示例#1
0
def twist(val, geo):
    for i in range(nTwist):
        geo.rot_z['wing'].coef[i] = val[i]

def span(val, geo):
    # Span
    C = geo.extractCoef('wing')
    s = geo.extractS('wing')
    for i in range(len(C)-1):
        C[-1, 2] = C[-1, 2] + val[0]
    geo.restoreCoef(C, 'wing')

DVGeo.addGeoDVGlobal('twist', [0]*nTwist, twist, lower=-10, upper=10, scale=1.0)
DVGeo.addGeoDVGlobal('span', [0], span, lower=-10, upper=10, scale=1.0)
DVGeo.addGeoDVLocal('shape', lower=-0.5, upper=0.5, axis='y', scale=10.0)
mesh = MBMesh(options={'gridFile':'../inputFiles/mdo_tutorial_euler.cgns'})
CFDSolver.setMesh(mesh)
CFDSolver.setDVGeo(DVGeo)
#Aeroproblem must be set before we can call DVGeo.setDesignVars
CFDSolver.setAeroProblem(ap)
if not 'complex' in sys.argv:
    # Solve system
    CFDSolver(ap, writeSolution=False)
    funcs = {}
    CFDSolver.evalFunctions(ap, funcs)
    # Solve sensitivities
    funcsSens = {}
    CFDSolver.evalFunctionsSens(ap, funcsSens)

    # Write values and derivatives out:
    if MPI.COMM_WORLD.rank == 0:
示例#2
0
    # Adjoint Parameters
    'adjointL2Convergence': 1e-6,
    'adjointMaxIter': 2000,
}

meshOptions = {
    'gridFile': gridFile,
    'warpType': 'algebraic',
}

# Create solver
CFDSolver = ADFLOW(options=aeroOptions, comm=comm)

# Set up mesh warping
mesh = MBMesh(options=meshOptions, comm=comm)
CFDSolver.setMesh(mesh)
CFDSolver.setDVGeo(DVGeo)

# ==============================================================================
# Set up structural analysis
# ==============================================================================
structOptions = {
    'gravityVector': [0, -9.81, 0],
    'projectVector': [0, 1, 0],  # normal to planform
}

# Set up TACS on the struct proc
FEASolver = pytacs.pyTACS('wingbox.bdf', comm=comm, options=structOptions)
FEASolver.setDVGeo(DVGeo)
execfile('INPUT/setup_structure.py')
示例#3
0
    # Solution Parameters
    'nSolutionSteps': 5,  # only for nonLinear or steppedLinear
    'ksp_its': 25,
    'warp_tol': 1e-10,  # overall tolerance for nonLinear/steppedLinear 
    'reduction_factor_for_reform': 0.5,
    'useSolutionMonitor': False,
    'useKSPMonitor': False,

    # Physical parameters
    'nu': 0.0,
    'e_exp': 1.0,
    'skew_exp': 0.0,
    'useRotationCorrection': False,
}
mesh = MBMesh(options=optMesh)

options.update({
    'gridfile': '../inputFiles/naca0012_rans-L2.cgns',
    'writevolumesolution': False,
    'vis4': .025,
    'vis2': 0.5,
    'restrictionrelaxation': .5,
    'smoother': 'dadi',
    'equationtype': 'RANS',
    'equationmode': 'unsteady',
    'timeIntegrationscheme': 'bdf',
    'ntimestepsfine': nfineSteps,
    'deltat': dt,
    'nsubiterturb': 10,
    'nsubiter': 5,
示例#4
0
    # Solution Parameters
    'nSolutionSteps': 5,  # only for nonLinear or steppedLinear
    'ksp_its': 25,
    'warp_tol': 1e-10,  # overall tolerance for nonLinear/steppedLinear
    'reduction_factor_for_reform': 0.5,
    'useSolutionMonitor': False,
    'useKSPMonitor': False,

    # Physical parameters
    'nu': 0.0,
    'e_exp': 1.0,
    'skew_exp': 0.0,
    'useRotationCorrection': False,
}
# Create mesh object
mesh0 = MBMesh(options=meshOptions)
mesh_vec = []
for i in xrange(ntimeintervalsspectral):
    mesh_vec.append(MBMesh(options=meshOptions))

# ======================================================================
#         CFD INPUTS
# ======================================================================

MGCycle = '2w'
name = 'aero_struct'

aeroOptions = {
    # Common Parameters
    'gridFile': gridFile,
    'outputDirectory': 'OUTPUT',
示例#5
0
def test6():
    # ****************************************************************************
    printHeader('MDO tutorial RANS Geometric Variables')
    # ****************************************************************************
    aeroOptions = copy.deepcopy(defOpts)

    # Now set the options that need to be overwritten for this example:
    aeroOptions.update(
        {'gridfile': '../inputFiles/mdo_tutorial_rans.cgns',
         'mgcycle':'2w',
         'equationtype':'RANS',
         'smoother':'dadi',
         'nsubiterturb':3,
         'nsubiter':3,
         'cfl':1.5,
         'cflcoarse':1.25,
         'ncyclescoarse':250,
         'ncycles':750,
         'monitorvariables':['resrho','resturb','cl','cd','cmz','yplus','totalr'],
         'usenksolver':True,
         'l2convergence':1e-17,
         'l2convergencecoarse':1e-2,
         'nkswitchtol':1e-4,
         'adjointl2convergence': 1e-16,
         'nkls': 'non monotone',
         'frozenturbulence':False,
         'nkjacobianlag':2,
     }
    )

