['backbone']),
               data=prepare_data_config(args.dataset_name, args.data_dir))
    cfg = Dict(cfg)
    cfg.gpus = args.gpus
    cfg.data.videos_per_gpu = args.batchsize

    cfg.work_dir = args.work_dir

    if args.checkpoint is None:
        load_from = cfg.work_dir
    else:
        load_from = args.checkpoint