    # Setup aeroproblem, cfdsolver
    ap = AeroProblem(name='mdo_tutorial', alpha=1.8, mach=0.80, 
                     altitude=10000.0, areaRef=45.5, chordRef=3.25, evalFuncs=['cl','cmz','drag'])
    
    ap.addDV('alpha')
    ap.addDV('mach')
    CFDSolver = ADFLOW(options=aeroOptions)
    if 'complex' in sys.argv:
        DVGeo = DVGeometry('../inputFiles/mdo_tutorial_ffd.fmt', complex=True)
    else:
        DVGeo = DVGeometry('../inputFiles/mdo_tutorial_ffd.fmt', complex=False)

    nTwist = 2
    DVGeo.addRefAxis('wing', pyspline.Curve(x=numpy.linspace(5.0/4.0, 1.5/4.0+7.5, nTwist), 
                                            y=numpy.zeros(nTwist),
                                            z=numpy.linspace(0,14, nTwist), k=2))
    def twist(val, geo):
        for i in xrange(nTwist):
            geo.rot_z['wing'].coef[i] = val[i]

    def span(val, geo):
        # Span
        C = geo.extractCoef('wing')
        s = geo.extractS('wing')
        for i in xrange(len(C)-1):
            C[-1, 2] = C[-1, 2] + val[0]
        geo.restoreCoef(C, 'wing')

    DVGeo.addGeoDVGlobal('twist', [0]*nTwist, twist, lower=-10, upper=10, scale=1.0)
    DVGeo.addGeoDVGlobal('span', [0], span, lower=-10, upper=10, scale=1.0)
    DVGeo.addGeoDVLocal('shape', lower=-0.5, upper=0.5, axis='y', scale=10.0)
    mesh = MBMesh(options={'gridFile':'../inputFiles/mdo_tutorial_rans.cgns'})
    CFDSolver.setMesh(mesh)
    CFDSolver.setDVGeo(DVGeo)
    #Aeroproblem must be set before we can call DVGeo.setDesignVars
    CFDSolver.setAeroProblem(ap)
    if not 'complex' in sys.argv:
        # Solve system
        CFDSolver(ap, writeSolution=False)
        funcs = {}
        CFDSolver.evalFunctions(ap, funcs)
        # Solve sensitivities
        funcsSens = {}
        CFDSolver.evalFunctionsSens(ap, funcsSens)

        # Write values and derivatives out:
        if MPI.COMM_WORLD.rank == 0:
            for key in ['cl','cmz','drag']:
                print 'funcs[%s]:'%key
                reg_write(funcs['mdo_tutorial_%s'%key],1e-10,1e-10)
            # Now write the derivatives in the same order the CS will do them:
            print ('Twist[0] Derivatives:')
            reg_write(funcsSens['mdo_tutorial_cl']['twist'][0][0], 1e-10,1e-10)
            reg_write(funcsSens['mdo_tutorial_cmz']['twist'][0][0], 1e-10,1e-10)
            reg_write(funcsSens['mdo_tutorial_drag']['twist'][0][0], 1e-10,1e-10)

            print ('Span Derivatives:')
            reg_write(funcsSens['mdo_tutorial_cl']['span'][0], 1e-10,1e-10)
            reg_write(funcsSens['mdo_tutorial_cmz']['span'][0], 1e-10,1e-10)
            reg_write(funcsSens['mdo_tutorial_drag']['span'][0], 1e-10,1e-10)

            print ('shape[13] Derivatives:')
            reg_write(funcsSens['mdo_tutorial_cl']['shape'][0][13], 1e-10,1e-10)
            reg_write(funcsSens['mdo_tutorial_cmz']['shape'][0][13], 1e-10,1e-10)
            reg_write(funcsSens['mdo_tutorial_drag']['shape'][0][13], 1e-10,1e-10)

            print ('mach Derivatives:')
            reg_write(funcsSens['mdo_tutorial_cl']['mach_mdo_tutorial'], 1e-10,1e-10)
            reg_write(funcsSens['mdo_tutorial_cmz']['mach_mdo_tutorial'], 1e-10,1e-10)
            reg_write(funcsSens['mdo_tutorial_drag']['mach_mdo_tutorial'], 1e-10,1e-10)

    else:
        # For the complex....we just do successive perturbation
        for ii in range(4):
            xRef = {'twist':[0.0, 0.0], 'span':[0.0], 'shape':numpy.zeros(72, dtype='D'), 'mach_mdo_tutorial':0.8}
            if ii == 0:
                xRef['twist'][0] += h*1j
            elif ii == 1:      
                xRef['span'][0] += h*1j
            elif ii == 2:
                xRef['shape'][13] += h*1j
            else:
                xRef['mach_mdo_tutorial']+=h*1j

            ap.setDesignVars(xRef)
            CFDSolver.resetFlow(ap)
            DVGeo.setDesignVars(xRef)
            CFDSolver(ap, writeSolution=False)
            funcs = {}
            CFDSolver.evalFunctions(ap, funcs)

            if MPI.COMM_WORLD.rank == 0:
                if ii == 0:
                    for key in ['cl','cmz','drag']:
                        print 'funcs[%s]:'%key
                        reg_write(numpy.real(funcs['mdo_tutorial_%s'%key]),1e-10,1e-10)

                if ii == 0:
                    print ('Twist[0] Derivatives:')
                elif ii == 1:
                    print ('Span Derivatives:')
                elif ii == 2:
                    print ('shape[13] Derivatives:')
                elif ii == 3:
                    print ('mach Derivatives:')

                for key in ['cl','cmz','drag']:
                    deriv = numpy.imag(funcs['mdo_tutorial_%s'%key])/h
                    reg_write(deriv,1e-10,1e-10)

    del CFDSolver
    del mesh